
SPECIAL SECTION ON CLOUD - FOG - EDGE COMPUTING IN CYBER-PHYSICAL-SOCIAL
SYSTEMS (CPSS)

Received February 25, 2020, accepted March 6, 2020, date of publication March 17, 2020, date of current version March 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981434

Task Offloading and Resource Allocation
for Mobile Edge Computing by Deep
Reinforcement Learning Based on SARSA

TAHA ALFAKIH 1, MOHAMMAD MEHEDI HASSAN 1,2, (Senior Member, IEEE),

ABDU GUMAEI 1, CLAUDIO SAVAGLIO 3, AND
GIANCARLO FORTINO 3, (Senior Member, IEEE)
1Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
2Research Chair of Smart Technologies, King Saud University, Riyadh 11543, Saudi Arabia
3Department of Informatics, Modeling, Electronics and Systems, University of Calabria, 87036 Rende, Italy

Corresponding author: Mohammad Mehedi Hassan (mmhassan@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research at King Saud University through the Vice Deanship of Scientific Research

Chairs. Chair of Smart Technologies. The authors also thank the RSSU at King Saud University for their technical support.

ABSTRACT In recent years, computation offloading has become an effective way to overcome the

constraints of mobile devices (MDs) by offloading delay-sensitive and computation-intensive mobile

application tasks to remote cloud-based data centers. Smart cities can benefit from offloading to edge

points in the framework of the so-called cyber–physical–social systems (CPSS), as for example in traffic

violation tracking cameras. We assume that there are mobile edge computing networks (MECNs) in more

than one region, and they consist of multiple access points, multi-edge servers, and N MDs, where each

MD has M independent real-time massive tasks. The MDs can connect to a MECN through the access

points or themobile network. Each task be can processed locally by theMD itself or remotely. There are three

offloading options: nearest edge server, adjacent edge server, and remote cloud.We propose a reinforcement-

learning-based state-action-reward-state-action (RL-SARSA) algorithm to resolve the resource management

problem in the edge server, and make the optimal offloading decision for minimizing system cost, including

energy consumption and computing time delay. We call this method OD-SARSA (offloading decision-based

SARSA). We compared our proposed method with reinforcement learning based Q learning (RL-QL), and

it is concluded that the performance of the former is superior to that of the latter.

INDEX TERMS Mobile devices, edge computing, mobile edge computing, edge cloud computing, virtual

machines, access points.

I. INTRODUCTION

In recent years, the massive growth of computationally inten-

sive and delay sensitive mobile applications, such as online

gaming, image or signal processing (e.g., facial recognition),

augmented reality, and real-time translation services, have

been imposing heavy computation demands on resource-

constrained mobile devices (MDs). As MDs are limited in

terms of computation, battery, and storage capacity, there is

a growing trend to offload or transfer computation intensive

tasks to powerful remote computing platforms. This method

is referred to as computation offloading. It reduces energy

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Piccialli.

consumption for local processing and therefore prolongs

battery life.

Mobile cloud computing (MCC) [1] is a well-known com-

putation offloading model for MDs [1]. In MCC, user devices

can utilize the resources of dedicated remote cloud servers for

executing their tasks. These servers have high power, CPU,

and storage capabilities. However, the long distance between

the MDs and the cloud server lead to substantial communi-

cation costs in terms of latency and energy, negatively influ-

encing real-time applications [2]. Therefore, in recent years,

the computation and storage capabilities of the remote cloud

have partially migrated to the edge server (near the MDs).

This concept is called mobile edge computing (MEC) [3].

MEC provides information technology services and cloud

computing capabilities at the mobile network edge. MEC is

54074 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0003-0366-5932
https://orcid.org/0000-0002-3479-3606
https://orcid.org/0000-0001-8512-9687
https://orcid.org/0000-0002-4039-891X
https://orcid.org/0000-0001-5092-0823

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

implemented by a dense deployment of computational

servers or by strengthening already deployed edge enti-

ties, such as small cell base stations (BS) with computa-

tion and storage resources. The objective of MEC is to

ensure efficient network operation and service distribution,

reduce latency, and offer an enhanced user experience [3],

[4]. MEC offloads computation intensive applications to

the cellular network edge. Smart cities can benefit from

offloading to edge servers in the framework of the so-called

cyber–physical–social systems (CPSSs), as in traffic vio-

lation tracking cameras, or drone services for delivery or

geological survey purposes. Each edge node processes the

data itself rather than forwarding them to a central remote

cloud. Consequently, MEC can improve user experience

quality (QoE) and meet service quality (QoS) requirements,

such as low latency and energy consumption. Moreover,

unlike MCC, MEC pursues a decentralized framework where

the edge servers are deployed in a distributed manner.

Despite the great potential of MEC, there remain several

challenges. As discussed before, real-time mobile applica-

tions are highly sensitive in terms of latency and energy

consumption. However, owing to the randomness and dynam-

ics of mobile edge networks, the long execution time of

these applications can lead to high energy consumption. Most

studies indicate that the long execution time is one of the

major challenges in MEC [5], [6]. Hence, there is a need

for an efficient computation-offloading framework for MEC.

Furthermore, MDs determine when offloading should be per-

formed, and what part of a given task should be offload to an

edge server. However, developing an effective dynamic par-

titioning method for accurate offloading decision making is a

challenge in MEC. Moreover, determining where to offload

a task in a multi-edge network for minimizing the latency

of service computing (close proximity edge or adjacent edge

network or remote cloud) is another challenge. In addition,

the limited computational resources of mobile edge servers

should be efficiently utilized so that QoS requirements may

be met (e.g., latency requirement). Furthermore, user mobil-

ity, the heterogeneity of edge node resources, and the physical

distribution of MDs impose additional challenges for compu-

tation offloading in edge computing.

A number of methods have been developed to overcome

some of these challenges [13]–[16]. However, these stud-

ies did not consider the benefit of using adjacent edges to

serve offloadable tasks when the nearest edge server cannot

serve these tasks. Another limitation is that all these studies

used off-policy-based reinforcement learning techniques for

resource allocation management, such as the Q-Learning

method. This technique depends on the previous workload

state, ignoring the current state. Moreover, current studies

lack an efficient dynamic multi-objective optimization deci-

sion scheme for selecting the tasks to be offloaded. In the

present study, we will resolve these issues and improve the

offloading performance by proposing a dynamic framework

that considers both servers and users’ standpoints. In particu-

lar, we are concerned with 1) Computation offloading to the

mobile edge using the system utility of the MEC network to

balance processing delay and energy consumption, 2) deter-

mining which part/module or process of a mobile applica-

tion should be offloaded using deep reinforcement on-policy

learning such as state-action-reward-state-action (SARSA),

3) determining where to offload the part/module or process

in a multi-edge network, and 4) ensuring efficient resource

management in the MEC servers.

