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ABSTRACT

A new platform, termed spatial crowdsourcing, is emerging which
enables a requester to commission workers to physically travel to
some specified locations to perform a set of spatial tasks (i.e., tasks
related to a geographical location and time). The current approach
is to formulate spatial crowdsourcing as a matching problem be-
tween tasks and workers; hence the primary objective of the ex-
isting solutions is to maximize the number of matched tasks. Our
goal is to solve the spatial crowdsourcing problem in the presence
of multiple workers where we optimize for both travel cost and the
number of completed tasks, while taking the tasks’ expiration times
into consideration. The challenge is that the solution should be a
mixture of task-matching and task-scheduling, which are funda-
mentally different. In this paper, we show that a baseline approach
that performs a task-matching first, and subsequently schedules the
tasks assigned per worker in a following phase, does not perform
well. Hence, we add a third phase in which we iterate back to the
matching phase to improve the assignment per the output of the
scheduling phase, and thus further improves the quality of match-
ing and scheduling. Even though this 3-phase approach generates
high quality results, it is very slow and does not scale. Hence, to
scale our algorithm to large number of workers and tasks, we pro-
pose a Bisection-based framework which recursively divides all the
workers and tasks into different partitions such that assignment and
scheduling can be performed locally in a much smaller and promis-
ing space. Our experiments show that this approach is three orders
of magnitude faster than the 3-phase approach while it only sacri-
fices 4% of the results’ quality.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Spatial

databases and GIS
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1. INTRODUCTION
As the number of smartphones increases and their technology

advances, the opportunities to leverage these devices to positively
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affect human behavior expand. For example, to improve the food
delivery experience, a user could simply tap into a crowdsourc-
ing application, “FAVOR" [10] and request food delivery from any
restaurant. Once receiving this request, the server could assign it
to any available nearby "runner" to pick up the food at the required
store. Thus, we are witnessing the emergence of a new platform,
termed spatial crowdsourcing, for anyone to submit requests for
real-world tasks, tagged with time and location, and then distribute
these tasks among people with smartphones in the vicinity of the
tasks, who are willing to accept the task and may receive monetary
reward for completing it. Typically, a spatial crowdsourcing plat-
form consists of workers, spatial tasks (i.e., tasks related to a loca-
tion), and users who request tasks. Its goal is to crowdsource a set
of requested spatial tasks to available workers, which requires the
workers to physically go to those locations in order to perform the
tasks. For example, in the "FAVOR" platform, each online runner
is an available worker, and each food delivery request is a spatial
task related to a restaurant location. Spatial crowdsourcing has ap-
plication in numerous domains such as transportation (e.g., Uber),
journalism [18, 19], and business intelligence (e.g., Gigwalk [13]
and TaskRabbit [23]).

The challenge is that whether these spatial crowdsourcing plat-
forms can provide both an efficient and effective mechanisms to
support users’ demands at scale [12]. Several existing approaches [1,
8,15,16,22,24] have focused on the optimization of spatial task as-
signment. For instance, Kazemi and Shahabi [15] formulate the
spatial crowdsourcing as a matching problem between tasks and
workers with the primary objective of maximizing the number of
matched tasks. However, a shortcoming of these approaches is that
they ignored the fact that maximizing the number of matched tasks
is not necessarily equivalent to maximizing the number of com-
pleted tasks once the additional travel costs associated with mov-
ing to tasks locations, and the expiration time of tasks are taken into
account. On the contrary, Deng et al. [9] formulated spatial crowd-
sourcing as a scheduling problem in which the goal is to maximize
the number of completed tasks per worker. They made the simpli-
fying assumption that each worker has a set of pre-assigned tasks in
order to focus on the scheduling optimization for a single worker.

To address both of the above shortcomings, we propose a new
formulation of spatial crowdsourcing as a combination of two op-
timization problems: task-matching and task-scheduling. Our ob-
jective is to solve the spatial crowdsourcing problem in the pres-
ence of multiple workers where we optimize for both total travel
cost and the number of completed tasks, while taking the tasks
expiration times into consideration. One challenge is that the so-
lution is a mixture of task-matching and task-scheduling, while
existing approaches in spatial crowdsourcing work on either task-
matching [15,16] or task-scheduling [9], but not both. One straight-
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forward idea is to take a good matching approach from [15] to per-
form the global task-matching, and then perform the task-scheduling
for the tasks assigned to each worker utilizing a scheduling heuris-
tic from [9]. However, this baseline method does not consider the
possibility of re-matching and re-scheduling for the current/remaining
workers and tasks, thus produces poor scheduling results.

To overcome this issue, we propose a 3-phase framework, termed
Global Assignment and Local Scheduling (GALS), that incorpo-
rates the idea of the baseline approach, which contains matching
and scheduling as the first two phases, but with an additional third
phase in which we iterate back to the matching phase to improve
the assignment per the output of the scheduling phase (See Fig-
ure 1). We also provide an insertion heuristic such that the newly
assigned tasks can be incrementally inserted into a partial schedule,
which speeds up the computation as compared to a re-scheduling
approach.

Even though GALS could achieve high quality results in terms
of matching and scheduling, it does not scale to large number of
tasks and workers due to the bottleneck of global assignment. Note
that due to the online nature of large-scale crowdsourcing system,
where requests (i.e., tasks) need to be matched and scheduled in
real-time with short response time, the online response-time of the
proposed solution should scale as the number of on-line workers
and tasks grows.

To speed-up GALS, we need to break the global assignment
phase (the bottleneck) to a set of local assignments. Intuitively, on
average a worker is scheduled with only a small number of tasks,
and each task has a relatively small number of candidate workers.
Therefore, for each worker, we only need her/his nearby workers
and tasks to obtain a good scheduling. This motivates us to propose
a Task-oriented partitioning algorithm, which segments the large
flow network into smaller partitions and thus the Local Assignment
and Local Scheduling (LALS) can be completed in a much smaller
but promising search space.

Nevertheless, the conventional LALS framework still encoun-
ters efficiency bottleneck arising from two problems: the Strag-

glers problem across the partitions and the Residual problem. The
Stragglers problem refers to the phenomenon where a small num-
ber of partitions have much heavier workloads and take signifi-
cantly longer than the others to complete. On the other hand, after
scheduling for each partition, the aggregated number of remaining
workers and tasks (i.e., the residual) might be large, which leads to
high computation cost. We thus propose a Bisection-based frame-

work that iteratively performs a top-down recursive bisection pro-
cedure to achieve the balanced partitioning and a bottom-up merge
to avoid the residual problem. Through this process, our algorithm
not only achieves near-optimal results as GALS, but also scales to a
massive number of workers and tasks. We also develop an analyt-
ical method that automatically determines the parameter (i.e., the
size of one partition) of the bisection framework.

Since to the best of our knowledge, this is the first study of the
combination of task assignment and scheduling in spatial crowd-
sourcing, we did not have competitive approaches to which com-
pare LALS (besides the baseline and GALS approaches). How-
ever, recently other partitioning approaches have been proposed
with a different focus of improving the efficiency of task assign-
ment in spatial crowdsourcing [1, 8]. Thus, these approaches do

not consider the balanced workloads between different partitions
and the connectivity information between tasks and workers, which
are critical for efficiency and the quality of the scheduling phase
(see more detailed discussion in Section 6). Nevertheless, in Sec-
tion 5, we adapt these partitioning approaches to our problem set-
ting and show that our partitioning technique is at least one order
of magnitude faster. Our experiments also show that while GALS
outperforms the baseline by up to 30% in terms of the number of
completed tasks, our BisectionLALS algorithm is three orders of
magnitude faster than GALS by sacrificing only 4% of the match-
ing+scheduling quality.

