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Abstract— We introduce a method for task-oriented design
of concentric tube robots, which are highly modular, tentacle-
like robots with the potential to enable new minimally invasive
surgical procedures. Our objective is to create a robot design
on a patient-specific and surgery-specific basis to enable the
robot to reach multiple clinically relevant sites while avoiding
anatomical obstacles. Our method uses a mechanically accurate
model of concentric tube robot kinematics that considers a
robot’s time-varying shape throughout the performance of a
task. Our method combines a search over a robot’s design space
with sampling-based motion planning over its configuration
space to compute a design under which the robot can feasibly
perform a specified task without damaging surrounding tissues.
To accelerate the algorithm, we leverage design coherence, the
observation that collision-free configuration spaces of robots of
similar designs are similar. If a solution exists, our method is
guaranteed, as time is allowed to increase, to find a design
and corresponding feasible motion plan. We provide examples
illustrating the importance of using mechanically accurate
models during design and motion planning and demonstrating
our method’s effectiveness in a medically motivated simulated
scenario involving navigation through the lung.

I. INTRODUCTION

A robot’s effectiveness at performing a task depends

largely on its design. A robot’s design can be seen as a set of

parameters that are fixed throughout the robot’s use. Given

the tasks we wish the robot to perform, we can design the

robot to most ably perform the tasks while ensuring that the

robot does not damage itself or its environment.

In this paper we investigate task-oriented design of con-

centric tube robots, which are minimally invasive medical

devices capable of following curved paths through body

cavities. These robots may enable physicians to perform

new surgical tasks requiring greater dexterity than possible

with current instruments, including skull-base surgery [3],

neurosurgery [1], operation on a fetus in the womb [8], and

lung procedures [18]. In Fig. 1 we show by simulation how, if

designed correctly, a single concentric tube robot can access

multiple surgical sites in the bronchial tubes while avoiding

damage to sensitive structures in the lung.

Concentric tube robots are composed of nested, pre-curved

tubes, usually shaped with a straight section followed by a

constant-curvature section. As each of the robot’s component

tubes is independently rotated or extended, the entire device

can change shape and trace intricate paths through open air
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Fig. 1. Simulation of a single concentric tube robot reaching two pre-
specified clinical targets in the bronchial tubes of a human lung. The robot
is inserted through a bronchoscope (in cyan) and guided toward the specified
targets while avoiding contact with the bronchial tube walls. The three
component tubes of the robot are colored green, orange, and yellow.

or tissues. The pre-curvatures and lengths of the tubes have

a significant impact on the set of clinical targets reachable

by the device, so proper selection of design parameters for

a patient’s anatomy is critical to the success of a surgical

procedure.

Our goal is to computationally optimize the design of

a concentric tube robot on a patient- and surgery-specific

basis to enable a single robot inserted into the patient to

reach multiple clinically relevant sites. Prior to the procedure,

we assume that a volumetric image (e.g. CT scan or MRI)

is available, from which we can extract the geometry of

the anatomical environment through which the robot will

navigate, including free space and anatomical obstacles such

as nerves, vessels, sensitive organs, and bones.

Designing these robots to perform specific tasks is made

challenging by their complex kinematics; unlike most ma-

nipulators, concentric tube robots cannot be separated into

kinematically independent links because rotating or extend-

ing any tube affects the shape of the entire robot. Simpli-

fied kinematic models which assume telescoping dominant

stiffness (meaning that each tube is assumed to be infinitely

stiff compared to all within it, and all tubes are assumed

to be infinitely torsionally stiff) have been used to mitigate

modeling complexity for motion planning and design [17],

[2], [1]. While these models’ computational simplicity allow

for a good starting point, more advanced models are required

to accurately describe these robots’ kinematics [6], [22], as

shown in Fig. 2. Model accuracy has a significant impact



Fig. 2. Two overlaid time frames of a concentric tube robot. As the inner
tube is extended past the outer tube, the inner tube interacts with the outer
tube’s curvature, causing the entire robot’s shape to change. This illustrates
that the tubes cannot necessarily be treated as kinematically independent
during the design and control of these robots.

on the quality of motion plans and designs, as discussed

in Sec. VI. Due to the importance of high quality motion

plans and designs in minimally invasive surgery, the design

process introduced in this paper uses one of the most accurate

kinematic models available.

