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Abstract—With the development of next-generation wireless
networks, the Internet of Things (IoT) is evolving towards the
intelligent IoT (iIoT), where intelligent applications usually have
stringent delay and jitter requirements. In order to provide low-
latency services to heterogeneous users in the emerging iIoT,
multi-tier computing was proposed by effectively combining
edge computing and fog computing. More specifically, multi-
tier computing systems compensate for cloud computing through
task offloading and dispersing computing tasks to multi-tier
nodes along the continuum from the cloud to things. In this
paper, we investigate key techniques and directions for wireless
communications and resource allocation approaches to enable
task offloading in multi-tier computing systems. A multi-tier
computing model, with its main functionality and optimization
methods, is presented in details. We hope that this paper will
serve as a valuable reference and guide to the theoretical,
algorithmic, and systematic opportunities of multi-tier computing
towards next-generation wireless networks.

Index Terms—intelligent IoT, task offloading, multi-tier com-
puting, resource allocation.

I. INTRODUCTION

As the fifth generation wireless networks (5G) being com-
mercially deployed, research efforts of the sixth generation
wireless networks (6G) have begun to define 6G requirements
and use cases. Four promising use cases have emerged. First,
holographic telepresence allows realistic, full motion, three-
dimensional (3D) images of people and objects to be projected
as holograms into a meeting room to interact with each
other in real time [1], [2]. Such remote holographic meeting,
surgery, or distant learning will reduce the need for travel.
The second key use case is digital twin, which creates a
real-time, comprehensive, and detailed digital (virtual) copy
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of a physical object, or system [3]. Digital twins help push
the boundaries of system reliability, used to support a wide
range of capabilities such as diagnostics and fault prediction.
The third one is connected industrial robots, tactile Internet
and intelligent cars. In this use case, the components of a
control system (e.g., controllers, sensors, and actuators) are
distributed across a wide geographic region [3], and therefore
need to be connected via a wide area mobile infrastructure. In
addition, these intelligent applications usually require stringent
delay and jitter performance, with typical maximum tolerable
network latency below 1 milliseconds. The fourth use case
is automated network operation empowered by distributed
artificial intelligence (AI), intelligent IoT (iIoT), and big data
technologies [4], [5].

Many current and future applications require low latency,
high reliability, and high data security protection [6]. These
cannot be adequately met by the traditional cloud computing
model, which requires to upload massive data and comput-
ing tasks to the cloud through fronthaul links and hence is
difficult to meet the requirements of low latency and high
energy efficiency. To provide low-latency services, a new
computing paradigm called multi-tier computing was proposed
by effectively combining edge computing and fog computing
[7], [8]. With multi-tier computing, a large number of smart
devices with varying computational resources, located around
the end user, can communicate and cooperate with each other
to execute computational tasks. A comparison between multi-
tier computing and the current 5G-based edge computing is
illustrated in Fig. 1. Multi-tier computing complement cloud
computing and edge computing by offloading and dispersing
computational (and communication and caching) tasks and
resources along the continuum from the cloud to things.

Multi-tier computing is expected to become an impor-
tant part of 5G systems and beyond [9], [10], supporting
computational-intensive applications that require low latency
but high energy efficiency, high reliability and high security
services. The effectiveness of multi-tier computing depends
largely on resource scheduling among edge and cloud nodes to
reduce service latency and ease network congestion [8], [11]–
[13]. Because of the above characteristics, multi-tier comput-
ing plays a vital role in many industrial applications of iIoT,
such as connected cars, smart grids, smart buildings, and smart
cities etc. Along the development of next-generation wireless
networks, all kinds of user equipments (UEs) will be online
all the time, promoting the advancement of iIoT and bringing
diversified applications. These novel intelligent applications
typically require low latency and demand prompt computations
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Fig. 1. Edge computing versus multi-tier computing

for real-time task processing and high data rates. However,
mobile devices often have limited computation, storage, and
energy resources. To overcome these limitations, the capability
of offloading computational tasks from the end users to nodes
in the multi-tier computing systems will be essential. Such task
offloading enables distributed smart devices to share their idle
computation and storage resources, which realizes the efficient
utilization of multi-dimensional resources for low latency task
processing. Additionally, multi-tier computing systems will
provide new task offloading models with the development
of B5G wireless communications system, even 6G wireless
communication system, and the new generation of embedded
AI. As computational capability moves from the cloud to
edge and UEs, the computing capabilities will be integrated
into the network. Computing and network will be deeply
integrated. Cloud-to-things computing capabilities should also
be coordinated, leading to a new stage of intelligent multi-tier
computing systems.

A. Task Offloading in Multi-Tier Computing-based Next-
Generation Wireless Networks

Next-generation wireless communication networks present
various novel technologies, including massive multiple-input
multiple-output (MIMO), intelligent reflecting surface (IRS),
space-air-ground integrated networks (SAGIN) and edge AI,
etc. A multi-tier computing model integrates these radio tech-
nologies and AI to reduce task execution latency, allows large-
scale user access, and enables efficient task offloading to re-
alize efficient collaborative computing and multi-dimensional
communication, caching, computation resource coordination.
An example of multi-tier computing-based next-generation
networks is illustrated in Fig. 2. Basically, it consisting of

two types of nodes, i.e., task node (TN) and helper node
(HN). In particular, multiple TNs are able to offload their
tasks to multiple HNs. It remains a fundamental challenge
to effectively map multiple tasks or TNs into multiple HNs
to minimize the total cost, such as task offloading latency or
energy consumption, in a distributed manner, known as the
multi-task multi-helper (MTMH) problem [14], [15].