The remainder of this paper is organized as follows. In Section 2,
we formally define our Maximum Task Scheduling problem with
Multiple Workers (MTSMW). In Section 3, we present the Global
Assignment and Local Scheduling (GALS) framework to solve the
problem. We propose the Bisection-based Local Assignment and
Local Scheduling work in Section 4. Experiment results are re-
ported in Section 5. In Section 6, we review the related work and
Section 7 concludes the paper.

2. PROBLEM DEFINITION
We use s to denote a spatial task with location ls and deadline

ds. A worker, denoted by w, is a person who volunteers to perform
spatial tasks. Each online worker w is associated with location lw,
current time instance tw, capacity qw, and a spatial region gw.

With spatial crowdsourcing, a spatial task s can be completed by
a worker only if the worker is physically located at the location ls.
Considering the expiration time, a spatial task s can be completed
only if the worker arrives at ls before its deadline ds. In addition,
we use a task sequence R = (s1, s2, · · · , sm) to denote a task
scheduling for a worker. The size of a task sequence, denoted by
|R|, is the number of tasks in R. We say a task sequence R satisfies
a worker’s capacity constraint if |R| < qw. Moreover, we use
set(R) to denote the set interpretation of the sequence R, and R is
a finite sequence over set(R).

With the above notation, given a worker w and his/her task schedul-
ing R = (s1, s2, · · · , sm), the arrival time of w at task si in R is
defined as follows:

a(si) =

{

a(si−1) + c(si−1, si) if i 6= 1
tw + c(w, s1) if i = 1

where c(a, b) is the travel cost from the location of a to the loca-
tion of b.

In addition, for a worker w, the travel cost of a task sequence R,
denoted by δ(R), is the travel cost of visiting all the tasks. That is,

δ(R) = c(w, s1) + c(s1, s2) + · · ·+ c(sm−1, sm)

Definition 1. Given an instance set It = {Wt, St}, where Wt is a set
of workers and St is a set of tasks in time t, a planning P is a set of task
sequences {Rw1

, Rw2
, · · · , Rwn} for all the workers, where n = |Wt|,

visiting each of the task at most once, i.e.,
{

set(Rwi
) ∩ set(Rwj

) = ∅ (1 ≤ i < j ≤ |Wt|)
⋃p

i=1 set(Rwi
) ∈ St

Figure 2 shows an example with 5 spatial workers and 8 spatial
tasks. One potential planning is Rw1

= (s1), Rw2
= (s3, s2), Rw3

=
(s4), Rw4

= (s6, s7) and Rw5
= (s5, s8).

Based on the above definitions, we now formally define the prob-
lem of Maximum Task Scheduling with Multiple Workers (MTSMW):

PROBLEM 1. Given the instance set It = {Wt, St}, the solu-

tion of MTSMW is to find a planning P = {Rw1
, Rw2

, · · · , Rwn}
for all the workers that satisfies each worker’s capacity, spatial

constraint and the tasks’ expiration time constraint; i.e.,













|Rwi
| ≤ qwi

(1 ≤ i ≤ |Wt|)

set(Rwi) ∈ gwi (1 ≤ i ≤ |Wt|)

a(s) ≤ ds (∀s ∈
⋃p

i=1 set(Rwi))

The MTSMW problem aims to find a solution P which (1) maxi-

mizes the number of completed tasks (i.e.,
∑

i |Rwi
|), and (2) min-

imizes the sum of the average travel cost per task over all workers

(i.e.,
∑

i

δ(Rwi
)

|Rwi
|

). Note that the first goal is the primary goal, and

we use the travel cost as tiebreaker, i.e., in case of ties in the num-

ber of completed tasks, we choose the solution with minimal travel

cost.

In this work, we consider the model of Server-Assigned-Task
(SAT) [15], in which the spatial crowdsourcing server is responsi-
ble for calculating the mathcing and scheduling the tasks. For ease
of presentation, we summarize our notations used throughout this
paper in Table 1.

Table 1: Notations and explanations
Notations Explanations

w, s a spatial worker and spatial task
lw, ls the spatial location of worker w and task s
qw, gw the capacity, spatial region of worker w
tw the start time instance of worker w
ds the deadline of task s
a(s) the arrive time at task s
c(a, b) the travel cost between location a and b
R a route sequence
δ(R) the travel cost of the route R
set(R) the spatial tasks contained in R
Sw tasks that are assigned to worker w at one iteration
W,S a worker set and task set
|W |, |S| number of workers and tasks in W and S
P a planning for all the workers

Proof of NP-hard. It has been proven in [9] that the maximum task
scheduling (MTS) problem with single worker and single objective
is NP-hard, thus the MTSMW problem with multiple workers and
two objectives is also NP-hard.
Remark: In this paper, we use matching and assignment inter-
changeably. However, in general they are not equivalent to each
other.
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q4 = 2q3 = 1
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Figure 2: Example

3. THE GALS ALGORITHM
In this section, we discuss our heuristic algorithm, namely, Global

Assignment and Local Scheduling algorithm (GALS), to solve Prob-
lem 1. We first discuss the framework of GALS as follows:

1. Initial task assignment: Find a matching for the set of workers W
and the set of tasks S. With the matching, a task s is assigned to a
worker w if they are matched with each other.

2. Local scheduling: For each worker w and her/his assigned tasks Sw ,
if there is no schedule for this worker, we make a new schedule;
Otherwise, we update her/his current schedule.

3. Update assignment: Update the flow network with the updated schedul-
ing and consequently refine the matching between workers and tasks.

4. Repeat 2–4 until it meets the termination condition.

In the rest of this section, we provide the design details of each
component.
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Figure 3: Flow network with 5 workers and 8 tasks, a source and

destination vertices are added. We connect one edge between a (w, s)

pair only if s is in the spatial region of w. The capacity for the edges

from src to w is qw , and the capacity for the remaining edges is 1.

3.1 Initial Assignment module
In the assignment module, we adopt the similar techniques pro-

posed by Kazemi et al. [15] to solve the maximum task assign-
ment problem. That is, we formulate the matching problem as a
maximum flow problem, and find the matching of worker and task
pairs from the flow. We could also associate each edge with a cost
(e.g., travel time or distance) in the flow network, thus min-cost-
maximum-flow algorithm could be used. We outline the assign-
ment module in Algorithm 1.

Algorithm 1 Matching(W , S)

Input: Worker set W and task set S.
Output: An assignment between W and S.

1: Construction a flow network wrt. (W,S)
2: Calculate the maximum flow or min-cost-max-flow assignment based

on different cost functions
3: Find the assignment between workers and tasks from the flow

Figure 3 shows the example of the corresponding flow network
from Figure 2. One solution to the max flow problem in this flow
network is shown as the bolded edges. With respect to this max
flow, an initial assignment is retrieved as Sw1

= {s1}, Sw2
=

{s2, s3}, Sw3
= {s4}, Sw4

= {s6} and Sw5
= {s5, s7, s8}. The

reason we use the max-flow algorithm for assignment is that we
observed the assignment phase is the most determining factor in
terms of the number of completed tasks through our experiment. As
an example, in Figure 2, if initially s2 is assigned and scheduled to
w1, then s1 cannot be completed because w1 is the only candidate
worker but he does not have any more capacity. Another reason is
due to the property stated in the following Lemma.