To create designs in a manner that considers the time-

varying shape of the robot during deployment, we simul-

taneously compute both the design of the robot and time-

sequences of control inputs that will feasibly guide the

robot to the user-specified goal sites. The latter requires

solving a motion planning problem from the robot’s start

location to the goal sites while avoiding anatomical obstacles.

Motion planning for complex robots such as concentric

tube robots is PSPACE-hard and computationally intractable

to completely solve [21], so like most practical motion

planners, we use a sampling-based approach. We build on

a previously developed motion planner for concentric tube

robots [26], which searches for feasible trajectories in the

robot’s configuration space, and augment it to also search

for designs in the robot’s design space. By properly blending

motion planning and design, we retain one of the key

features of sampling based motion planners: probabilistic

completeness [13]. Extending probabilistic completeness to

design of concentric tube robots, we guarantee that if a task-

feasible design exists, as computation time is allowed to

increase, the probability of our algorithm finding a task-

feasible design for performing a given task approaches 100%.

To accelerate the algorithm, we leverage design coherence,

the observation that collision-free configuration spaces of

robots of similar designs are similar. This coherence implies

that information gained about the free configuration space

of a robot under one design can be partially re-used for a

similar robot design.

We demonstrate our method’s effectiveness for concentric

tube robot design by (1) showing that we can successfully

design a robot for scenarios where prior concentric tube

robot design techniques would fail, and (2) applying our

new method to a medically motivated simulated scenario

involving navigation through bronchial anatomy to reach

several points of clinical interest in the lung.

II. RELATED WORK

The task-oriented design of concentric tube robots was

first investigated in the work of Bedell et al. [2] and Anor

et al. [1]. They both used an optimization-based approach:

they formulate an objective function that codifies a design’s

fitness for performing a particular task, and then optimize

this function using a global pattern search. These approaches

make the significant assumption of telescoping dominant

stiffness, which limits their applicability to designs that

satisfy this assumption. With this assumption, a design can be

quickly evaluated by considering only its final configuration.

The assumption ensures the shape of the device up to the

tip does not change when the tip is advanced using a

sequential tube insertion strategy: the tubes are first rotated

to their final orientations and then deployed such that inner

tubes do not protrude from outer tubes until the outer tubes

have reached their final insertion lengths [17]. To consider

a broader class of concentric tube robots for which this

assumption does not hold, motion planning will be required

to consider the device’s time-varying shape changes during

task performance.

Our approach to blending task-oriented design with motion

planning requires that we have an accurate model of the

time-varying curve of a concentric tube robot as a task

is performed. Early geometric models assumed torsional

rigidity [7], [25]; later models considered torsion in straight

transmission segments [28], [5], full torsional compliance

[6], [23], external loading [22], [16], and frictional effects

[15]. The model used in this paper considers torsional effects

in all sections of the tube [23]; we do not consider external

loading since our designs are intended to avoid collisions

with obstacles.

Our design approach also requires a motion planner that

can plan sequences of tube rotations and insertions that will

maneuver the robot from a start location to a target while

avoiding obstacles. Prior motion planning methods have used

improved kinematic models as they have been developed:

from optimization-based motion planning using a simplified

kinematic model [17], [18] to a sampling-based method

using the fully torsionally compliant kinematic model [26].

The planner from the latter paper is incorporated into our

design method in order to provide probabilistic completeness

guarantees and solution accuracy.

Optimization approaches have been applied to the design

of other types of robots. A sampling-based approach was

applied to optimizing the base location of a robot manipulator

[9], but this approach requires an initial collision-free plan.

Merlet used interval analysis to find robot designs which

fulfill a set of requirements [19]. Methods such as Synergy

[11] and Darwin2k [14] rely on genetic algorithms to perform

multiple simulations to optimize the structure of a robot

for various metrics. This methodology has been applied to

the design of manipulators [4] and surgical robots [24].

However, these approaches provide no guarantees on perfor-

mance. Other methods aim to optimize structural properties

of robots for specific problem domains, including geomet-

ric methods for planar manipulators [27], and grid-based

methods for manipulators [20]. In contrast to these methods,

our sampling-based approach is applicable to the complex

kinematics of concentric tube robots, accounts for obstacles

in the workspace, and provides probabilistic completeness

guarantees.