Massive MIMO can provide array gains, diversity gains,
and multiplexing gains without increasing spectrum and power
resources. It has been shown in [16] that massive MIMO
schemes improve significantly the data rates at the cell edge
and also increase exponentially the spectrum efficiency, result-
ing in an order of magnitude increasing of system capacity.
The integration of multi-tier computing and massive MIMO
has been proven to enhance task offloading performance
in terms of ultra reliability and low latency [17]–[20]. In
particular, Bursalioglu et al. [17] proposed and analyzed an
architecture, so called fog massive MIMO, where a large num-
ber of multi-antenna base stations (BSs) is densely deployed
and serves the users using zero-forcing beamforming (ZFBF).
Pirzadeh et al. [18] investigated the viability of supervised
learning for user location estimation based on network sig-
nals transmitted by the users. In [19], Chen investigated a
specific edge computing mechanism for fronthaul-constrained
distributed Massive MIMO systems, aiming to minimize en-
ergy consumption on user devices. In [20], Mungara et al.
considered a new architecture termed as dense fog massive
MIMO, where the users establish high-throughput and low-
latency data links in a seamless and opportunistic manner, as
they travel through a dense fog with large number of multiple
antennas remote radio heads (RRHs). Although the above
research demonstrates the advantages of massive MIMO-based
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Fig. 2. Illustration of multi-tier computing network.

multi-tier computing, the influence of channel estimation error
on resource allocation and task offloading is not studied, which
is particularly important for time-varying multi-tier computing
systems. On the other hand, to compensate for cloud com-
puting, multi-tier computing systems provide computational
capabilities both at the edge and center of the network.
However, one of the major issues is how to manage task
offloading and execution. More specifically, how to decide
which tasks to perform at the end-user, fog/edge, or in the
cloud. At a more granular level, the issue boils down to which
node a particular task should be assigned to.

In B5G, the radio frequency may exceed 6 Gigahertz. Since
higher-frequency signal is more sensitive to the blockage by
obstacles, the coverage of each base station will be signif-
icantly reduced [21], [22]. Furthermore, devices at the cell
edge or behind obstacles suffer from low task offloading
rates, increasing both delay and energy consumption of task
offloading in multi-tier computing systems [23]. IRS, regarded
as an effective auxiliary wireless network technology for
potentially achieving high spectrum and energy efficiency via
low-cost reflecting elements, has attracted increasing attention
to circumvent these restrictions and is listed as one of the
candidate key technologies in 6G by academia and industry
[24]–[30]. Due to the combination of array aperture gain
(achieved by combining a direct transmission signal with an
IRS reflection signal) and the reflection-assisted beamforming
gain (achieved by controlling the phase shift of each IRS
element), IRS is able to improve the success rate of task
offloading and the potential of efficient resource scheduling
of multi-tier computing systems. Therefore, IRS will be a
key technology for task offloading in next-generation wireless
networks. In [13], [31], the authors have studied the impact of
IRS on computational performance in a multi-tier computing

system, which have demonstrated the benefits of the IRS to
improve the task offloading, in comparison to the benchmark
schemes.

Meanwhile, by integrating satellite systems, aviation sys-
tems and ground communication systems, SAGIN is widely
treated as a cornerstone of future 6G network. This new
architecture supports seamless and near-instantaneous hyper-
connectivity [32], aiming at global data acquisition with
high temporal and spatial resolution, high-precision real-time
navigation and positioning, and broadband wireless commu-
nications. Being an essential component of SAGIN, UAVs
are deployed flexibly at the air-network layer, capable of
assisting terrestrial network in task offloading and communi-
cations/computing/caching resources management due to their
flexibility and proximity [33]. However, even with efficient
task offloading, it is still not trivial to meet the quality of
experience (QoE) requirements of heterogeneous users in the
SAGIN.

Because of increasingly complex wireless networks, a typ-
ical 5G node is expected to have 2000 or more configurable
parameters. Therefore, a recent new trend is to optimize
task offloading and wireless resource allocation through AI
technologies [34], [35], including applying AI at multiple
protocol layers (e.g., physical layer resource allocation, data
link layer resource allocation, and traffic control) [36]. Thanks
to the rapid development of mobile chipsets, the computational
capabilities of edge devices have been substantially improved.
For example, smart devices nowadays have as much com-
putational capability as computing servers a decade ago. In
addition, edge servers could provide end users with low latency
AI services that are not possible to achieve directly on the
devices. Since the computational resources of edge servers are
not as much as those of cloud centers, it is necessary to adopt
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joint design principles across edge servers and edge devices
to reduce task execution latency and enhance privacy for task
offloading [34]. As a result, advances in multi-tier computing
systems offer an opportunity to move the frontiers of AI from
the cloud center to the edge of the network, inspiring a new
field of research called edge AI, including both AI model
training and inference procedures.