LEMMA 1. The maximum-flow value fv is the upper bound of the num-

ber of completed tasks.

Proof (Sketch): Suppose f∗ tasks are completed in the optimal scheduling,

then the corresponding scheduling could form a valid assignment in the flow

network. From the definition of maximum flow, we know that f∗ ≤ fv ,

therefore, fv is the upper bound of the number of completed tasks. �

3.2 Scheduling module
The basic idea of our scheduling module is to construct a new

scheduling based on the existing scheduling, rather than re-scheduling
from scratch. This is because one worker would possibly already
have a partial schedule when he/she is in the process of GALS al-
gorithm. Specifically, given a worker w with the assigned tasks Sw

and existing scheduling Rw (Rw could be empty), the purpose of
the scheduling module is to insert as many tasks in Sw as possible
into Rw with minimum travel cost. In the following we first intro-
duce the insertion feasibilities and then present the details of the
insertion heuristic which is used for creating a new scheduling as
well as updating an existing scheduling.
Insertion Feasibilities. To simplify our problem, we assume that
when we are inserting a task into an existing scheduling Rw =
(s1, s2, · · · , sm), the order of the existing tasks in Rw does not



change. Unfortunately, even with this assumption, not every task
in Sw is feasible to be inserted. This is because inserting a new task
between sj−1 and sj could potentially change the arrival times of
the subsequent tasks (sj+1, · · · , sm), which causes some sched-
uled tasks after sj become impossible to complete. Therefore,
the insertion feasibility check evaluates whether a task insertion
increases the number of completed tasks (feasible), or in the op-
posite does not increase the number of completed task (infeasible).
Specifically, our insertion feasibility check is built upon the follow-
ing Lemma:

LEMMA 2. The necessary conditions for inserting a new task s be-

tween sj−1 and sj on a partial feasible route R = (s1, s2, · · · , sm) are

(assume each task takes zero time to be completed):

td+ a(si) ≤ dsi , when j ≤ i ≤ m

where td denotes the travel delay caused by inserting task s, that is, td =
c(s, sj−1) + c(sj , s)− c(sj−1, sj).

Insertion scheduling. As outlined in Algorithm 2, in our incre-
mental scheduling, at each iteration, for each unscheduled task s ∈
Sw, we scan all the possible |Rw|+1 positions in the current partial
task sequence Rw, to find the spot with the minimum travel delay of
inserting s while keeping its feasibility. The algorithm for finding
the best insertion place in a partial route is listed in Algorithm 3.

Time complexity of insertion heuristic. In order to insert tasks
from Sw into a partial scheduling Rw, the function FindBestInser-
tionPlace is called at most |Sw|

2 times and each with a cost of |Rw|,
therefore the total time complexity is O(|Sw|

2|Rw|). Although the
time complexity is quadratic, in practice it is still efficient because
the number of assigned tasks for each worker is a relatively small
value, and is basically decreasing over each iteration.

Algorithm 2 InsertionScheduling(w, Rw, Sw)

Input: A worker w, a partial route Rw and a task set Sw .
Output: An updated task sequence Rw for w.

1: repeat

2: for all unscheduled tasks s ∈ Sw do
3: (Cs, poss)← FindBestInsertionPlace(w, Rw , s)
4: (sǫ, posǫ)← argminCs, ∀s ∈ Sw

5: Insert sǫ into the posǫ of Rw

6: until no more tasks could be inserted into Rw

Algorithm 3 FindBestInsertionPlace(w, Rw, s )

Input: A worker w, a partial task sequence Rw and a task s.
Output: The insertion place bestPos and the travel delay minCost.

1: /∗ Assume Rw = (s1, s2, · · · , sm) ∗ /
2: for i← 0 to m do

3: if i == 0 then

4: cost← c(w, s1)
5: else if i == p then

6: cost← c(sm, s)
7: else

8: cost← c(si, s) + c(s, si+1)− c(si, si+1)
9: Check the feasibility according to Lemma 2

10: if cost < minCost then

11: minCost← cost

12: bestPos← i
13: return minCost and bestPos

3.3 Assignment update module
Once we complete the scheduling phase for those workers with

the assigned tasks, we iterate back to the assignment phase: We
build the corresponding flow network between the remaining work-
ers and tasks, and calculate the new assignment. However, we also
need to maintain a set of forbidden worker-task pairs to avoid du-
plicate task assignment that has occurred in the previous iterations.
The details of our update algorithm are outlined in Algorithm 4. We

use RWS as the remaining worker set and RTS as the remain-
ing task set (Lines 1–2). For each worker w with newly updated
scheduling, we check the capacity of w, and insert it into RWS
if w still has available capacity (Lines 4–5). In addition, for those
tasks that are assigned to w but could not be scheduled via our in-
sertion heuristic, we add them into RTS and mark the matching
(w, s) as the forbidden matching pair (Lines 7–9). Once we build
the flow network with respect to RWS, RTS and the forbidden
matching pairs, we calculate the maximum flow and find the new
assignment for the next iteration (Lines 10–12).

Example of GALS: From Section 3.1, an initial max-flow assignment of

Figure 2 is Sw1
= {s1}, Sw2

= {s2, s3}, Sw3
= {s4}, Sw4

= {s6}

and Sw5
= {s5, s7, s8}, subsequently GALS makes a scheduling for each

worker. Suppose only task s7 cannot be completed by worker w5, then

the worker-task pair(w5, s7) is marked as forbidden for the next iteration.

Consequently a new flow network between w4 and s7 is built because s7 is

in w4’s spatial region and w4 has one more capacity, finally s7 is scheduled

into w4’s existing scheduling as shown in Figure 2.

Algorithm 4 UpdateFlowNetworkAndAssignment()

Output: An assignment A between RWS and RTS.

1: RWS← the unassigned workers in the last assignment
2: RTS← the unassigned tasks in the last assignment
3: for each w with newly assigned tasks do

4: if qw > |Rw| then

5: RWS← RWS ∪ w
6: /∗ task s has not been scheduled into Rw ∗ /
7: if s ∈ Sw AND s /∈ Rw then

8: RTS← RTS ∪ s
9: Add (w, s) into the forbidden matching pairs

10: Build flow network wrt. (RWS, RTS) and the forbidden pairs
11: Calculate the maximum flow
12: Find the task assignment for RWS

Table 2: Time complexity analysis for the GALS Algorithm, |W r|

(|Sr|) is number of workers (tasks) at iteration r, |Er| is number of

edges in the flow network, and |Sr
w| is number of tasks assigned to a

worker w.
Operation Complexity

Initial task assignment O((|W |+ |S|)2 · |E|)

Schedule for one worker O(|Sr
w|

2|Rr
w|)

Update flow network and assignment O((|W r|+ |Sr|)2|Er|)

3.4 Complexity analysis of GALS
Termination condition: The iteration terminates when the number
of edges in the remaining flow network is zero (i.e., there exists no
mapping between RWS and RTS). The flow network starts with
at most |W | · |S| edges, at each iteration the number of edges is de-
creasing because we are updating the scheduling of workers and/or
marking some worker-task pairs as forbidden, therefore eventually
the algorithm would terminate.