III. PROBLEM DEFINITION

We define the design of a concentric tube robot as a set

of parameters that are selected before its use and cannot be

changed once it begins to perform a task. Specifically, we

define a design d of an n-tube concentric tube robot as a

vector of 3n real-valued parameters where we associate with

each tube the following three parameters:

• Ls
i : length of tube i’s straight transmission section

• Lc
i : length of tube i’s pre-curved section

• κi: curvature of tube i’s pre-curved section

We assume that the design space D ⊂ R
3n is a bounded set.

We only consider design parameters which do not modify the

size or topology of the robot’s configuration space, e.g. we

do not consider the number of tubes as a design parameter

(although this could be addressed by running our method for

various numbers of tubes and selecting the best option). We

also do not consider pre-curved sections with non-constant

curvatures, which will be considered in future work.

Each tube of a concentric tube robot provides two degrees

of freedom to the robot, as each tube can be independently

rotated or inserted. For an n-tube concentric tube robot with

design d, let Q ⊂ (S1)
n
×Rn be its bounded, 2n-dimensional

configuration space and let q ∈ Q denote a configuration.

While the configuration space of any robot in the design

space is the same, the collision-free subset Qd
free ⊆ Q of the

configuration space will vary based on the robot design d.

Given a workspace goal region R we can define for a design

d the subspace of configurations Qd
goal which correspond to

the robot’s end-effector lying in R. Similar to Qd
free, the goal

region Qd
goal can vary depending on d (a given design d may

not even be able to reach the goal region, meaning Qd
goal =

∅).
We will consider the task of reaching a goal region with a

concentric tube robot’s end-effector while avoiding collisions

between the robot and its environment. For this task, we must

consider paths in configuration space for particular robot

designs. A path in Q is a continuous function Π : [0, s]→ Q

where s is the length of the path. A collision-free path under

a design d is a path which lies entirely in Qd
free. Given a start

configuration q0 and a workspace goal region R, a feasible

path under a design d is a collision-free path Π which begins

at q0 and ends at a configuration corresponding to the robot

reaching R. To simplify method exposition, we assume that

q0 is collision-free for all d ∈ D.

Formally, given R as a workspace goal region, D as the

design space of a concentric tube robot, and q0 as the robot’s

start configuration, our objective is to compute a task-feasible

design: a design d ∈ D for which there exists a feasible path

Π from configuration q0 to a configuration that reaches R.

IV. METHOD FOR TASK-ORIENTED DESIGN

Our task-oriented design method searches for a robot de-

sign in design space and simultaneously searches for motion

plans in configuration space. The method explores a set

D̂ ⊆ D of designs. We compute a motion plan for design d

in Qd
free using a sampling-based approach based on a rapidly-

exploring random tree (RRT) [13], which produces a motion

planning graph that incrementally explores the configuration

space. We achieve probabilistic completeness guarantees on

finding a task-feasible design by properly interleaving the

searches of the design and configuration spaces.

To accelerate the algorithm, we leverage design coherence,

the observation that collision-free configuration spaces of

robots of similar designs are similar. Our design method can

be seen as an “RRT of RRTs,” where the former RRT is

in design space and the latter are in configuration space. We

explore design space using an RRT that utilizes configuration

space information from nearby design samples to accelerate

configuration space exploration at new design samples.

A. Method Inputs

Our method requires as input a specification of the

environment geometry (i.e. anatomical obstacles) and the

location of the goal region. The environment geom-

etry is implicitly defined by a user-defined function

collision free(q1, q2, d), which returns false if under

design d the path linearly interpolated from configuration

q1 to configuration q2 collides with an obstacle. We define

the goal regions with a function is in goal(q, d) which

returns true if the end effector of a robot of design d at

configuration q lies within the goal region. The user must

also specify the number of tubes and the allowable ranges

for each of the design parameters defined in Sec. III.

B. Concentric Tube Robot Design Algorithm

As described in Alg. 1, our method begins by adding a

random initial design d0 to its set of design samples D̂. At

each method iteration, we perform one of the following two

functions, where the probability of invoking the former is

user-specified weight pdesign:

• generate new design: Generate a new design space

sample d′ and use a nearby design’s motion planning

graph to populate the graph of d′ (Alg. 2).

• explore prior design: Expand the motion planning

graph of a previously considered design sample (Alg.

3).