Distributed AI and federated learning algorithms are per-
formed on multi-tier computing servers at the access network,
which is capable of realizing low-latency task processing
and providing computing, storage, and networking services.
Since the data is processed at the edge server in the close
proximity of smart device by task offloading, there is no need
to transfer a large amount of raw data to the back-end server.
Thus, using edge AI on task offloading infrastructure not only
saves network bandwidth on backhaul links, but also reduces
greatly the task execution latency. Edge AI will be a significant
step towards reducing task execution latency by intelligently
enabling task offloading and local caching of popular file and
content migration. In addition, intelligent task offloading for
computational tasks will make it possible to further virtualize
users’ handsets and improve battery lifetime. In all, edge AI
provides a new paradigm of optimization algorithms design for
efficient task offloading and service-driven resource allocation
in multi-tier computing systems [10]. By seamlessly inte-
grating sensing, communications, computing and intelligence,
edge AI will empower multi-tier computing systems to support
multiple intelligent applications, including industrial robots,
intelligent robotic cars, and intelligent healthcare etc.

B. Main Contributions
In this paper, a vision of multi-tier computing with intelli-

gent task offloading is presented. Furthermore, we summarize
its interactions with various wireless techniques and resource
allocations, as well as discuss future research directions and
open problems, to embrace the era of multi-tier computing
based next-generation wireless networks.

Against the above backdrop, our contributions could be
further detailed as follows:

• The vision, challenges and solutions for task offloading
in multi-tier computing systems towards next-generation
wireless networks.

• The task offloading in multi-tier computing systems is
presented, including the massive MIMO-aided task of-
floading, the task offloading with IRS, the task offloading
in Space-Air-Ground Integrated Networks (SAGIN), and
edge AI-empowered task offloading.

• The resource allocation for task offloading is elaborated.
Specifically, we introduce the main functionality and
optimization methods as well as the algorithms for task
offloading in multi-tier computing systems.

• We discuss the research directions and open problems
of task offloading for multi-tier computing-based next-
generation wireless networks.

C. Paper Organization
The rest of the paper is organized as follows. Section II

introduces the enablement of multi-tier computing for next-

generation wireless networks, while Section III presents the
resource allocation for multi-tier computing systems. Section
IV is focused on research directions and open problems for
multi-tier computing. In Section V, we provide our conclu-
sions.

II. ENABLEMENT OF TASK OFFLOADING FOR MULTI-TIER
COMPUTING-BASED NEXT-GENERATION NETWORKS

In this section, we present the vision, challenges and so-
lutions for task offloading in multi-tier computing systems,
including the massive MIMO-aided task offloading, the task
offloading with IRS, the task offloading in SAGIN, and edge
AI-empowered task offloading.

A. Massive MIMO-Aided Task Offloading

With the advent of next-generation of wireless standards,
new high-performance technologies are introduced. One of
these key technologies is massive MIMO [37] that has been
increasingly adopted in different networking and computing
frameworks. However, the works of [8], [38]–[40] mainly
considered single-antenna computation offloading systems,
by taking joint resources allocation and task offloading into
account, but failed to exploit the MIMO advantages in terms
of task offloading efficiency. As we know that MIMO tech-
niques have the potential of achieving high spectral efficiency
(SE) [41]–[43], so as to improve the task offloading data
rate. Therefore, new technologies have been introduced to
improve the performance of edge users from current levels.
In particular, equipping the base stations (BSs) with a large
number of antennas, widely known as massive MIMO, has
emerged as one of the most promising solutions [44], [45] to
significantly improve systems SE and energy efficiency trade-
off. More specifically, as the number of antennas increases,
channels become more deterministic, known as channel hard-
ening. Data rates and communication resource allocations are
hence largely determined by large-scale fading. This implies
that resource allocation does not need to be updated frequently,
resulting in significant savings in signal transmission overhead.
In summary, massive MIMO schemes improve spectrum and
energy efficiency and support an increased number of users,
both of which are critical for multi-tier computing systems.

In addition, as the core technology of wireless communica-
tion, relay technique has been integrated into various wireless
communication standards to improve network coverage and
throughput [46]. In particular, massive MIMO-enabled relay
networks can enhance spectral efficiency and achieve more
reliable data transmission for spatially distributed user nodes
through intermediate massive antenna relay nodes [47], [48].
Thus, a massive MIMO-aided fog access node (FAN) serving
as a relay is capable of significantly improving the data
rate of offloaded tasks and the task execution efficiency. The
new computing model that combines massive MIMO with
multi-tier computing will facilitate efficient task offloading of
computation-intensive tasks to achieve efficient collaborative
computing and multi-dimensional communication, caching,
computation resource scheduling.
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B. Task Offloading with IRS

Next, we will introduce a concrete example of implementing
IRS in multi-tier computing systems to reduce task offloading
latency and energy consumption, as shown in Fig. 3. Each
user could either offload its task to the multi-tier nodes such as
edge/fog server for computation via the IRS or to the cloud via
the IRS and massive MIMO node. In order to further improve
uplink task offloading performance for resource-limited end
users, IRS technology has attracted extensive attention due to
its advantages of low cost, easy deploymentation, fine-grained
passive beamforming, and directional signal enhancement or
interference nulling. By controlling surface reflective elements,
IRS can be reconfigured to provide a more favorable wireless
propagation environment for communications. Obviously, us-
ing IRS in multi-tier computing systems is an economical and
environmentally friendly method to facilitate task offloading
[13].