Complexity analysis: Table 2 summarizes the cost of each oper-
ation in one iteration of our GALS algorithm. Given a flow net-
work with |V | vertices and |E| edges, the cost of finding a maxi-
mum flow is O(|V |2|E|) by IBFS algorithm [14]. Therefore, the

time complexity of our GALS algorithm is O
(

I +
∑

r

(

(|W r| +

|Sr|)2|Er| +

|Wr|
∑

k=1

|Sr
k|

2|Rr
k|
)

)

, where I is the initial task assign-

ment cost. Clearly the cost is dominated by the initial global as-
signment phase and assignment update phase.

4. THE LALS ALGORITHM



In Section 4.1, we first propose a Task-oriented partitioning and
describe how it is used in a Naïve Local Assignment Local Schedul-
ing (LALS) framework to reduce the bottleneck of global assign-
ment in GALS. We then present the Bisection-based LALS frame-
work to further improve its efficiency.

Algorithm 5 TaskOrientedPartitionGeneration(curW , curS, θ)

Input: the current worker set (curW ), the current task set (curS) and a
threshold value θ.
Output: A single partition p with PWS and PTS.

1: PWS ← ∅, PTS ← ∅
2: WS ← ∅, TS ← ∅
3: s← randomly choose a seed task, TS ← TS ∪ s
4: workload← 0
5: while TRUE do

6: for all s ∈ TS do

7: for all w ∈Ws (workers could complete task s) do

8: if w ∈ curW AND w /∈ PWS then

9: add w into WS and PWS
10: workload← workload+ 1
11: TS ← ∅
12: for all w ∈WS do

13: for all s ∈ Tw (tasks in the region w) do

14: if s ∈ curT AND s /∈ PTS then

15: Add s into TS and PTS
16: WS ← ∅
17: if workload ≥ θ or No worker(task) is left then

18: return (PWS,PTS) as a partition
19: if TS is empty then

20: s← findNextCloseTask()
21: TS ← TS ∪ s

4.1 Task-oriented partitioning
Various partitioning techniques [3, 4, 26] have been proposed to

find a balanced partitioning that minimizes the number of edge cuts
for arbitrary graph; however, our flow network is essentially a bi-
partite graph and our objective is to segment the flow network into
different partitions with balanced workloads (i.e., number of edges)
as well as preserve the spatial properties. Thus, we aim to divide
tasks and their relevant workers (i.e., close in location and also con-
nected in the flow network) into the same partition.

The intuition for our Task-oriented partitioning to generate a sin-
gle partition is similar to “blow balloons" as shown in Figure 4:
Starting from an empty partition (empty balloon), we randomly se-
lect a task, add it into the partition, and grow the partition with its
nearby workers and tasks until the workload of this partition (the
number of edges in this sub network) reaches a threshold (a full
balloon). Given the current available worker and task set, Algo-
rithm 5 presents the details of generating a partition with the work-
load (edge number) constraint. The partition is initialized with an
empty set of workers PWS and set of tasks PTS (Line 1). We
also initialize TS with a randomly chosen task (Lines 2–4). Sub-
sequently from each iteration, we expand from each task t ∈ TS
to its nearby workers and increase the workload (Line 6–10). Sim-
ilarly, we grow the partition from the newly added workers in WS
(Lines 12–15). This process continues until the workload passes
the threshold. The expansion strategy outlined in Lines 6–10 and
Lines 12–15 guarantees that tasks and workers in a partition are
centered on the seed task of this partition.
NaïveLALS algorithm and its complexity. With a list of gener-
ated partitions through Algorithm 5, the idea of the NaïveLALS
algorithm is to use GALS to make scheduling for each partition as
well as the remaining workers and tasks.

Suppose the partitioning cost is J , the time complexity of using
GALS for one partition p is Hp and the cost of scheduling for the
remaining workers and tasks is Hr , then the total cost of Naïve-

T0

W0

T1
T2

W1 W2

…...

Figure 4: Task-oriented partition: The partition extends from T0 to

its one-hop relevant worker set W0, then W0 extends to T1, and so on.

The size of circle represents the relative size of worker/task set.

LALS is O(J +
∑

p Hp + Hr). In terms of the partitioning cost,
since it only requires one single pass of the entire network and addi-
tional costs to call the function findNextClosestTask, then
the computational cost of Task-oriented partitioning is O(|W | +
|S|+|E|+kF ), where F is the computational cost of findNext-
ClosestTask, and k is the number of function calls. Through
this way, the large cost of global assignment I in GALS is divided
into a set of local assignments, thus improves the efficiency.

4.2 Bisection-based LALS framework
Even though NaïveLALS improves the overall efficiency, it still

encounters the bottleneck due to two problems: i.e., the Stragglers
problem among partitions and the Residual problem. The Strag-
glers problem refers to the case where a small number of partitions
have much heavier workloads and thus take significantly longer
running time than the others to complete. In the Task-oriented
partitioning, it is highly possible to generate gigantic partitions be-
cause of the one-hop expanding strategy where both the worker and
task set simultaneously grow. The residual problem occurs when,
after running GALS for each partition, the aggregated number of
remaining workers and tasks is large, which leads to high compu-
tation cost for assigning remaining workers and tasks.

To address the Stragglers and the Residual problems, we propose
a Bisection-based LALS mechanism. Our algorithm recursively
partitions the workers and tasks into two equal-sized parts until the
workload is less than a predefined threshold, and then merges the
remaining workers and tasks in a bottom-up fashion after assign-
ment and scheduling. Through this process, our algorithm not only
achieves similar matching-scheduling results as GALS, but also
scales to large number of workers and tasks. We first outline the
BisectionLALS mechanism in Algorithm 6, and then present the
details of recursive bisection and bottom-up merging.

Algorithm 6 BisectionLALS (W , S, θ)

Input: Worker set W , task set S and the threshold value θ.
Output: A planning P for W .

1: curW←W, curS← S
2: curWorkload← |E|
3: while curWorkload > θ do

4: partitions← RecursiveBisection (curW, curT, curWorkload, θ)
5: BottomUpMerging (partitions, θ)
6: Update curW, curT, curWorkload
7: if curWorkload > 0 then

8: Schedule for curW and curT with GALS

Recursive top-down bisection partitioning. The recursive top-
down bisection partitioning is built upon the intuition that it is easy
to control and balance the partition size if we only generate two
partitions. The idea is outlined in Algorithm 7. We initially divide
the current flow network into two equal-sized parts through the
Task-oriented partitioning, then they are recursively divided into
two until the workload is less than a predefined threshold. With the
recursive bisection, we could generate a list of balanced partitions,
and the workload of each partition is less than the threshold value
to guarantee that local assignment and scheduling in each partition
can be efficiently computed.
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Figure 5: Bisection-based mechanism with threshold value θ = 30, 000

Figure 5(a) depicts an example of a partitioning tree correspond-
ing to the recursive bisection algorithm. Given two thousand work-
ers, ten thousand tasks and four hundred thousand edges, and the
threshold value 30,000, the recursive bisection returns 6 partitions
in which workload is ranging from 16, 000− 20, 000.