In this study, we address the question of developing an

efficient resource management model for the selected MEC

server in a multi-edge network by proposed an offloading

decision-based SARSA method (OD-SARSA). Additionally,

we consider the problem ofmanagingmobility when theMDs

move from one region to another. Accordingly, we should

design and develop an efficient resource management model

to enhance MEC server utilization through task scheduling

and load balancing. As MEC suffers from limited compu-

tational resources, compared with central MCC, it becomes

imperative to allocate these resources efficiently. The pro-

posed resource allocation will enable meeting QoS require-

ments (e.g., latency) with minimal effort. Therefore, the main

contributions of this study as follows:
• We propose a MEC system model considering both

computing time delay and power consumption, and we

formulate it as an optimization problem. In particular,

we propose an offloading decision-based SARSA (OD-

SARSA) using reinforcement learning to make the opti-

mal offloading decision for reducing system cost in

terms of energy consumption and computing time delay.

• We compared our proposed OD-SARSA with RL-QL

and concluded that the former performs better than the

latter.

• We analyzed the effect of optimal offloading decision

factors and reduced cost by changing the main param-

eters and analyzing the results, leading to real-world

application.
This paper is organized as follows. Section 2 reviews

related work. Section 3 describes RL based on SARSA.

Sections 4 describes the system model of MEC as a com-

munication model, model of the task, and model of com-

putation. Section 5 then describes the SARSA learning

method based autonomic computation offloading. Finally,

Section 6 presents the performance evaluation results and our

conclusions.

II. RELATED WORK

With the rapid advancement of communication technology,

MEC is emerging as a promising technology. An MD uses

remote execution (offloading) to enhance a mobile use’s

QoS by reducing energy consumption and increasing perfor-

mance. We will focus on previous studies concerned with the

offloading process (how and where to offload), the partition

of mobile applications, and resource allocation, which affect

offloading efficiency (performance) and energy consump-

tion. Few studies have focused on computation offloading

in MEC, although several options can be used on the MEC

servers depending on the conditions of the mobile network.

VOLUME 8, 2020 54075

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

Thus, an efficient cloud-path selection method is required to

select the best resource.

Reducing execution time (T) is one of the objectives of

computation offloading inMEC. Execution time is the sum of

local execution time (Tl) and remote execution time (To). The

latter can be further divided into transmission delay to theME

(Tod), processing time at the ME (Top), and receiving time

from the ME (Tor) An offloading decision is not taken unless

Tl>To. The aim is to minimize computation time, as dis-

cussed in [7]. This is achieved by using a one-dimensional

search method, so that an effective offloading decision can

be made depending on the queuing state buffer of the applica-

tion, available energy in the MD and the MEC server, and the

communication status between the MEC server and the MD.

This algorithm was compared with greedy offloading, local

execution, and cloud execution. The simulation demonstrated

that execution time can be reduced by up to 81% and 44% as

the arrival of the applications. The limitation of this method

is that to make a decision, the MD as a client requires feed-

back from the MEC. In [8], the low-complexity Lyapunov

optimization dynamic computation offloading algorithm was

proposed. In [9], proposed system to leverage from the abil-

ity of computing and storage capacity available in the edge

servers. In [10], a new computation offloading model in

MEC was introduced. Its principle is to enable the use of

virtual resources in the edge cloud to reduce resource and

energy consumption and improve the performance of the

application. In [11], the authors proposed a novel framework

for computation offloading from an MD to an edge server

considering CPU availability so that execution time may be

reduced in both theMD and the server. In [12], an opportunis-

tic computation offloading scheme was proposed for data

mining in MDs and the edge network to reduce execution

time and power consumption. In [12], the authors developed

a distributed computation offloading algorithm that can attain

a Nash equilibrium so that superior performance may be

achieved, and user size may be reduced through server mode

selection [5]. In [13], a computation offloading method to

a small cell cloud was analyzed, and its performance was

evaluated.

Minimizing energy consumption (E) and achieving an

acceptable execution time is one of the objectives of

computation offloading in MEC. If an MD executes all com-

putations locally, El denotes the energy consumption; other-

wise, the computation is carried out remotely by offloading

to the edge. In this case, (Eo) is the energy consumption

and is the sum of the transmission energy to the ME (Eod),

the energy for processing at the ME (Eop), and the energy for

receiving the result from the edge (Eor) The offloading deci-

sion is not made unless El > Eo when T l > To when Tl >

To. In [14], the authors proposed computation offloading to

reduce energy consumption in the MDwhen the computation

time constraint is satisfied. A constrained Markov decision

process was proposed to solve the optimization problem.

The author of [15] proposed an energy-efficient computa-

tion offloading algorithm in which the decision making is

performed according to the following principles, 1) the MD

considers its execution time and power consumption con-

straints, offloading to the ME is performed when the MD

cannot satisfy the computation time constraint, and local

execution is selected when the power depletion is below the

determined threshold and the execution constraint is satisfied,

2) the offloading priority is high. Third, given the radio

resource allocation priorities, experiments demonstrated that

this algorithm can reduce energy consumption by up to

15%. Using the cloud radio access network (C-RAN) ser-

vice, the authors of [17] presented a computation offloading

algorithm from mobile to remote cloud radio heads to reduce

energy consumption and improve user QoE by minimizing

the response time of the app. The Lyapunov optimization

algorithm makes the offloading decision depending on the

frequencies of the CPU-cycle for mobile execution and the

transmission energy for computation offloading [8]. In [16],

the authors designed an autonomous and energy-efficient

offloading scheme that uses a mathematical model for the

energy consumption at the ME for the mobile application,

considering the energy consumed by the interaction among

the tasks in the same application. In [17], the authors pro-

posed a new game theoretic approach to enhance the edge

computing throughput and reduce energy consumption on the

edge server.

In [20], it was proposed that the computation offloading

decision should satisfy the trade-off between delay and

energy consumption at the ME and UE. This study used the

Nash equilibrium distributed computation offloading algo-

rithm, in which the computation offloading decision depends

on certain weight parameters, and the effective channel is

chosen to transmit data. The numerical results demonstrated

that this algorithm has superior performance when the appli-

cation is computed at the MEC server rather than locally.

In [18], the authors developed a code offloading model and

decision-making process that reduce the applicatio’s response

time and the MDs’ energy consumption. The offloading deci-

sion is made based on the method of Lagrange multipliers,

and a nonlinear optimization solver is used instead of solving

a complex linear optimizing problem.