In [31], Chu et al. studied the impact of an IRS on com-
putational performance in a mobile edge computing (MEC)
system, targeting to optimize sum computational bits and
taking into account the CPU frequency, the offloading time
allocation, transmit power of each device as well as the phase
shifts of the IRS. In [13], Wang et al. investigated the task
offloading problem in a hybrid IRS and massive MIMO relay
assisted fog computing system, and formulated a joint task
offloading, IRS phase shift optimization, and power allocation
problem to minimize the total energy consumption. In [49],
Zhou et al. studied an IRS-assisted MEC systems, in which
IRS is deployed to assist task offloading from two users to
the fog/edge access point connected to the edge cloud. Under
the constraint of IRS discrete phase, the authors designed the
passive reflection phase of IRS and the user’s computational
task scheduling strategy to minimize the total task processing
latency. In [50], Bai et al. studied an innovative framework
to employ IRS in wireless powered MEC systems, and the
task offloading is based on orthogonal frequency-division
multiplexing (OFDM) systems. The objective is to minimize
the total task offloading energy consumption. Based on the
above studies, IRS is capable of providing an additional link

both for data transmission and for task offloading, so as to
provide enhanced computational capability.

C. Task Offloading in SAGIN

IoT seeks to connect billions of resource-constrained de-
vices around us through heterogeneous networks. The SAGIN
is viewed as a major candidate to support such IoT require-
ments, helping provision seamless and massive connectivity
for smart services [32], [51]. In the past two years, 5G wireless
networks have been commercialized and deployed around the
world. Although 5G is still in its development, academia and
industry have now shifted their attention to beyond 5G and
6G wireless networks, in order to meet the demands of ultra-
low latency and high energy efficiency for iIoT [32]. Among
the discussions about 6G, from the perspective of computing,
communication, and caching, it is the trend to combine SAGIN
with multi-tier computing technologies in the 6G networks.

Specifically, it is widely recognized that SAGIN will be
the potential core architecture of the future 6G network to
support seamless and near-instantaneous hyper-connectivity
[32]. Thus, multi-tier computing with SAGIN promotes the
task offloading performance. As a key part of this, in the in-
tegrated air-ground branch, unmanned aerial vehicles (UAVs)
are flexibly deployed at the aerial network layer, assisting in
communication, computing and caching of ground networks
due to their flexibility and proximity [33]. However, in 6G
networks, SAGIN still faces challenges such as the demands of
temporal-spatial dynamic communication/computing/caching
services, large-scale complex connection decisions and re-
source scheduling, and ubiquitous intelligence demands within
the network. To sum up, it remains extremely challenging to
realize these visions of 6G in SAGIN.

There have been heavy research efforts on the architecture
of SAGIN and multi-tier computing in the existing literature.
Cheng et al. [33] proposed a novel air-ground integrated
mobile edge network, by investigating the potential benefits
and applications of drone cells, and UAV-assisted edge com-
puting and caching. To support diverse vehicular services,
Zhang et al. [52] presented a software defined networking
(SDN)-based space-air-ground integrated network architec-
ture. Focusing on provisioning computing services by UAVs,
Zhou et al. [53] proposed an air-ground integrated MEC
framework to cater for the urgent computing service demand
from the IoTs. Furthermore, Kato et al. [54] conducted a
comprehensive study about how to deal with the challenges
related to the space-air-ground integrated networks by AI
techniques, including network control, spectrum management,
energy management, routing and handover management, and
security guarantee. In [55], Cheng et al. demonstrated a
SAGIN edge/cloud computing architecture for offloading the
computation-intensive applications, considering remote energy
and computation constraints, and developed a joint resource
allocation and task scheduling approach to efficiently allocate
the computing resources. In [56], Shang et al. studied MEC
in air-ground integrated wireless networks to minimize the
total energy consumption by jointly optimizing users asso-
ciation for computation offloading, uplink transmit power,
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allocated bandwidth, computation capacity, and UAV 3-D
placement. However, how the air network layer allocate the
communication/computing/caching resources intelligently for
task offloading of the ground network layer in SAGIN has not
been adequately addressed.

D. Edge Intelligence-Empowered Task Offloading

With the continuing increase in the quantity and quality of
rich multimedia services, the traffic and computational tasks of
mobile users and smart devices have significantly increased in
recent years, bringing huge workload to the already congested
backbone and access networks. Even with the help of multi-tier
computing systems, it is not trivial at all to satisfy the quality
of experience (QoE) requirements of users. The main difficulty
lies in the need of large amount of wireless data and task
transmissions for task offloading, causing wireless channel
congestion. Therefore, the optimization problem or decision
making of the combined wireless communication resource
allocation and multi-tier task offloading is the key. That is,
how to share the communication resources and computing
resources between edge nodes and the cloud. In response to
the increasing complexity of wireless communication networks
(for example, a typical 5G node is expected to have 2000
or more configurable parameters), a recent new research
trend is to optimize wireless resource allocation through AI
technologies [34], [35], including but not limited to apply-
ing AI algorithms to physical layer resource allocation, data
link layer resource allocation, medium access control, and
traffic and congestion control [36]. Especially, reinforcement
learning is often applied to jointly manage communication,
computing, and caching resources. With learning based multi-
tier computing systems, we can optimize task offloading,
communication resource allocation, and content caching at
edge nodes. Further, federated learning [57], as a distributed
learning framework, always brings the following benefits for
task offloading: 1) great reduction of the amount of data that
must be uploaded through wireless uplink channel, 2) cogni-
tive response to the changing wireless network environments
and conditions, and 3) strong adaptability to the heterogeneous
nodes in the wireless networks, 4) better protection of personal
data privacy.