Algorithm 7 RecursiveBisection(curW , curS, curWorkload, θ)

Input: Current worker set curW , current task set curS, current workload
and the threshold value θ.
Output: partitions

1: θ ← curWorkload/2
2: if curWorkload > threshold then

3: pL, pR ← TaskOrientedPartitionGeneration(curW, curS, θ)
4: if pL.workload > θ then

5: RecursiveBisection(pL.W, pL.S, pL.workload, θ)
6: else

7: Add pL into partitions
8: if pR.workload > θ then

9: RecursiveBisection(pR.W, pR.S, pR.workload, θ)
10: else

11: Add pR into partitions
12: return partitions

Algorithm 8 BottomUpMerging(partitions, θ)

Input: partitions and threshold θ
Output: A merged partition

1: while there exists more than one partition do

2: Combine the last two sibling partitions pL and pR at the bottom
level as pmerge

3: if pmerge.workload > θ then

4: Schedule for pL and pR using GALS
5: pmerge ← remaining workers and tasks from pL and pR
6: Insert pmerge into the corresponding positions of the partition list

Bottom-up merging. To address the residual problem, we pro-
pose a bottom-up merging approach, which fully utilizes the spatial
properties of the binary tree generated by the above bisection parti-
tioning algorithm. Our intuition is based on the fact that the sibling
partitions of the binary tree are spatially close to each other, and
thus merging remaining workers and tasks from sibling partitions
guarantees the quality of local assignment and scheduling. There-
fore, the basic operation of our bottom-up merging procedure is to
merge and/or schedule for two sibling partitions. Specifically, if the
combined workload of two sibling partitions is larger than the pre-
defined threshold, we do a local assignment and local scheduling
for each partition, and merge the remaining workers and tasks as
a new partition; otherwise, we only merge these two sibling parti-
tions as a new partition. In both cases the newly generated partition
is inserted into the existing partitioning tree. Figure 5(b) illustrates
the process of scheduling and merging. Because the combined
workload of sibling partitions 8 and 9 is larger than the thresh-
old 30, 000, thus local assignment and scheduling is performed for
both 8 and 9. We then merge the remaining workers and tasks into
a new partition 4 with fewer number of workers and tasks.

The pseudo-code of BottomUpMerging is outlined in Algorithm 8.
We keep merging and running local assignment and scheduling for

partitions located at the bottom level (Lines 2-5) until only one root
partition is left. Figure 5(c) explains this procedure, in which the
grayed patterned nodes represent the merged partitions. Initially, as
illustrated in Figure 5(b), a new partition 4 is generated by merg-
ing the remaining workers and tasks of its children partitions 8 and
9; while similarly a new partition 6 is generated by merging the
remaining workloads of partitions 10 and 11. Subsequently, as a
different case, because the combined workloads of 4 and 5 is less
than the threshold, a new partition 2 is generated by simply merg-
ing 4 and 5 (assignment and scheduling is not performed). Finally,
the procedure stops at the root node after merging the remaining
workers and tasks from partitions 2 and 3. This root partition will
be scheduled in the next iteration of Algorithm 6.

The bottom-up merging is efficient because it prohibits assign-
ment and scheduling for a partition with workload larger than the
threshold. In addition, the size of the output partition at root node
reduces dramatically, which ensures the Bisection-based LALS ter-
minates quickly in a few iterations.

4.2.1 Time complexity analysis
Given the worker set |Wi| and task set |Si| with the number of

edges |Ei| at iteration i, the total cost of Algorithm 6 could be
expressed as:

Cost =
∑

i

[Hpartition(i) +Hmerge(i)] +Hr

where Hr is the cost of scheduling for the remaining worker set
and task set for Lines 7–8 in Algorithm 6.

We now discuss the complexity of each part separately. Note that

at the ith iteration , the height of the partitioning tree hi = log |Ei|
θ

.
Thus, we have the following:

LEMMA 3. At the ith iteration, the cost of recursive bisection Hpartition

is O((|Ei|+ |Wi|+ |Si|) · hi).

PROOF. At each level, we at most linearly scan the entire worker and
task set with cost |Ei|+|Wi|+|Si|, and the height of the partitioning tree is
hi, thus the partitioning cost Hpartition(i) = O((|Ei|+|Wi|+|Si|)·hi).

�
LEMMA 4. At the ith iteration, the cost of bottom-up merging Hmerge

is O((|Wp|+ |Sp|)2 · |Ei|).

PROOF. In the worst case, local assignment and local scheduling is per-

formed at each node in a complete partitioning tree. That is, it requires

running GALS for O(2hi ) number of partitions. For each GALS, the cost

is dominated by the assignment, which is denoted as O(|Wp|+|Sp|)2 · θ),

assume that |Wp| (|Sp|) is the number of workers (tasks) located at the par-

tition. Therefore, we have Hmerge = 2hi · 2O((|Wp| + |Sp|)2 · θ) =

O(2hi (|Wp|+ |Sp|)2 · θ) = O((|Wp|+ |Sp|)2 · |Ei|).

�

Total number of iterations. We notice that the Bisection-based al-
gorithm converges quickly: the size of flow-network reduces signif-
icantly per iteration. However, the total number of iterations is also
related to the threshold value θ. and it is unclear how the workload
reduces per iteration with θ. Thus, we conducted a set of empiri-
cal studies, in which we vary the threshold value θ and report how
the workload varies per iteration on different datasets. Figure 6(a)



shows the experiment result on a flow network with five thousand
workers, twenty-five thousand tasks and three million edges. We
observe that the workload |Ei| reduces exponentially as i increases,
i.e.,

log |Ei| = k · i+ log |E| (1)

where |E| is the number of edges in the original flow network,
and k(k < 0) is a variable that is related to θ.

From the experiment results on different datasets which vary-
ing θ , we fit the slope k into the polynomial equation of θ, i.e.,
k =

∑

m bmθm(m ≥ 0, bm is constant we learned from the fit-
ting algorithm). Thus, given the initial workload |E| and threshold
value θ, we could predict how the workload changes per iteration.

From Algorithm 6, BisectionLALS terminates when Ei is smaller
than the threshold value θ. Therefore, the total number of iterations
is bounded by O( log θ−log |E|

k
) = O( log θ−log |E|∑

m bmθm
).

1 2 3 4 5 6 7
10

4

10
5

10
6

W
or

kl
oa

d 
|E

i|

 

 

θ=10000
θ=20000
θ=30000
θ=40000
θ=50000

10000 20000 30000 40000 50000
2

6

10

14

16

R
un

ni
ng

 tm
e(

s)

 

 

Total time
Partition time
Merge Time

(a) Workload v.s. iteration i (b) Running time v.s. θ

Figure 6: Effect of θ for BisectionLALS

4.2.2 Finding the threshold value θ

In the following we develop an analytical method that automati-
cally determines the threshold value θ. In general, the partitioning
cost reduces as the value of θ increases because the bisection al-
gorithm terminates earlier at the lower level of the partitioning tree
and thus less cost is incurred; whereas the merging cost increases
when the value of θ increases because higher value of θ leads to
a higher computation cost of GALS at each larger-size partition.
Figure 6(b) clearly depicts this trade-off.