Proper resource allocation should follow the

decision-making regarding partial or full offloading.

Resource allocation is influenced by the partitioned and

paralleled computation offloading ability of the application.

If offloading is impossible, then the partitioned and paralleled

applications are allocated only one node for the computing.

The number of offloaded applications to the ME should

satisfy the computing time energy consumption requirements

[19]. The application should determine where offloadable

task should be placed, depending on the computing resources

available at the ME. Reference [20] is similar to [22]; how-

ever, it not only minimizes computation time but also reduces

energy consumption at the ME. The authors propose several

hotspots in the density area of the UEs, which enable the

MDs to access the ME using the enhanced node B (eNB).

The proposed efficient policy by equivalent discretion is

54076 VOLUME 8, 2020

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

FIGURE 1. Reinforcement learning architecture.

called Markov decision processes (MDP). Reference [21] is

similar to [19] and [20], as the main objective is to reduce

computation time and energy consumption, as well as reduce

channel overload, resource consumption, and computation

cost of virtual machine (VM) migration. In [21], the authors

use enhanced small cells (SCeNBs) as service nodes at the

ME, and each MD is allocated a VM at an SCeNB. This

reduces the communication delay because the SNeNBs are

characterized by high-quality data transmission.

III. REINFORCEMENT LEARNING BASED

ON SARSA LEARNING

RL is a part of machine learning [22]. It consists of taking

appropriate action to increase the reward in specific states.

Various programs and machines/devices use it to find the

best behavior or possible path in a given state. RL differs

from supervised learning in that the learning data contain

the answer key. Thus, in supervised learning, the model is

trained on the correct answer itself, whereas in RL, there

is no answer, but the reinforcement agent determines how a

certain task is to be carried out. When a dataset is not avail-

able, learning is performed through experience. The basic

principle of RL is the following: The input must be an initial

state from which the models start. The output consists of

several potential results because there are several solutions to

a specific problem. Training depends on the input, the model

will return the value of the state, and the user will decide to

punish or reward the model based on its results or output.

The model learns continuously, and the best solutions are

determined based on the maximum reward. RL involves an

environment and agent, where the agent selects the most

appropriate action from the environment states. The environ-

ment generates the next state based on an action obtained

from another policy and rewards the generated state when

the agent takes the action, as shown in Fig. 1. SARSA and

Q-learning are two commonly used model-free RL tech-

niques. They have different exploration policies and similar

exploitation policies. Q-learning is an off-policy technique in

which the agent learns based on the action by another policy,

whereas SARSA is an on-policy technique, where learning

is based on the current action by the current policy. RL has

proved efficient in resource allocation [23], cloud computing,

and computation offloading [22]. The policy π estimates the

next (s, a) based on the current a state-action (s, a). To do this,

we use temporal-difference (TD) to update the rule applied at

TABLE 1. Reward comparison between RL algorithms.

every timestamp by allowing the agent to transition from one

pair of state-action to another pair.

To solve complex, large state-space problems, the deep

SARSA function is updated as

Q (St ,At) = R (St ,At)+ γQ (St+1,At+1) (1)

where Q (St ,At) is the value of Q for the action A in system

state S at time t ,R (St ,At) is the rewardwhen the agent selects

the action At at state St , and γ denotes the discount factor; the

epsilon-greedy policy is used to select the best action At+1 in

the current state St+1.

Numerous traditional reinforcement learning models have

been used for computation offloading. For example, in [24],

an RL technique was used for complicated video games, and

several different RL approaches, such as SARSA learning,

Q learning, GQ, actor-critic, and R learning, were compared.

The results are shown in Table 1, which is reproduced from

that paper and shows that the SARSA outperforms other RL

algorithms, as it obtained the greatest rewards.

Markov decision processes (MDPs) are used in RL for

appropriately increasing the reward in the training task of

an agent interacting with the environment [25]. Therefore,

the future reward at time t is define as

Rt =
∑T

k=0
αkrt+k+1 (2)

where α ∈ (0, 1] is a discount factor, and rt is the reward

when action a is taken at time t . When the agent takes the

action a under the policy π in state S at the time t , denoted

by Qπ (s, a). Thus,

Qπ (s, a) = Eπ {R (t) | st= s, at = a}

= Eπ

{

∑∞

k=0
αkrt+k+1 | st= s, at = a

}

(3)

where E is the expected reward, and π is the policy function

for the action At . The aim of the training task is to acquire

the maximum rewards and obtain the optimal state and action

of Qπ (s, a). There are two methods in RL. One is called

Q-learning, and the other SARSA [26]. In this study, we will

use SARSA, as it has been demonstrated that this method can

select a safe path. This is considered appropriate in the present

study, which is concerned with the selection of an optimal

and safe path for offloading intensive tasks to the edge cloud.

SARSA is an on-policy technique, that is, the next action a∗

depends on the value of the current state st and current action

at . The equation for updating state and action values is

Q (s, a)← Q (s, a)+ α[r + γQ
(

s∗, a∗
)

− Q(s, a)] (4)

In SARSA learning, the training task is a quinary

(s, a, r, s∗, a∗), which is updated sequentially.

VOLUME 8, 2020 54077

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

FIGURE 2. High-level overview of computation offloading in MEC model.

IV. SYSTEM MODEL OF MOBILE EDGE COMPUTING

The mobile edge system (MES) model is shown in Fig. 2.

MES is constructed on a telecommunication infrastructure,

such as BS/LTE. TheMDs (e.g., smartphones, tablets, robots,

and drones) connect to the edge computing control at the

BS/LTE in the adjacent location (region) to the compu-

tation offloading. The edge computing controller in each

region manages multi-edge mobile computing, receives the

offloaded tasks from the MDs, and chooses an effective edge

node to address them as a task model. In the mobility status,

when an MD moves from one region to another, the process-

ing results of the offloaded tasks are sent to the corresponding

MDover the central edge cloud-computing controller (CE3C)

and edge-computing controller for the adjacent region. The

components of the edge network have high storage and com-

putation capabilities, which are used to create a virtual server

offering mobile edge services as a computing model. If a

workload demands resources beyond what the edge server

can support, the request is redirected over the main network

(CE3C) to the cloud services on the other side of the network

as the resource management model.