In learning-based multi-tier computing systems, task of-
floading decision and communication resource allocation vec-
tors generally are binary variables, turning out it is challenging
to find the optimal solution of resource allocations. Moreover,
the feasible set and the objective function of the optimization
problem are generally not convex, making the problem NP
hard. In addition, in time-variant systems, channel conditions
and computational cost are dynamic. Instead of solving the
NP hard optimization problem by utilizing conventional op-
timization methods, the task offloading and communication
resource allocation problem in multi-tier computing systems
could be possibly solved using online learning algorithms.
During the online learning process, the deep reinforcement
learning methods might be applied to jointly optimize the
subcarrier allocation and task offloading in each time episode.
Online federated learning framework is recently utilized to
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learn in a distributed way, in order to solve the task offloading
and communication resource allocation problem. Based on the
communication, computational resource allocation, the multi-
tier task offloading decisions can then be optimized.

Furthermore, edge learning methods have been investigated
in some edge/fog computing systems to simplify the op-
timization algorithm or fulfill online implementations [11],
[58]–[64]. In [59], Huang et al. designed a deep learning-
based task offloading strategy to minimize weighted energy
consumption and latency. In [63], Wang et al. leveraged deep
reinforcement learning method for smart resource allocation
in a software defined network (SDN)-enabled edge computing
architecture. In [62], Huang et al. proposed a deep learning-
based task offloading strategy for offloading decisions and
resource allocation of a wireless powered edge computing
system. In [65], Yang et al. also used deep reinforcement
learning method in IRS-aided edge computing systems to
enhance system security and maximize the sum rate of the
down-link task offloading. In [66], a convolutional neural
network was constructed for channel estimation of a large
IRS-aided massive MIMO communication system to estimate
the direct and the cascaded channels, used for multi-tier task
offloading.

III. RESOURCE ALLOCATION FOR TASK OFFLOADING

In this section, we characterize the multi-tier computing
resources allocation in next generation wireless networks.
Effective optimization methods are then presented to achieve
efficient task offloading with multi-tier resources.

A. Main Functionality

In this subsection, the computational and communication
resources allocation, service placement, and security require-
ment are characterized for designing multi-tier computing
systems, which is illustrated in Fig. 4.

1) Computation: Multi-tier computing architectures were
envisioned to achieve rapid and affordable scalability by devel-
oping computation capabilities flexibly along the entire cloud-
to-things continuum [67]. In essence, multi-tier computing
systems distribute computing capability anywhere between the
cloud and the things to take full advantage of the computa-
tional resource available along this continuum, thus extending
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the traditional cloud computing architecture to the edge of
the network. Thanks to multi-tier computing, some application
components can be performed at the network’s edge, like
delay-sensitive components. While other components, such as
time-tolerant and computation-intensive ones, are performed
in the cloud. Satisfying diverse user requirements will require
both cloud computing with enormous resources and distributed
fog/edge computing with resources and simple algorithms
closer to the users to support time-sensitive tasks. With het-
erogeneous computing resources and the collaborative service
architecture, the proposed multi-tier computing systems are
able to effectively support a full range of services in different
environments. On this basis, multi-tier computing provides
the advantage of low-latency task offloading since it allows
task to be processed at the network edge, close to the end
devices. However, cloud computing alone is not adequate for
supporting all IoT applications, while a multi-tier computing
system can be complementary.

For smart devices with abundant computing resources,
multi-tier computing seeks to achieve seamless integration of
edge and cloud systems. This vision goes beyond treating
the network edge and smart devices as separate computing
platforms. Seamlessly integrating fleets and swarms of mobile
IoT entities into a dense multi-tier enclave is a new distributed
computing paradigm that improves the scalability, extensi-
bility and assemblability of cloud services through edge of
computing systems. Smart devices (cars, drones and robots)
have spare computational resource, allowing the multi-tier
computing platform to reduce energy consumption and task
processing latency compared to the traditional edge computing
scenarios relying on static and low-power edge servers.

2) Communication: Multi-tier computing systems dis-
tribute communication functions anywhere between the cloud
and things to take full advantage of the communication re-
source available along this continuum. In massive MIMO-
aided multi-tier computing systems, the achievable data rates
are mostly determined by large-scale fading, and so is the
communication resource allocation. This means that there is
no need to frequently update communication resource alloca-
tions, hence reducing signaling overhead. IRS is capable of
improving the success rate of the task offloading. Given the
potential gains, if the line-of-sight (LoS) link between the task
offloading nodes and computing nodes is blocked by obstacles,
the task could be offloaded via the IRS reflected link. In this
manner, we attempt to optimize the link selection and wireless
communication resource allocation.