C. Generating New Designs

We associate a distinct motion planning graph with each

design sample because the collision-free configuration space

of a robot is dependent on its design. For a design d, the

sampling-based motion planning graph Gdi = (V di , Edi)
contains vertices V di corresponding to sampled configu-

rations qi ∈ Q which were found to be collision-free

under design di, and edges E representing a collision-free

connection between pairs of configurations.

In generate new design, we add new design space

samples as in an RRT: using a Voronoi bias. We generate

a random sample dsample ∈ D and use nearestD(D̂, dsample)
to select the configuration dnear ∈ D̂ that is nearest to dsample

in design space. We then use extendD(dnear, dsample, α) to

generate a new design dnew such that dnew has a more similar

design to dsample than dnear. This α value is analogous to

RRT’s maximum stepsize parameter. We choose α to be



Alg. 1 CTRDesign main: Compute the free configuration

spaces of designs in D.

Input:

q0: initial configuration

pdesign: weight for exploring design space relative

to configuration space at each algorithm iteration

α: maximum size of extend step in D

β: maximum size of extend step in Q

n: number of iterations to perform

Output:

Set of graphs {Gdi = (V di , Edi)}, one graph for each

considered design di ∈ D̂

1 d0 ← random design in D

2 D̂ ← {d0}, V
d0 ← {q0}, E

d0 ← ∅
3 for i = 1 . . . n
4 if (random number in [0, 1]) < pdesign

5 generate new design()
6 else

7 explore prior design()

Alg. 2 generate new design: Generate a new design sam-

ple and populate its motion planning graph.

Input:

Global variables {V di}, {Edi}, D̂, α, is checked

from CTRDesign main

Output:

Global variables {V di}, {Edi}, is checked,

and D̂ are updated

1 dsample ← random design in D

2 dnear ← nearestD(D̂, dsample)
3 dnew ← extendD(dnear, dsample, α)

4 D̂ ← D̂ ∪ {dnew}
5 V dnew ← V dnear , Ednew ← Ednear

6 for each (q1, q2) ∈ Ednew

7 is checked[dnew, q1, q2]← false

large enough to gain new and useful information about D,

but small enough so that we can exploit design coherence

between dnear and dnew. We add dnew to D̂.

We then utilize design coherence to populate the empty

motion planning graph of dnew with information from dnear.

Because dnew, by construction, is a similar design to dnear,

we can expect many of the vertices and edges in Gdnear to

be valid in Gdnew . So, we optimistically copy all of Gdnear

into Gdnew . Instead of collision-checking all of the edges

under the new design, we take a lazy approach: we tag them

all as “unchecked” edges in dnew using the hash structure

is checked. We only collision check an unchecked edge if it

is expanded upon in explore prior design, thus speeding

exploration while reducing unnecessary checks.

Alg. 3 explore prior design: Explore motion planning

graphs of a previously considered design.

Input:

Global variables {V di}, {Edi}, D̂, β,

is checked from CTRDesign main

Output:

Global variables {V di}, {Edi}, D̂, is checked

are updated

1 d← random design in D̂

2 qsample ← random sample from Qd

3 qnear ← nearestQ(V
d, qsample)

4 qnew ← extendQ(qnear, qsample, β)
5 V d ← V d ∪ {qnew}, E

d ← Ed ∪ {(qnear, qnew)}
6 for each edge (q1, q2) on path from q0 to qnew

where is checked[d, q1, q2] = false

7 if collision free(q1, q2, d)
8 is checked[d, q1, q2]← true

9 else

10 Delete subtree of (V d, Ed) rooted at q2

D. Exploring Previously Considered Designs

In explore prior design, we gain more information

about the free configuration spaces of the set of designs D̂

we have already considered. First, we uniformly sample a

design d from the set of previously considered designs D̂.

Next, we expand the motion planning graph of d. This would

be identical to RRT expansion except that there may be edges

in Gd which are “unchecked” due to the lazy heuristic. So,

we begin by adding a new configuration qnew (generated

by extendQ) to Gd without collision-checking the new

edge. Then, we ensure that there exists a collision-free path

from q0 to qnew by collision-checking any unchecked edges

between q0 and qnew in Gd. If the path is found to be

collision-free, qnew remains in the tree. If not, we delete the

entire subtree of configurations rooted at the first in-collision

configuration found when checking the path from q0. In

this way we combine configuration space exploration with

validation of the information we imported from neighboring

designs’ motion planning graphs.