Therefore, to achieve the best efficiency, we propose a cost model
to derive the value of θ. In particular, we quantify the total cost
H = Hpartition +Hmerge (Hr is ignored because it is dominated
by these two costs) as a expression of θ. Note that Hpartition(i)
and Hmerge(i) are dependent on the workload |Ei|. From Equa-
tion 1, we know Ei could be expressed as:

|Ei| = e(
∑

m bmθm·i+log |E|) (2)

With this equation, both Hpartition(i) and Hmerge(i) could be
quantified as a function of θ. Substitute Equation 2 into Lemma 3
and 4, we obtain the following:

Hpartition(i) = (
∑

m

i · bmθm + log |E|−log θ)e(
∑

m i·bmθm+log |E|)

(3)

Hmerge(i) =
∑

i

(wp + sp)
2 · e

∑
m i·bmθm+log |E|

=
∑

i

(θ/dt + θ/dw)2 · e
∑

m i·bmθm+log |E|
(4)

where dt/dw is a constant which represents the average degree
of task/worker in one node of the partitioning tree.

Substitute Hmerge(i) and Hpartition(i) in the expression
∑

i

(Hpartition(i) + Hmerge(i)) with Equation 3 and Equation 4, we
then use a numerical method to find the stationary point of θ. (Note
that it is non-trivial to derive the closed form solution for the expo-
nential sum expression.) Hence, given the size of a flow network,

we could automatically determine the threshold value to achieve
the best efficiency. For example, we derive θ = 32, 000 for |E| =
3 million, which conforms to the empirical study shown in Fig-
ure 6(b).

5. EXPERIMENT

5.1 Experiment setup

Dataset. It is challenging to find real datasets to reflect the schedul-
ing applications from the real-life systems such as Uber, Gigtalk
and TaskRabbit because their data are not publicly available due to
their commercial value. Therefore, we generated synthetic (SYN)
dataset as well as adopted the Gowalla and Yelp check-in dataset
for simulation by following the approaches of previous work [9,15,
16]. In the following, we discuss our dataset in more details.
Synthetic dataset. For the synthetic dataset, we varied the num-
ber of tasks from 5K to 100K. Initially the workers and tasks are
located in a 500 × 500 grid, and the grid size increases when the
number of tasks increases. The travel cost between two locations
is proportional to their Euclidean distances. In our experiment, we
generated both uniform (SYN-UNI) and skew (SYN-SKEW) dis-
tributions. For SYN-UNI, locations of spatial tasks and workers are
chosen uniformly from the grids. For SYN-SKEW, 80% of work-
ers and tasks are co-located in 6 random Gaussian clusters (with
δ = 0.5 and random centers) while locations of the remaining 20%
workers and tasks are generated from a uniform distribution. Pro-
ceeding in this way, at the area with dense tasks, the workers are
densely distributed.

Table 3: Statistics of the real datasets Gowalla and Yelp per time in-

stance.
Gowalla Yelp

Avg. # of tasks |S| 12421 15320
Avg. # of workers |W | 1800 3200
Avg. # of W/T 42 64
Avg. # of qw 15 22

Real dataset. Gowalla1 was a location-based social network, where
users are able to check in at different locations in their vicinity.
For our experiments, we assumed that the Gowalla users are spa-
tial workers, and checking in a spot is equivalent to completing a
spatial task at that location. We picked the granularity of a time
instance as one day. Consequently, we assumed that all the users
who checked in during a day as our available workers for that day.
Because users may have various check-ins during a day, for every
user w, we set qw as the number of check-ins of the user in that
day, and we calculated gw as the minimum bounding rectangle of
those checked-in locations. Moreover, the check-in time was used
as the deadline of one spatial task. The travel cost was calculated
by the Euclidean distance divided by the average travel speed (i.e.,
40 miles/hour).

The Yelp dataset2 was captured in the greater Phoenix, Arizona
and Las Vegas. For our experiments, we assumed that the busi-
nesses are the spatial tasks, Yelp users are the workers, and re-
viewing a business is equivalent to accepting a spatial task at its
location. For each worker, we set the spatial region gw as the mini-
mum bounding rectangle of the locations of his review list per day.
Moreover, we set the capacity of one worker as the size of his re-
view list. We define the location of one spatial task as the location
of the reviewed restaurant and randomly generated the deadline of
one task at the range of 8am to 9pm. The travel cost was calculated
the same way as the Gowalla data.We select 30 instances from one
month review data at October 2012. The statistics of Gowalla and
Yelp data are summarized in Table 3.

1snap.stanford.edu/data/loc-gowalla.html
2http://www.yelp.com/dataset_challenge/

snap.stanford.edu/data/loc-gowalla.html
http://www.yelp.com/dataset_challenge/


Algorithms. To the best of our knowledge, we are the first to study
the assignment and scheduling problem in spatial crowdsourcing.
Therefore, we first evaluated the proposed GALS and LALS algo-
rithms via different implementations. For GALS, in the assignment
phase, we tested both the max-flow assignment and min-travel-cost
max-flow assignment from [15]. We found that they achieved simi-
lar results, thus we only report the results of GALS using max-flow
assignment. For both the NaïveLALS (NLALS) and the Bisection-
LALS (BLALS) frameworks, we adapted two competitive parti-
tioning techniques (i.e., Location-based and KMeans-based) and
compared them with our proposed Task-oriented partitioning. In
particular, Location-based partitioning [1] divides the entire region
into equal-sized grid area, without considering the workload of
each partition. With KMeans based partitioning [8], tasks are first
divide into two even subsets via KMeans clustering, and for each
subset of tasks it adds the workers that could complete these tasks
into the corresponding partition. To save space we only show the
algorithms with better performance under each framework, i.e., we
compare NLALS-L (Location-based) with NLALS-T, and BLALS-
K (KMeans-based) with BLALS-T. In terms of the threshold value,
we determine the best threshold value via the proposed cost model.
Note that the value is independent of the partitioning techniques.
We compared our algorithms with the baseline algorithm (A&S)
which uses the global matching approach for task-matching and in-
sertion heuristic for task-scheduling, and ignores the third assign-
ment update phase in GALS. We use insertion heuristic through our
experiments for fair comparison.

In summary, we compared BLALS-T and NLALS-T with BLALS-
K, NLALS-L, GALS and A&S, to demonstrate the advantage of
Task-oriented partitioning. In addition, we compared BLALS-T
with NLALS-T, GALS and A&S to evaluate the performance of
Bisection-based LALS framework.

Table 4: Experiment parameters
Parameters Value range

number of task |S| 5K, 10K,25K, 50K, 100K
W/T 40,80, 120
maximum region gw 3%, 6%,9%, 12%, 15%
maximum capacity of qw 10, 15,20, 25, 30

Configuration and measures. We evaluated the scalability of the
algorithms by varying the number of tasks from 5K to 100K. In
the default setting, the spatial workers were with the maximal ca-
pacity 20 and the spatial region sizes were at most [9%, 9%] of the
entire region, the tasks deadlines were randomly generated. We
then varied the average number of workers whose spatial region
contains a given task, namely workers per task(W/T). Intuitively,
high value of W/T represents a worker-dense area. We also eval-
uated the effects of worker’s region constraint g (from [3%, 3%] to
[15%, 15%]) and capacity constraint q (from 10 to 30). However,
we do not report the results of varying region and capacity con-
straint because of the space limitation and the effects are similar of
varying |S| and W/T . To simulate the real application scenario, we
tested the overall performance of our algorithms for a continuous
10 time instances: each instance represents a small time interval
(e.g, one hour or one day). At each instance, the server receives a
set of new tasks and workers, but also considers the available work-
ers 3 and tasks (unscheduled and unexpired) from the previous in-
stances. Because the server did not have the global knowledge in
this online setting, the server only optimized the task scheduling at
each time instance. The default settings (in bold font) of the exper-
iment parameter are listed in Table 4.