A. COMMUNICATION MODEL

We assume that there are MEC networks (MECNs) in more

than one region, as shown in Fig. 2, which consist of

multiple APs, multi-edge servers, and n MDs denoted by

n= {1, 2,,n}. AnMD can connect to the MECN through

an AP or mobile network. Depending on certain parameters

such as edge servers’ workloads, response time, or latency

and energy consumption, the MDs should find an efficient

location in the network to perform offloading. The offloading

action is denoted by A= {a1, a2,,an}, depending on the

offloading decision, where Xn represent the offloading deci-

sion Xn= {0, 1, 2, 3} (nearest the edge server: Xn = 1, adja-

cent to the edge server: Xn = 2, remote cloud: Xn= 3, or local

computing: Xn= 0). The offloading decision is influenced by

the bandwidth Bn and computing delay, which depends on the

processing frequency fn.

The communication bandwidths between MDs and

offloading location are denoted by Be,Ba,Bc, which

represent edge server bandwidth, adjacent edge server band-

width, and cloud bandwidth, respectively, as the end-to-end

bandwidth. Moreover, the total communication delay for a

certain MD is denoted by Tn. Additionally, p
t
n represents the

power consumption for task transmission, and prn the receiv-

ing power consumption. Therefore, depending on certain

parameters such as edge servers’ workloads, response time,

or latency and energy consumption, the MD should find an

efficient location (nearest the edge server or adjacent to the

edge server or remote cloud) to offload its tasks. Eventually,

after the offloading process to the nearest edge server or adja-

cent edge server has been completed, an efficient resource

allocation method is required on the edge server.

B. TASK MODEL

We assume that each MD has M independent massive

real-time tasks, which can be executed locally in the

MD or remotely in the MEC network by the computation

offloading. Therefore, tasks cannot be partitioned into sub-

tasks to be processed in multiple devices [27]. Task size is

denoted by Dn (transferred data size), and Rn denotes the

computation resources required to serve this task (CPU cycles

number). Therefore, Dn and Rn are positively related:

Rn = θDn, θ constant.

Regardless of whether the task is executed locally by the

MD or in the MEC network, Dn does not change.

C. COMPUTATION MODEL

1) LOCAL PROCESSING TIME

When the decision unit decides to process a task in the MD

(Xn= 0), the time processing per task is denoted by T l . This

includes the computing delay of the local CPU. Therefore,

the processing time is

T l
nm=

Rnm

F
L
N

(5)

Similarly, the corresponding power consumption for taskMn

of user n is denoted by P l and is defined as

P lnm=D
i
nmpl (6)

where pl denotes the power consumption when the task is

processed in the MD. Therefore, the cost of local processing

is the combination of the local processing time and local

power consumption:

C l
n =

∑N

n=1
(αT ln + βPln) (7)

whereα and β are constant weighting parameters correspond-

ing to the time and power cost of the task.

54078 VOLUME 8, 2020

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

2) EDGE PROCESSING TIME

When the decision unit decides to offload the task to an

edge server (Xn= 1), the time processing per task is denoted

by T e. This includes the transmission delay and computing

delay. The computing delay depends on the CPU frequency of

the edge server and other resources. Therefore, the processing

time is

T e
nm=

1

F
e
Bn

(Be
nR

e
n+F

eDn) (8)

where F
e and Bn denote the CPU frequency of the edge

server and the communication bandwidth, respectively. Sim-

ilarly, the corresponding power cost for taskMn of user n is

denoted by pe and is defined as

Penm=T
e
nmpe (9)

Therefore, the processing cost of edge computing is the com-

bination of edge computing time and power consumption,

as follows:

Ce
n=

∑N

n=1
(αT e

n+βPen) (10)

3) PROCESSING TIME OF ADJACENT EDGE SERVER

When the decision unit decides to offload a task to an adjacent

edge server (Xn = 2), the time processing per task is denoted

by T a. This include the transmission delay and computing

delay. The computing delay depend on the CPU frequency of

the adjacent edge server and other resources. Therefore, the

processing time is

T anm =
1

FaBn
(Ba

nR
a
n + F

aDn) (11)

where Fa and Bn represents the CPU frequency of the adja-

cent edge server and communication bandwidth, respectively.

Similarly, the corresponding power cost for taskMn of user n

is denoted by pa and is defined as

Panm = T anmpa (12)

Therefore, the processing cost of an adjacent edge computing

server is the combination the corresponding computing time

and power consumption, as follows:

Ca
n =

∑N

n=1
(αT an + βPan) (13)

4) REMOTE PROCESSING TIME

When it is decided to offload a task to the remote cloud

server (Xn= 3), the time processing per task is denoted by

T c. This includes the transmission delay and the computing

delay. The former corresponds to two directions: from the

MD to the edge server or adjacent edge server (Tm,e or Tm,a),

and from the edge server to the remote cloud (Te,c or Ta,c).

We assume that Tm,e and Tm,a are similar, and thus we neglect

one of them. The computing delay depends on the CPU

frequency of the assigned remote server and other resources.

We can compute the task processing time in the cloud by the

following equation, as in [28]:

T cnm =
1

FcBn

(

B
c
nR

c
n + F

cDn
)

(14)

where Fc denotes the CPU frequency for processing in the

cloud for each user. The total time cost involving the process-

ing and transmission delay is:

T cn = T cnm + T
e
nm (15)

Similarly, the corresponding power cost for taskMn of user n

is denoted by pc and is defined as

Pcnm = T cnmpc (16)

Therefore, the processing cost of a remote cloud server is

the combination of computing time and power consumption,

as follows:

Cc
n =

∑N

n=1
(αT cn + βPcn) (17)

The total cost Ctotal of the MEC offloading system can

expressed as

Ctotal =
∑N

n=1
(
Cl
n (1− Xn) (2− Xn) (3− Xn)

6

+
Xn (2−Xn) (3−Xn)C

e
n

2
−
Xn (Xn−1) (Xn−3)C

a
n

2

+
Xn(Xn−1)(Xn−2)C

c
n

6
) (18)

We assume that there are five MDs in the network. MDs 1

and 5 choose to execute tasks locally, that is, Xn= 0,

MD chooses to offload tasks to the edge point, that is, Xn = 1,

MD 3 chooses to offload tasks to an adjacent edge, that is,

Xn = 2, and MD 4 chooses to offload tasks to the remote

cloud server, that is, Xn= 3. We use formula (14) to cal-

culate the computing time and power consumption, that is,

Ctotal = C l
n +C

e
n +C

a
n +C

c
n . The notations used in this study

are defined in Table 2.

D. OPTIMIZATION PROBLEM FORMULATION

Our objective to minimize the processing and transmission

delay and reduce the power consumption for these two opera-

tions. Theminimized cost is denoted byQmin. We assume that

the transmission and receiving bandwidth are equal β tn = βrn .