It is important to maintain the required data rates for task
offloading. Take the task offloading from a car as an example.
Given that a connected car produces tens of megabytes of
data per second, an autonomous vehicle may generate up to a
gigabyte per second [7]. Here, dense moving edge nodes can
support accelerated data communication by largely utilizing
directional high-rate communication in the massive MIMO,
IRS or the SAGIN. Edge nodes at the same time provide novel
strategies for smart devices to combine the benefits of cen-
tralized and ad-hoc topology into a unified solution by using
multi-hop, multi-connection mechanisms to communicate with
adjacent network infrastructure when facing the intermittent

connectivity.
3) Storage: Because the edge nodes often have limited

storage resources, distributing the data among edge and cloud
nodes is vital for optimizing task offloading latency or energy
consumption at a given QoS requirement. On top of it,
multi-tier computing also brings a large amount of cloud-like
services closer to the end users. Caching computational data
or services at edge nodes is hence crucial, which relieves the
burden of backhaul transmission with transporting all the data
to the clouds.

Accordingly, elastic storage capacity of edge nodes might be
used to support applications running on resource constrained
IoT devices. Due to the inherent flexibility of multi-tier
computing systems, it is possible to integrate a large number of
densely distributed devices. Caching capacity of edge servers
is usually accessed by both smart devices and edge access
points. For example, user nodes are possibly consolidated
into special capacity areas. Then, multiple interconnected
edge infrastructures that coexist in space and time can pool
the storage resources of adjacent edge networks together for
sharing by smart devices and end users.

4) Security: In cloud computing systems, massive data
needs to be uploaded to the cloud data center through a front-
haul link, where data security cannot be guaranteed. However,
multi-tier computing systems presents unique security chal-
lenges and opportunities. Dense edge nodes with established
dynamic trust chains are acting as a trusted authority for other
smart devices and systems. In particular, multi-tier computing
systems with edge and cloud can handle responsibilities such
as trusted computing platforms, and secure storage of short-
term sensitive information. Multi-tier computing systems also
use edge systems to facilitate local threat monitoring, detec-
tion, and protection for users and provide powerful proximity-
based authentication services for better authentication through
proxy smart devices.

However, the multi-tier computing systems meanwhile incur
new security vulnerabilities, mainly from multiple hetero-
geneous nodes. For example, in a multi-node environment,
when multiple potentially competing service providers and
consumers share resources distributed across a set of hardware
platforms, advanced authorization and authentication mecha-
nisms need to be created to effectively leverage this heteroge-
neous medium and devices between edge and cloud entities.
Fortunately, a trusted execution environment supported by
a public key infrastructure may be a suitable solution to
the above problems. Nevertheless, the intelligent integration
of hardware assistance and software security mechanisms
in multi-tier computing systems remains an open research
challenge.

Additionally, multi-tier computing systems will have to cope
with changing environments compared to existing edge com-
puting systems that operate mainly under known conditions.
In this case, the security mechanism for multi-tier computing
systems is supposed to constantly adapt to the changing operat-
ing conditions. To address this challenge, multi-tier computing
systems must dynamically adjust their overall security posture.
It requires the design of new security protocols, which is
able to respond to any security threat without causing service
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disruptions and to achieve secured and uninterrupted operation
of the task offloading.

B. Optimization Algorithms

In this subsection, the effective optimization methods are
presented to achieve efficient task offloading with multi-tier
resources.

1) Nonconvex Optimization: During task offloading pro-
cess, most of the resource allocation problems in multi-
tier computing systems need to solve a series of nonconvex
optimization problems. For example, for IRS-aided multi-tier
computing systems, there are four blocks of optimization vari-
ables, namely, the task offloading ratio, power allocation at the
relay node, and IRS phase shifts of two hops task transmission.
The optimization of the task offloading ratio is related to the
computing setting, while the optimization of power allocation
and phase-shift matrices affects the communication design.
However, the resource allocation problem in IRS-enabled
multi-tier computing systems is difficult to solve due to two
aspects. The first one is the coupling effect between the power
allocation vector and the IRS phase-shift vector. The second
one is that the objective function (OF) is non-convex with
respect to the phase shifts. Obviously, it is an open challenge to
obtain a globally optimal solution directly. In fact, alternating
optimization technique is a widely applicable and efficient
approach for solving optimization problems involving coupled
optimization variables, which has been successfully applied to
several communication resource allocation problems such as
hybrid precoding [68], power allocation [69], and IRS phase
shift optimization [24], [70]. In this case, a locally optimal
solution is usually provided. To be specific, the resource allo-
cation optimization problem can be transformed into a phase
shift optimization problem, a power allocation problem, and
a task allocation problem, respectively, by using the popular
alternate optimization technique to decouple communication
and computational design.