3If one worker has non-empty scheduling but still has capacities,
we also keep the worker for the next time instance.

For each of these experiments, the results were reported as av-
eraged over 50 runs. We recorded the total number of scheduled
tasks, the response time and the average travel cost per task. All al-
gorithms were implemented in Java and all experiments were con-
ducted on the Linux OS with Intel Core i5-2400 CPU @ 3.10G HZ
and 16 GB memory.

5.2 Scalability with size of data set
In this set of experiments, we evaluated the scalability of our

approaches by varying the number of tasks from 5K to 100K. Ta-
ble 5 shows the number of scheduled tasks on SYN-UNI. GALS
performs best and improves the baseline algorithm A&S by up
to 30%, and the gain increases as the number of tasks increases.
This indicates that both the global assignment and the assignment
update phases in GALS are the crucial steps to improve the final
scheduling quality. In addition, NLALS-T outperforms NLALS-L,
and is comparable with GALS in terms of quality, which demon-
strates the advantage of our Task-oriented partitioning technique.
We also notice BLALS-T performs better than BLALS-K. The rea-
son is that BLALS-K allows overlapping workers between different
partitions, the resolution of conflicts would reduce the advantage
of global assignment. Finally, BLALS-T achieves similar results
as NLALS-T, which indicates that our bisection framework does
not lose much accuracy under our Task-oriented partitioning tech-
nique, and the bottom up merge process preserves the spatial prop-
erties. Therefore, BLALS-T is able to achieve near-optimal results
as GALS. For example, for the 50 thousand dataset, compared with
GALS, the number of completed tasks by BLALS-T is reduced
from 49000 to 47000 (only 4%).

Table 5: No. of scheduled tasks on SYN-UNI when varying |S|
Data size A&S GALS NLALS-L NLALS-T BLALS-K BLALS-T

5K 3501 4656 4525 4642 4458 4561

10K 7072 9708 9602 9684 9594 9653

25K 17743 24725 23588 24699 23539 24576

50K 36365 49050 46706 48833 46006 47404

100K 55966 76871 70855 72414 69408 72003

Table 6: No. of scheduled tasks on SYN-SKEW when varying |S|
Data size A&S GALS NLALS-L NLALS-T BLALS-K BLALS-T

5K 3379 3986 3804 3911 3829 3896

10K 7075 8263 7908 8201 7706 8093

25K 19049 21849 20010 21747 19682 21473

50K 35614 43653 40333 43368 39286 42095

100K 56511 68505 60595 66275 59172 63937

Table 6 depicts the performance on SYN-SKEW. The results are
similar with those on SYN-UNI: GALS performs best and BLALS-
T is able to achieve close results as GALS. On average, the number
of scheduled tasks on the skewed data is lower than that on the
uniform data. The reason is that in the skewed dataset, a large
number of tasks are covered by zero or fewer number of workers;
while a small number of tasks are covered by a concentrated clus-
ters of workers. On the other hand, the performance gain of GALS
on SYN-SKEW over A&S is lower than on SYN-UNI, which in-
dicates that the assignment phase plays a more important role on
SYN-SKEW than on SYN-UNI. We notice that on SYN-SKEW the
advantage of Task-oriented partitioning over Location-based parti-
tioning is larger than on SYN-UNI. This is because on SYN-UNI,
workers and tasks are uniformly distributed, Location-based par-
titioning might yield as balanced partitions as Task-oriented par-
titioning. In contrast, on SYN-SKEW, Task-oriented partitioning
achieves much better results than Location-based partitioning be-
cause it generates more balanced partitions via utilizing task con-
nectivity information.

Figures 7(a) and (b) show the running time of different approaches
on SYN-UNI and SYN-SKEW respectively. As expected, the run-
ning time increases when the number of tasks increases. A&S and
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Figure 7: Running time of varying number of tasks |S|
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Figure 8: Avg. travel cost of varying number of tasks |S|

GALS are the least efficient approach due to its high computa-
tional cost in the global assignment phase. GALS performs little
worse than A&S because it requires an additional assignment up-
date phase. Even for the 25K dataset, both GALS and A&S take
more than 1000 seconds, which indicates that both of them are not
applicable for large-scale data in real applications. With the Naïve-
LALS framework, the running time of NLALS-L and NLALS-T
marginally improves over GALS. This is because the straggler and
residual problems exist in the conventienal LALS framework. Fi-
nally, we notice that BLALS-T is the most efficient method, which
is one order of magnitude faster than BLALS-K, and several or-
ders of magnitude faster than another approaches. The reasons
are twofolds: first, the bisection framework successfully addresses
the problems incurred in the LALS framework; second, unlike K-
means based partitioning, our Task-oriented partitioning does not
allow duplicate workers to exist in different partitions, and gener-
ates more balanced partitions by considering the connectivity in-
formation.

Table 7: Experiment results on Gowalla
No. of Tasks Running time(s) Travel cost/task (mile)

A&S 8574 136.80 8.30

GALS 10031 147.02 5.87

NLALS-L 9219 28.47 6.02

NLALS-T 9867 15.49 5.80

BLALS-K 9094 24.11 5.86

BLALS-T 9547 3.80 5.86

Table 8: Experiment results on YELP
No. of Tasks Running time(s) Travel cost/task (mile)

A&S 10785 432.07 8.98

GALS 13125 739.80 6.10

NLALS-L 12654 130.74 6.20

NLALS-T 13074 76.30 6.37

BLALS-K 12501 39.09 5.64

BLALS-T 12898 5.923 5.88

In conclusion, BLALS-T well addresses all the efficiency bottle-
necks for task assignment and scheduling in spatial crowdsourcing
and is scalable for real-time applications.

Figures 8 (a) and (b) show the average travel cost per task of dif-
ferent approaches on SYN-UNI and SYN-SKEW respectively. The
results for our proposed approaches are close to each other. We ob-
serve that when the number of tasks increases, the average travel
cost decreases. A possible reason is that when the number of tasks
increases, the nearby tasks of each worker are increasing accord-
ingly. Also note A&S has the highest travel cost on SYN-SKEW,
which indicates that the assignment update module in GALS is im-
portant for high scheduling quality. Table 7 and 8 depict the experi-

ment results on the Gowalla and YELP dataset. The results are sim-
ilar to those on synthetic data. GALS algorithm achieves the best
scheduling quality but the worst efficiency. NLALS-T (NLALS-L)
improves the efficiency of GALS marginally but still does not scale
to large number of workers and tasks. Finally, BLALS-T achieves
near-optimum results as GALS and is more efficient than all the
other alternative approaches.