The optimization problem of system utilization is formulated

as follows:

Qmin = minimize
∑N

n=1
(
C l
n (1− Xn) (2− Xn) (3− Xn)

6

+
Xn (2− Xn) (3−Xn)C

e
n

2
−
Xn (Xn−1) (Xn−3)C

a
n

2

+
Xn (Xn − 1) (Xn − 2)Cc

n

6
) (19)

under the constraints

N
∑

n=1

Btn ≤ β t ;

N
∑

n=1

βrn ≤ βr , (β tn, β
r
n) ≥ 0,∀n (20)

VOLUME 8, 2020 54079

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

TABLE 2. Notation list.

where

βn>0, ∀n∈N

Xn∈{0,1,2,3}, ∀n∈N

Xn = {X1,X2, . . . ,Xn} is the offloading decision; it has four

modes and takes four values: 0, 1, 2, and 3. Additionally,

the bandwidth is limited by constraint (16) on transmission

tasks and receiving results to prevent congestion on the server,

which may cause significant delays. The optimization prob-

lem (15) is considered amixed-integer problem, which is gen-

erally difficult to solve. To minimize the system utilization

cost, we propose a reinforcement learning technique based

on deep SARSA.

V. SARSA LEARNING AUTONOMIC

COMPUTATION OFFLOADING

We assume that there multiple options for executing an

offloadable task at the nearest edge, at an adjacent edge, or in

the remote cloud. To determine the optimal location, we used

deep reinforcement learning (SARSA). Thus, the perfor-

mance of the edge server (ES) depends on the resource allo-

cation mechanism and improves the simultaneous execution

of tasks. However, the scheduling and resource allocation

on the edge server are NP-hard scheduling problems. Most

current studies use game theory and reinforcement learning.

Therefore, we will develop an efficient resource allocation

mechanism to enhance MEC server utilization owing to the

limited power and computational resources compared with

cloud-computing servers. In our mechanism, the offload-

ing decision algorithm (OD-SARSA) will be used for solv-

ing the resource management problem on the ES based on

parameters derived from its environment, such as data size,

bandwidth, edge-server workload, signal strength, and energy

consumption. OD-SARSA is an effective method to achieve

high utilization on the ES, owing to its ability to function

as an on-policy technique, that is, it considers the current

resource consumption state in the ES environment, which is

highly important for resource management. For example, the

current state obtained from the SARSA algorithm is used to

determine whether current VMs should be employed or new

VMs should be created on the ES. In the latter case, the VM

manager on the ES is responsible for creating the VMs and

assigns VMs to each offloaded task. One approach for the

VMmanager could be to activate VMs only on a few servers,

depending on the offloaded tasks, whereas the other servers

are put into sleep mode to save energy. However, the VM

manager should also consider the users’ latency require-

ments, as the servers may be overload with many offloaded

tasks, resulting in a load balancing issue. This will be more

challengingwhen there is uncertainty in task arrival, and there

is no central controller.

A. OFFLOADING-DECISION-BASED

SARSA METHOD (OD-SARSA)

We should solve the optimization problem (19) and meet the

QoS (e.g., energy consumption, or delay) requirements so that

a deep SARSA function may be used to make an efficient

decision Xnm for offloading of each task to the appropriate

location . The input of the SARSA function is the uploading

bandwidth β tnm and downloading bandwidth βrnm as states.

The output of the system is the value of Q for each state St
of the corresponding action At . Each time, the agent selects

the suitable action with regard to the Q value. The result of

the action is to make identical adjustment to the offloading

decision Xnm and determine the appropriate location (nearest

to the edge server or adjacent to the edge server or remote

cloud), as well as resource allocation β tnm and βrnm.

The SARSA function considers an on-policy mechanism,

which implies that the agent learns based on its up-to-date

action as a consequence of the current policy. OD-SARSA

is described in Algorithm 1. It performs offloading and is

trained through deep leaning. In SARSA, an epsilon-greedy

policy is used for state transition; theQ value in the preceding

state is updated by Equation (15), where the next action is

selected by an epsilon-greedy policy. In the system, there are

a target network and an evaluation network. The input system

is the current state, and the following or next state are obtained

after the selection of an action. We can choose the action

based on the epsilon greedy (ε) policy. We use a probability

of 1 − ε and select the best action, and thus the output of

the target network is changed according to the reward, and

the parameters are updated in each state, and a new policy is

imposed.

Therefore, the actions a of the agent can be defined as

offloading to valid locations (nearest, adjacent, and remote).

We assume 10 possible actions, as a follows: Al is local pro-

cessing, AN is offloading to the nearest edge, Aa is offloading

to an adjacent edge, AR is offloading to the remote cloud,

ANA is migration from the nearest edge to an adjacent edge,

AAN is migration from an adjacent edge to the nearest edge,

ANR is migration from the nearest edge to the remote cloud,

54080 VOLUME 8, 2020

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

Algorithm 1 OD-SARSA

1: Input: Number of MDs N and task size Dn
2: Output: efficient offloading decision, cost reduction

and bandwidth allocation

3: Initialize the network parameters with upload and

download bandwidth, and processing cycle number

4: Initialize the number of iterations (episodes), let I =

100

5: for iteration I < 1,2,3,. . . ., I do

6: Select ‘‘Action’’ randomly.

7: Compute ‘‘Current State’’ according to formula No. 3

8: if‘‘Current state’’< (St + 1) then

9: Set rt = 1

10: else if St> St+1 then

11: Set rt = −1

12: else

13: Set rt = 0

14: end if

15: Obtain reward rt and next state St+1 after execution

of at .

16: Set this as (St , at , rt , St+1).

17: Compute the Q-value yt from the target deep QL yt =

rt+1 + γQSt+1, at+1
18: Execute the algorithm of gradient descent to reduce

(yt − q (st+1, at+1) ;α)
2

19: Update q-value: q∗ (s, a) = (1− α) q (s, a) +

α(Rt+1 + γ q (st+1, at+1))

20: end for

ARN is migration from the remote cloud to the nearest edge,

AAR is migration from an adjacent edge to the remote cloud,

and AAR is migration from the remote cloud to an adjacent

edge. Thus, the actions of the agent can be represented

as A (t) = {A1 (t) ,A2 (t)Ak (t)}, where Ak (t)

denotes the k-th offloading decision. If Ak (t)= 0, the task

is processed locally, if Ak (t) = 1, the task is offload-

able and processed on the edge server, if Ak (t) = 2,

task is executed at the adjacent node, and if the Ak (t)= 3,

the task is processed on the remote server. The agent learning

state S can be defined as the resources of the edge com-

puting: processing (Sp), memory (Sm), and network band-

width (Sb). Thus, the current system state can be represented

as (t)={S1 (t) ,S2 (t)Sn (t)}, where Si=(Spi, Smi, Sbi),

i= 1n.