Remarkably, in contrast to the alternate optimization tech-
nique, distributed optimization algorithms for non-convex op-
timization have appeared in the literature [71]. In [72], [73],
Tatarenko et al. and Zeng et al. studied distributed gradient
descent methods for unconstrained non-convex optimization
problems, respectively. Distributed optimization algorithms are
generally divided into two categories: discrete time algorithms
and continuous time algorithms. The existing work mainly
focuses on discrete time algorithms, while continuous time
problem has attracted extensive attention in recent years,
mainly because of the wide application of continuous time
setting in practical systems and the development of continuous
time control technology. In addition, discrete time and contin-
uous time algorithms are closely related to each other due to
the time scale transformation. Specifically, when the time step
size approaches zero, the optimization algorithm for discrete
time system is similar to the continuous time system. Note that
coupled non-linear constraints are also an important constraint
in distributed optimization problems. However, distributed
algorithms dealing with coupled non-linear constraints are
basically convex problems, namely, both the objective function

and the constraint are convex. In [74], Wang et al. studied
distributed augmented Lagrangian based algorithms for non-
convex optimization problems of multi-tier computing systems
subject to local constraints and coupled non-linear equality
constraints, and investigated the joint design of the task
offloading, service caching and power allocation to minimize
the total task scheduling delay.

2) Mixed-Combinatorial Optimization: Combinatorial op-
timization problems have been analyzed in many works (e.g.,
[75]–[78]). Under the framework of combinatorial optimiza-
tion, an important trend is analyzing combinatorial optimiza-
tion problem within the framework of Euclidean combinatorial
optimization, whose optimization is carried out in a Euclidean
space. In [77], [78], Barbolina et al. and Yemets et al. studied
the Euclidean combinatorial optimization problems, and inves-
tigated the properties of its convex hull and methods of solving
separate classes of Euclidean problems of combinatorial opti-
mization problems. Additionally, the general permutation set
problem is an important Euclidean combinatorial optimization
problem.

As previously mentioned, the resource allocation problems
in multi-tier computing systems involve optimizing computa-
tion, communication and caching. In general, task offloading,
task data caching and communication resource allocations are
binary variables. Specifically, in multi-tier computing for next-
generation wireless networks, we need to jointly optimize the
subcarrier and bandwidth allocation [79]–[81], transmit power
and receive beamforming [12], [60], passive beamforming at
IRS [13], device selection [8], [13], location updates task of-
floading [11], and computational frequency control [8], so as to
reduce the latency and energy consumption in the task offload-
ing procedure. Therefore, these resource allocation schemes
can be formulated as a mixed combinatorial optimization
problem that requires joint optimization of continuous value
variables (e.g., beamforming, power control) and discrete value
variables (e.g., task allocation, service placement, subcarrier
allocation).

It should be noted that the existing optimization methods
for mixed combinatorial optimization problems are mainly
based on traditional iterative optimization approaches [13],
[82]–[85], or adopt a direct end-to-end online learning ap-
proaches [11], [86]. However, they may not achieve good
trade-off between algorithm complexity and resource alloca-
tion performance. Additionally, reinforcement learning (RL)-
based approaches are often involved to solve combinatorial
optimization problems that are unconstrained or have few con-
straints due to feasibility issues [60], [87]. Deep RL requires
a Markov process to achieve satisfactory resource allocation
performance [88]. However, Markov process may not exist in
practical combinatorial optimization problems, as they have
many non-convex constraints with memory. This results in
difficult design of reward features for Markov optimization
process, unfeasible solutions, and potential degradation of
overall performance.

3) Stochastic Optimization: In multi-tier computing sys-
tems, stochastic optimization approach only relies on the
probabilistic description of the uncertainty of the computation
capacity and radio channel condition, and is able to provide
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a trade-off between conservatism and probabilistic assurance
for the achievable task offloading performance. Stochastic
programming has been widely studied in the past decade
due to its wide application in machine learning and resource
allocation. In a stochastic optimization problem, the objective
function or constraints are the expectation of some function
of random variables (such as estimated computation capac-
ity and channel condition in learning approach) [89]. The
challenge of stochastic optimization is that the distribution
of the random variables is often unknown. Most existing
literature on stochastic programming assumes that the basic
distribution of random variables is fixed and that independent
samples are sequentially drawn from this common distribution.
However, the basic distribution of random variables involved
in stochastic optimization may change slowly over time in
many practical applications.

Stochastic optimization in state-based systems with discrete
or continuous time are often modeled with Markov chains.
Their effective optimization method is an important research
topic. The Markov model has a wide range of applications,
especially in the area of task offloading in multi-tier computing
systems. Specifically, some work modeled the task offloading
problem as a stochastic programming problem, and jointly
optimized the task allocation and the communication resources
allocation [90]. However, in all these works, system parameters
need to be acquired offline, which is impossible for a time-
varying system [91]. It should be noted that there are multiple
dynamic parameters in multi-tier computing systems. Therein,
user mobility and channel condition are intrinsic features of
wireless networks when nodes are usually in a mobility state.
Then, due to changes in network topology, these parameters
are time-varying, and the stochastic task offloading framework
is considered as a method of online learning where users can
learn time-varying system parameters.