A&S GALS NLALS−L NLALS−T BLALS−K BLALS−T

40 80 120
8000

12000

15,000

20,000

22,000

N
o
. 
o
f 
c
o
m

p
le

te
d
 t
a
s
k
s

 

 

40 80 120
10

0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 t
im

e
 (

s
)

 

 

40 80 120
0

2

4

6

8

10

A
v
g
. 
T

ra
v
e
l 
C

o
s
t

 

 

(a) No. of completed tasks (b) Running time (c) Avg. travel cost

Figure 9: Experiment results of varying W/T on SYN-UNI

5.3 Effect of W/T

In this set of experiments, we evaluated our approaches by vary-
ing the average number of candidate workers per task, i.e., W/T .
We only report the experiment results on SYN-SKEW here due to
the space limitation. Figure 9(a) shows the number of completed
tasks by different approaches. Clearly, the number of completed
tasks increases as W/T grows. This is because larger value of
W/T means more candidate workers per task. When the number
of workers per task is 120, the number of completed tasks by dif-
ferent approaches are close to each other, which means that most
tasks have been completed. In addition, Figure 9 indicates that
GALS ≫ {NLALS-T, BLALS-T} ≫ {NLALS-L, BLALS-L} ≫
A&S, where A ≫ B denotes on average A performs better than B
in terms of number of completed tasks. Figure 9(b) and (c) show
the running time and the average travel cost respectively. BLALS-
T is consistently more efficient than all the other approaches. The
travel cost of our approaches is similar to each other while A&S
obtains a much higher average travel cost.

Table 9: Total No. of completed tasks of batch processing
Data size AS GALS NLALS-L NLALS-T BLALS-K BLALS-T

10K-UNI 83698 98266 98100 104920 97848 98136

10K-SKEW 69590 83148 78888 95132 78454 81890

Gowalla 81030 96674 90874 102232 85536 91692

Yelp 108300 127492 111752 134656 110540 125538

Table 10: Total running time (seconds) of batch processing
Data size AS GALS NLALS-L NLALS-T BLALS-K BLALS-T

10K-UNI 861.64 1049.18 140.590 105.74 85.26 26.74

10K-SKEW 1175.78 1254.29 216.88 99.86 77.268 24.34

Gowalla 1551.91 1636.86 227.38 160.26 102.52 24.55

Yelp 3961.76 4176.65 911.12 516.2 189.63 41.59

Table 11: Avg. Travel cost of batch processing
Data size AS GALS NLALS-L NLALS-T BLALS-K BLALS-T

10K-UNI 12.32 9.54 8.84 9.14 9.18 9.22

10K-SKEW 9.11 6.29 6.632 6.21 5.77 6.05

Gowalla 8.85 5.76 6.16 6.26 5.57 5.84

Yelp 8.47 6.06 6.20 6.30 5.37 5.98

5.4 Dynamic scenario
In the last set of experiments, we evaluated our approaches in

the continuous 10 instances on SYN-UNI, SYN-SKEW and real
dataset, where at each instance we have new workers and tasks. The
number of tasks at each instance for SYN-UNI and SYN-SKEW is
10K. Tables 9, 10 and 11 report the experimental results of num-
ber of completed tasks, total running time and average travel cost
respectively. We find that NLALS-T performs better than NLALS-
L and A&S in terms of the number of completed tasks. In addi-
tion, BLALS-T achieves the lowest computational cost and similar
number of completed tasks as NLALS-T, which demonstrates that
BLALS-T is practical for real applications.



6. RELATED WORK
Crowdsourcing has recently attracted a lot of attentions from re-

searchers in different application domains such as database sys-
tem [11,25], team formulation [17] and crowd recommendation [21].

Recently spatial crowdsourcing [1, 2, 8, 12, 15] is emerging, and
the interests of spatial croudsourcing research focus on the task as-
signment [1, 5, 8, 15, 22], trust [16] and privacy issues [24]. For
example, Kazemi and Shahabi [15] formulated task assignment in
spatial crowdsourcing as a matching problem with the primary ob-
jective of maximizing the number of matched tasks, and Alfarrarjeh
et al. [1] scaled up the assignment algorithm in a distributed setting.
Reliable task assignment addressing trust issues in spatial crowd-
sourcing have been studied in [8, 16]. In [8] Cheng et.al. proposed
a partitioning heuristic which recursively divides tasks and work-
ers via KMeans clustering to improve the assignment efficiency.
Compared with [1, 8], our bisection-based partitioning technique
generates disjoint worker and task sets per partition, thus we do not
need to address the issue of conflicts assignment. In addition, our
partitioning technique utilizes both the spatial and the connectiv-
ity information between workers and tasks to achieve a balanced
workload, thus successfully avoids the straggler problem for the
partitioning techniques. We also develop an analytical method to
automatically determine the size of one partition. Therefore, when
adapting their partitioning approaches to our problem setting, our
proposed algorithm is at least one order of magnitude faster than
their approaches (see more details in Section 5). On the other hand,
Deng et. al. [9] studied the scheduling problem from the worker’s
perspective and developed both exact and heuristic algorithms to
help the worker to formulate the best scheduling. However, their
paper assumes that each worker has been pre-assigned with some
tasks, and thus only deals with single worker case. In this paper, we
are able to assign tasks and suggest scheduling for multiple workers
simultaneously in a unified framework.

Our work is also related to some combinatorial optimization prob-
lem such as Vehicle Routing Problem(VRP) [6, 20]. The general
setting of VRP is to serve a number of customers with a fleet of ve-
hicles and the objective is to minimize the total travel cost of those
vehicles. Compared with VRP, with spatial crowdsourcing our ob-
jective is to maximize the number of completed tasks, whereas
VRP aims to minimize the total travel time. In addition, the spa-
tial workers in our problem setting are not located at one or several
fixed depots, each worker has a spatial constraint and only accepts
the tasks in her/his nearby region; the spatial tasks are also not
guaranteed to be completed by the workers. Finally, in a spatial
crowdsourcing platform, we need to provide efficient solutions for
potentially millions of tasks and workers. This is different from the
solutions in VRP which take hundreds of seconds even for one hun-
dred delivery points. There also exists partitioning approaches [7]
for Dynamic VRP where the typical solution is to divide the cus-
tomers into different partitions, then assign one vehicle to each par-
tition and run a TSP routing strategy separately. However, in our
problem setting many workers reside in one partition, and TSP can-
not be used to schedule for multiple workers.

7. CONCLUSION
In this paper, we proposed a unified framework for spatial crowd-

sourcing platform, in which for each worker, we not only assign
tasks, but also provide an effective scheduling with minimum travel
cost. Our first algorithm, GALS, which iteratively improves the as-
signment and scheduling, performs the best in the number of com-
pleted tasks. However, due to a computational bottleneck, it is too
slow to be used in online spatial crowdsourcing systems. Hence,
we devised a Bisection-based LALS framework which performs a
top-down recursive bisection and bottom-up merge procedure itera-

tively. The recursive bisection is performed with Task-oriented par-
titioning that maintains both the spatial properties and the connec-
tivity of tasks. The experiment results verified that our bisection-
based LALS algorithm is orders of magnitude faster than GALS
while only sacrificing little quality, and thus is suitable for real
world systems.

There are several promising directions for future work. First, we
plan to develop algorithms to support trust-able task assignment
and scheduling in which multiple workers are required to complete
a single task. Second, we intent to extend the current framework to
a dynamic scenario where both workers and tasks vary over time.
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