In this system, a particular learning agent does not have

information regarding the overall state of all nearest edges;

the agent only has information regarding its local state. There

is collaboration and communication between the agents to

offload tasks to appropriate locations at the edge network

(nearest or adjacent edge) or in a public cloud.

Reward function: The main objective of computation

offloading is to reduce the processing delay of intensive

tasks. This primarily depends on the capability of the edge

network, that is, processing, memory, and bandwidth. CE3C

determines its processing capability by detecting its state,

estimates the response time, and chooses the appropriate

location accordingly. After an action is performed, result S (t)

is obtained. If S (t) is smaller than S (t − 1), a positive reward

R (t) = +1 is given. If St is larger than St+1, we give

a negative reward R (t) = −1; otherwise, R (t)= 0. The

reward allows the agent to learn efficient decision making

for resource allocation and offloading for reduced energy

consumption.

To update the value ofQ for the state after an action, we use

the Bellman equation as follows:

q∗ (s, a) = E[Rt+1 + α q∗(st+1, at+1) (21)

The value of Q for a given state and action should be as close

to the right-hand of the Bellman equation as possible so that

the Q-value will finally converge to a safe value q∗.

q∗ (st+1, at+1)−q (s, a) < 0, system state; non− offloading

(22)

E[Rr+1 + αq∗ (st+1 − at+1)− E[
∑∞

I=0
∝I Rt+I+1] (23)

The method for computing the new value of Q for the state

and action pair (s, a) at a certain time is

q∗ (s, a) = (1− α) q (s, a)+ α(Rt+1 + γ q (st+1, at+1))

(24)

B. PERFORMANCE EVALUATION

We will now evaluate the proposed OD-SARSA algorithm.

The model uses N task of M users to determine if the best

action at a given time is to offload or not (local processing).

We give data sizes as input and output for each user.We aim to

find an optimal policy offloading function π . The offloading

size can by expressed byNM , which increasewith the number

of tasks M per user N in MEC networks.

We assume that the number of mobile users is N = 5, and

each user has five tasks. Table 1 shows all parameters that are

used in reinforcement learning. We set the local processing

time for an MD to 3.75×10−7s/bit, and the corresponding

power consumption to 3.55 × 10−6 J/bit. We assume that

the size of all tasks is distributed between 10 and 35 MB.

Regarding the other network parameters, such as bandwidth,

we assume that the bandwidth for both uplink and downlink

between a user and an edge server is 150MB and may change

depending on network conditions. The rate of the CPU of an

edge sever is 9 ×108 cycle/s. The MDs’ transmission and

receiving energy consumption are both 1.60×10−6 J/bit. We

train the model using 100 episodes.

There is close similarity between Q-learning and SARSA,

but SARSA uses an on-policy technique. This encouraged us

to use it for improved offloading performance to the ES, par-

ticularly because it does not depend on explicitly learning the

agent’s policy function. The results are shown in Fig. 3 and

demonstrate that SARSA outperforms Q-learning, with an

improvement rate of up to 8%.When the number of iterations

increases, the improvement increases as well. It is noted

that QL is better than SARSA in a faster training scenario

VOLUME 8, 2020 54081

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

FIGURE 3. Performance of SARSA and Q-Learning.

FIGURE 4. System utility under different parameters γ and µ.

(when the number of iterations is less than 50), but for more

than 60 iterations, SARSA is consistently better than QL.

We can conclude for increased the training iterations, the gap

between SARSA and Q widens, with increased gain rewards.

This affects performance in favor of the SARSA method.

The system utility under the different parameters γ and µ,

which denote learning rate and weight rate respectively, are

shown in Fig. 4 by comparing the proposed OD-SARSAwith

other algorithms: Q-learning, edge processing, and local pro-

cessing. The results indicate the superiority of OD-SARSA

to the other algorithms. The main problem with deep learn-

ing modules is choosing a learning rate and optimizer (the

hyper-parameters). Therefore, we study our algorithm under

different learning rates. After 100 iterations, we notice that

a learning rate of 0.001 is stable and appropriate for the pro-

posed method (Fig. 5). In contrast, the results for other values

are unstable, and large dispersion are observed, particularly

when LR = 0.01.

FIGURE 5. DO-SARSA performance under different learning rates.

FIGURE 6. Performance of OD-SARSA under different learning rates.

Based on the comparison between various different learn-

ing rates, we studied the performance cost corresponding to

0.001 and 0.0001. We notice that the total cost of DO-SARS

for a learning rate of 0.001 is significantly lower than that for

0.0001 (Fig. 6). At the beginning of the training, we notice

that the gap is large owing to the increased performance cost.

Nevertheless, as iterations increase, this gap decreases, and

the costs are equal in the last iteration.

We observe that Q-learning correctly selects the optimal

path in several applications, but it occasionally fails in criti-

cal stages, which require an important and critical decision,

owing to the ε-greedy action selection. In our study, we

demonstrated that SARS is better at making decisions in crit-

ical situations, as it is considered stable, particularly because

it learns the safe path. This is highly important in making

critical decisions. To attain better results in practice with

on-policy RL techniques, the epsilon parameter should be

reduced over time. Fig. 7 shows the effect of varying epsilon

on the offloading decision. We notice that when ε = 0.80,

we obtain satisfactory results, and maximum rewards are

achieved; thus, this value was adopted in this study. Degen-

erate levels (0.20: 75) of course yield suboptimal results. It is

conceivable that this caused by the short timescale the agent

actions.

The result of the optimization problem (eq. 19) is

shown in Fig. 8, where the number of offloadable and

non-offloadable tasks can be seen. We notice that as the

54082 VOLUME 8, 2020

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

FIGURE 7. Effect of epsilon on acquiring rewards using OD-SARSA.

FIGURE 8. Number of offloaded tasks vs. non-offloadable tasks.

training iterations increase, the ‘‘offloadable’’ decisions

increase, regardless of the offloading location (edge server,

adjacent edge server, or a remote server). At the beginning of

the training, the difference between these numbers is small,

but subsequently, it gradually increases.