In many multi-tier computing applications, optimization
criteria are trade-offs between several competing goals, such
as computational cost minimization and profit maximization.
In general, in this tradeoff model, it is important to establish an
optimal strategy that may often not be intuitive. However, there
are also optimization problems with no tradeoff characteristics,
leading to counterintuitive optimal strategies. Therefore, the
use of Markov decision process (MDP) to optimize stochastic
systems should not be ignored. It should be noted that there
exists extensive literature in online learning task offloading
for stochastic optimization, such as deep RL (DRL) [92]–[95],
which generally target at a broader set of learning problems in
MDPs. However, as far as we know, high-dimensional action
spaces are still an urgent and challenging problem in DRL. To
make the problem tractable, the general optimization problem
is reduced into an MDP that only considers a meaningful
parameter. Furthermore, the Multi-Armed Bandit (MAB) prob-
lem is a special case of MDP problems for which regret
learning frameworks are generally considered to be more
efficient in terms of computational complexity. Additionally,
the use of the MAB model is appropriate and recognizable,
taking advantage of the fact that the resources of edge node are
limited. Based on the above analysis, MDP promises an online
learning framework for learning computing resources and

available resources information for stochastic optimization,
aiming to minimize task offloading cost.

IV. RESEARCH DIRECTIONS AND OPEN PROBLEMS

In this section, we present the research directions and
open problems for task offloading in next generation wireless
networks, supported by the wireless network infrastructures in
Section II.

A. Multi-Dimensional Resource Management

Compared to cloud computing, the edge nodes and end users
in multi-tier computing systems may have limited resources.
Therefore, communication, computing and caching resource
allocation is a very important research issue in multi-tier com-
puting systems. Specifically, next-generation wireless com-
munication networks present various technologies, including
massive MIMO, IRS, SAGIN, and AI etc. The new computing
model by combining them with multi-tier computing will
reduce task offloading delay, grant large-scale user access
and promote rapid development of the intelligent services, as
well as enable efficient task offloading to realize efficient col-
laborative computing and multi-dimensional communication,
caching, computation resource sharing.

However, the computation power of multi-tier servers is
typically limited. The wireless physical layer resource al-
location and user access techniques are the key challenges
that hinder the success of multi-tier computing for 5G and
beyond in executing compute-intensive and latency-critical
applications. The optimization of resource allocation may be
multi-objective in different situations, e.g., diverse nature of
applications, heterogeneous server capabilities, user demands
and characteristics, and channel connection qualities.

B. Multi-Tier Task Allocation

Since multi-tier computing systems provide extra computing
capability at the network edge, one of the core problems
is how to manage task allocation. More specifically, how to
decide which tasks should be performed on end-user devices,
at fog/edge systems, or in the cloud. At a more granular level,
the challenge is to which computing nodes should a task be
assigned. To achieve low latency and high energy efficiency
task offloading, computing tasks need to be scheduled to com-
puting nodes with different capabilities according to different
task computing models, communication bandwidths and chan-
nel qualities. Therefore, heterogeneity becomes an important
factor in multi-tier computing architectural design. Dealing
with different task computation and various communication
protocols to manage task offloading becomes a major problem.

C. Heterogeneous QoS Management

With the development of various novel technologies, in-
telligent services are increasingly applied in many fields of
human life, including business, manufacturing, health-care,
entertainment, etc. On one hand, the number of smart services
deployed around edge and cloud servers is growing rapidly. On
the other hand, different service providers provision services



10

with similar functions, and different edge servers may possess
different service performance. Then, the smart devices will
require services with different QoS requirements. In light of
these descriptions, intelligent services are migrating to the
network, i.e., to edge servers residing near end users.

Note that the QoS requirements in multi-tier computing
systems include task response time, throughput, reliability and
availability, typically different for different users. However,
user mobility and different server capabilities turn the applica-
bility of traditional QoS management inapplicable. Therefore,
how to monitor and manage QoS attributes, and schedule
multi-dimensional resources timely and effectively to fulfill
specific QoS requirement for each user becomes the main issue
in multi-tier computing systems.

D. Data Privacy

In multi-tier computing systems, data and computation
task need to be collected close to the physically distributed
edge devices, and there exists a large number of devices
in the systems. When analyzing sensitive information from
distributed nodes, data privacy requirements must be satisfied.
We should select computing nodes in a way that best protect
the data privacy, considering the computing nodes in different
parts of the network may have different privacy protection
capabilities. The tasks collected, transmitted, and processed at
the edge or in the cloud needs to be anonymized [96]. Then,
multi-tier data analysis and processing is achieved securely
in multi-tier computing systems. Note that distributed systems
are in general more vulnerable to be attacked than centralized
systems, and both the devices and edge nodes in multi-tier
computing systems are generally less powerful than the cloud.
Therefore, these nodes may not have as adequate resources as
the cloud to protect themselves. In addition, the devices and
edge systems may not have enough intelligence and capability
needed to detect threats due to limited resources. In all, data
privacy of multi-tier computing from things to the cloud
will be the focus of future research in multi-tier computing
systems.

V. CONCLUSIONS

In this paper, we investigated the key wireless communica-
tion techniques, effective resource allocation approaches and
research directions to embrace the era of task offloading for
multi-tier computing-based next-generation wireless networks.
In particular, the multi-tier computing system model, multi-tier
computing resources and optimization methods were presented
for better serving the task offloading. We hope that this paper
will serve as a valuable reference and guide to further promote
the theoretical, algorithmic, and systematic development and
advancement of the task offloading with multi-tier computing
resources in next generation wireless networks.
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