VI. CONCLUSION

In this paper, we assumed that there are MECNs in more than

one region, consisting of multiple APs, multi-edge servers,

and N MDs, where each MD has independent massive real-

time tasks. The MD can connect to an MECN through an

AP or a mobile network. Each task can be processed locally

by the MD itself or remotely. There are three offloading

options: nearest edge server, adjacent edge server, and remote

cloud. We propose a reinforcement-learning-based SARSA

method to solve the optimization problem for making deci-

sions regarding offloading to one of the previously mentioned

locations to reduce system cost, including energy consump-

tion and computing time delay. It was demonstrated that on

this problem, OD-SARSA performed better than RL-QL.

Therefore, in offloading to adjacent edge servers, the pro-

posed method resolves most challenges faced by CPSSs and

achieves optimal results in terms of volume, variety, velocity,

and veracity. In future, we will consider the code offload-

ing on edge devices with GPUs that connected with mobile

devices.

ACKNOWLEDGMENT

This work was supported by the Deanship of Scientific

Research at King Saud University through the Vice Deanship

of Scientific Research Chairs. Chair of Smart Technologies.

The authors also thank the RSSU at King Saud University for

their technical support.

REFERENCES

[1] M. Satyanarayanan, ‘‘Mobile computing: The next decade,’’ in Proc. 1st

ACM Workshop Mobile Cloud Comput. Services, Social Netw. Beyond

(MCS). New York, NY, USA: ACM, Jun. 2010, pp. 1–6.

[2] G. H. Forman and J. Zahorjan, ‘‘The challenges of mobile computing,’’

Commun. ACM, vol. 36, no. 7, pp. 75–84, 1993.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its

role in the Internet of Things,’’ in Proc. 1st MCC Workshop Mobile Cloud

Comput., 2012, pp. 13–16.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge

computing—A key technology towards 5G,’’ ETSI White Paper, vol. 11,

no. 11, pp. 1–16, 2015.

[5] S. Ranadheera, S. Maghsudi, and E. Hossain, ‘‘Computation offloading

and activation of mobile edge computing servers: Aminority game,’’ 2017,

arXiv:1710.05499. [Online]. Available: http://arxiv.org/abs/1710.05499

[6] D. Mazza, D. Tarchi, and G. E. Corazza, ‘‘A cluster based computation

offloading technique for mobile cloud computing in smart cities,’’ in Proc.

IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[7] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Delay-optimal com-

putation task scheduling for mobile-edge computing systems,’’ 2016,

arXiv:1604.07525. [Online]. Available: http://arxiv.org/abs/1604.07525

[8] Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Dynamic computation offloading

for mobile-edge computing with energy harvesting devices,’’ IEEE J. Sel.

Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[9] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, ‘‘Femto clouds:

Leveraging mobile devices to provide cloud service at the edge,’’ in Proc.

IEEE 8th Int. Conf. Cloud Comput., Jun. 2015, pp. 9–16.

[10] X. Wei, S. Wang, A. Zhou, J. Xu, S. Su, S. Kumar, and F. Yang, ‘‘MVR:

An architecture for computation offloading in mobile edge computing,’’ in

Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jun. 2017, pp. 232–235.

[11] F. Messaoudi, A. Ksentini, and P. Bertin, ‘‘On using edge computing

for computation offloading in mobile network,’’ in Proc. IEEE Global

Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–7.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation

offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,

vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[13] J. Dolezal, Z. Becvar, and T. Zeman, ‘‘Performance evaluation of computa-

tion offloading frommobile device to the edge ofmobile network,’’ inProc.

IEEE Conf. Standards for Commun. Netw. (CSCN), Oct. 2016, pp. 1–7.

[14] M. Kamoun, W. Labidi, and M. Sarkiss, ‘‘Joint resource allocation and

offloading strategies in cloud enabled cellular networks,’’ in Proc. IEEE

Int. Conf. Commun. (ICC), Jun. 2015, pp. 5529–5534.

[15] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,

and Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in

5G heterogeneous networks,’’ IEEE Access, vol. 4, pp. 5896–5907, 2016.

[16] C. Luo, S. Salinas, M. Li, and P. Li, ‘‘Energy-efficient autonomic

offloading in mobile edge computing,’’ in Proc. IEEE 15th Intl Conf

Dependable, Autonomic Secure Comput., 15th Intl Conf Pervas. Intell.

Comput., 3rd Intl Conf Big Data Intell. Comput. Cyber Sci. Technol.

Congr. (DASC/PiCom/DataCom/CyberSciTech), Nov. 2017, pp. 581–588.

[17] A.Kaur andR.Kaur, ‘‘An efficient framework for improved task offloading

in edge computing,’’ in Proc. Int. Conf. Intell., Secure, Dependable Syst.

Distrib. Cloud Environ. Cham, Switzerland: Springer, 2018, pp. 94–101.

[18] M. E. Khoda, M. A. Razzaque, A. Almogren, M. M. Hassan, A. Alamri,

and A. Alelaiwi, ‘‘Efficient computation offloading decision in mobile

cloud computing over 5G network,’’ Mobile Netw. Appl., vol. 21, no. 5,

pp. 777–792, Oct. 2016.

[19] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, ‘‘A cooperative schedul-

ing scheme of local cloud and Internet cloud for delay-aware mobile

cloud computing,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),

Dec. 2015, pp. 1–6.

[20] X. Guo, R. Singh, T. Zhao, and Z. Niu, ‘‘An index based task assignment

policy for achieving optimal power-delay Tradeoff in edge cloud systems,’’

in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–7.

VOLUME 8, 2020 54083

T. Alfakih et al.: Task Offloading and Resource Allocation for MEC by Deep Reinforcement Learning Based on SARSA

[21] V. Di Valerio and F. Lo Presti, ‘‘Optimal virtual machines allocation in

mobile Femto-Cloud computing: AnMDP approach,’’ in Proc. IEEEWire-

less Commun. Netw. Conf. Workshops (WCNCW), Apr. 2014, pp. 7–11.

[22] A. E. Eshratifar and M. Pedram, ‘‘Energy and performance efficient com-

putation offloading for deep neural networks in a mobile cloud comput-

ing environment,’’ in Proc. Great Lakes Symp. VLSI (GLSVLSI), 2018,

pp. 111–116.

[23] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, ‘‘Dynamic task offload-

ing and resource allocation for ultra-reliable low-latency edge computing,’’

IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–4150, Jun. 2019.

[24] A. Defazio and T. Graepel, ‘‘A comparison of learning algorithms on the

arcade learning environment,’’ 2014, arXiv:1410.8620. [Online]. Avail-

able: https://arxiv.org/abs/1410.8620

[25] D. Zhao, H. Wang, K. Shao, and Y. Zhu, ‘‘Deep reinforcement learning

with experience replay based on SARSA,’’ in Proc. IEEE Symp. Ser.

Comput. Intell. (SSCI), Dec. 2016, pp. 1–6.

[26] G. A. Rummery andM. Niranjan, ‘‘On-line Q-learning using connectionist

systems,’’ Ph.D. dissertation, Dept. Eng., Univ. Cambridge, Cambridge,

U.K., 1994.

[27] L. Huang, X. Feng, L. Qian, and Y. Wu, ‘‘Deep reinforcement learning-

based task offloading and resource allocation for mobile edge computing,’’

in Proc. Int. Conf. Mach. Learn. Intell. Commun. Cham, Switzerland:

Springer, 2018, pp. 33–42.

[28] J. Xu, Z. Hao, and X. Sun, ‘‘Optimal offloading decision strategies and

their influence analysis of mobile edge computing,’’ Sensors, vol. 19,

no. 14, p. 3231, 2019.

TAHA ALFAKIH received the B.S. degree in

computer science from the Computer Science

Department, Hadhramout University, Yemen,

and the M.Sc. degree from the Computer Sci-

ence Department, King Saud University (KSU),

Riyadh, Saudi Arabia. He is currently pursu-

ing the Ph.D. degree with the Information Sys-

tems Department, KSU. He also works as a

Researcher with the Computer Science College,

KSU. His research interests include machine

learning, mobile edge computing, and the Internet of Things (IoT).

MOHAMMAD MEHEDI HASSAN (Senior

Member, IEEE) received the Ph.D. degree in com-

puter engineering from Kyung Hee University,

South Korea, in February 2011. He is currently an

Associate Professor with the Information Systems

Department, College of Computer and Information

Sciences (CCIS), King Saud University (KSU),

Riyadh, Saudi Arabia. He has authored or coau-

thored more than 180 publications, including

refereed IEEE/ACM/Springer/Elsevier journals,

conference papers, books, and book chapters. His research interests include

cloud computing, edge computing, the Internet of Things, body sensor

networks, big data, deep learning, mobile cloud, smart computing, wireless

sensor networks, 5G networks, and social networks. Recently, his four

publications have been recognized as the ESI Highly Cited Papers. He was

a recipient of number of awards, including the Best Journal Paper Award

from the IEEE SYSTEMS JOURNAL, in 2018, the Best Paper Award from

CloudComp 2014 Conference, and the Excellence in Research Award from

King Saud University, in 2015 and 2016. He has served as the Chair and a

Technical Program Committee Member of numerous reputed international

conferences/workshops, such as IEEE CCNC, ACM BodyNets, and IEEE

HPCC.

ABDU GUMAEI received the B.S. degree from the

Computer Science Department, Al-Mustansiriya

University, Baghdad, Iraq, the master’s degree

from the Computer Science Department, King

Saud University, Riyadh, Saudi Arabia, and the

Ph.D. degree from King Saud University, in 2019,

all in computer science. He has worked as a

Lecturer and taught many courses, such as pro-

gramming languages at the Computer Science

Department, Taiz University. He is currently an

Assistant Professor with the College of Computer and Information Sciences,

King Saud University. He has several types of research in the field of

image processing. His research interests include software engineering, image

processing, computer vision, machine learning, networks, and the Internet

of Things (IoT). He has received a patent from the United States Patent and

Trademark Office (USPTO), in 2013.

CLAUDIO SAVAGLIO received the Ph.D. degree

in information and communication technology

from the Department of Informatics, Modeling,

Electronics and Systems (DIMES), University

of Calabria. He is currently a Research Fellow

with the Department of Informatics, Modeling,

Electronics and Systems (DIMES), University of

Calabria. He has been a Visiting Scholar with the

Eindhoven University of Technology, The Nether-

lands; The University of Texas; the New Jersey

Institute of Technology, USA; and the Universitat Politècnica de València,

Spain. He is also the author of more than 30 articles in international journals,

conferences, and book chapters. His research interests include autonomic

and cognitive Internet of Things systems, cyber-physical networks, edge

computing, and agent-oriented middleware and development methodologies.

He has also served with different roles (the Chair, an Organizer, a Pro-

gram Committee Member, a Guest Editor, and a Reviewer) in international

journals, conferences, and book series.

GIANCARLO FORTINO (Senior Member, IEEE)

received the Ph.D. degree in computer engineer-

ing from the University of Calabria (Unical),

Italy, in 2000. He is currently a Full Professor

of computer engineering with the Department of

Informatics, Modeling, Electronics, and Systems,

Unical. He is also a Guest Professor with the

Wuhan University of Technology, Wuhan, China,

a High-End Expert with HUST, China, and a

Senior Research Fellow with the Italian National

Research Council ICAR Institute. He is also the Director of the SPEME Lab-

oratory, Unical, and the Co-Chair of Joint labs on IoT established between

Unical and WUT and SMU Chinese universities, respectively. His research

interests include agent-based computing, wireless (body) sensor networks,

and the Internet of Things. He is the author of over 400 articles in interna-

tional journals, conferences, and books. He is currently a member of the

IEEE SMCS BoG and the IEEE Press BoG. He is also the Chair of the IEEE

SMCS Italian Chapter. He is a cofounder and the CEO of SenSysCal S. r. l.,

a Unical spinoff focused on innovative IoT systems. He is a (founding) Series

Editor of the IEEE Press Book Series on Human-Machine Systems and the

EiC of Internet of Things (Springer) series and an AE of many international

journals, such as the IEEE TRANSACTIONS ON AUTOMATIC CONTROL (TAC),

the IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS (THMS), the IEEE

INTERNET OF THINGS JOURNAL (IoTJ), the IEEE SYSTEMS JOURNAL (SJ), IEEE

SMCM, Information Fusion, JNCA, and EAAI.

54084 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	REINFORCEMENT LEARNING BASED ON SARSA LEARNING
	SYSTEM MODEL OF MOBILE EDGE COMPUTING
	COMMUNICATION MODEL
	TASK MODEL
	COMPUTATION MODEL
	LOCAL PROCESSING TIME
	EDGE PROCESSING TIME
	PROCESSING TIME OF ADJACENT EDGE SERVER
	REMOTE PROCESSING TIME

	OPTIMIZATION PROBLEM FORMULATION

	SARSA LEARNING AUTONOMIC COMPUTATION OFFLOADING
	OFFLOADING-DECISION-BASED SARSA METHOD (OD-SARSA)
	PERFORMANCE EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	TAHA ALFAKIH
	MOHAMMAD MEHEDI HASSAN
	ABDU GUMAEI
	CLAUDIO SAVAGLIO
	GIANCARLO FORTINO