V. METHOD ANALYSIS

A. Probabilistic Completeness

We now prove probabilistic completeness for design: as

the number of iterations n → ∞, the probability of our

design method finding a design which feasibly reaches a

goal region R, given one exists, approaches one. We define

p[returns d ∈ Dgoal] as the probability that the method returns

a robot design d ∈ Dgoal, where Dgoal ⊆ D is the set of

designs capable of reaching a point in the workspace goal

region R. We assume the set Dgoal is a measurable set.

To simplify analysis, we consider a weaker form

of the method which does not use design coherence

and performs one generate new design step and one

explore prior design step at each iteration. These simpli-

fications do not modify the algorithm’s asymptotic behavior.



To show probabilistic completeness, we must show that as

n → ∞: (1) a design will be sampled in Dgoal, and (2) the

motion planning graph for a design d ∈ Dgoal will explore the

configuration space sufficiently to determine that d reaches

the goal region R. To prove the former point, we use the fact

that, in the limit, our RRT-like sampling approach in design

space will approximate a uniform distribution. Since Dgoal is

a measurable set, we guarantee that some d ∈ Dgoal will be

sampled. To prove the latter point, we use the fact that we

are building an RRT for design d in d’s configuration space.

To guarantee that the RRT will find a path to a point in R,

we require the number of samples in this RRT to approach

infinity, which is non-trivial since our method samples in

both design space and in the configuration space of each

design. For a design di created in iteration i, the number of

configuration samples |V di | created as n→∞ is:

lim
n→∞

E[|V di |] =
∞
∑

j=i

E

[

# of samples added

to di at iteration j

]

=

∞
∑

j=i

1

j
.

This is a harmonic series whose limit approaches∞. Hence,

the configuration space of a design created at iteration i of

our method is fully explored, proving probabilistic complete-

ness of our design method for concentric tube robots.

B. Computational Complexity

For the simplified version of the design method described

in Sec. V-A, the dominating asymptotic factors are the

nearest neighbor searches. When implemented efficiently,

these calls are logarithmic in complexity to the number of

elements searched over [10]. At iteration i, our method will

have created at most i samples, so the complexity of iteration

i of the simplified method is O(log i). We note that our

integrated design and motion planning method is no worse

asymptotically than RRT for motion planning alone. The

heuristics in our full method add computational complexity:

copying configuration samples from one motion planning

graph to another of a similar design requires, in the worst

case, O(i) time at iteration i. Therefore, the complexity of

iteration i of our full method is O(i).
Although our full method is asymptotically slower per

iteration than the simplified method, it adds far more nodes

to the designs’ motion planning graphs than the simplified

method and therefore comes to solutions in fewer iterations.

This results in a significant speed-up: averaged over 40

executions in the twisted half torus environment described

in Sec. VI-A, the full method computes task-feasible de-

signs approximately 94% faster than the simplified method,

and 20% faster than a method with the same pdesign-based

exploration but without design coherence.

VI. RESULTS

We experimentally demonstrated the effectiveness of our

concentric tube robot design method by considering two

tasks: (1) navigating through a twisted half-torus, and (2)

reaching two specified points of interest in the bronchial

anatomy, where in both cases we wish to avoid collisions

between the robot and the surrounding environment.

A. Comparison with Prior Methods

In our first experiment, we consider a 2-tube concentric

tube robot maneuvering through a simple tubular environ-

ment as shown in Fig. 3. The environment consists of a half-

torus for which one half is rotated by 45 degrees such that

the environment is non-planar. The robot starts at the center

of the proximal end of the environment and the goal is to

reach a point at the distal end of the environment.

We applied four different design methodologies to the

problem of designing a robot to navigate this environment:

1) Dominant stiffness with sequential insertion: We ana-

lytically derive a design ddom and configuration qseq for

which qseq is collision free and reaches the goal under

the assumption of telescoping dominant stiffness using

the insertion strategy described in Sec. II.

2) Dominant stiffness with motion planning: Given ddom

and qseq from above, we execute a motion planner that

considers an accurate mechanics-based model of the

robot kinematics in order to compute a plan to reach

the goal.

3) Our method with sequential insertion: We use our

proposed method which computes a design d∗ that can

navigate the environment without the assumption of

telescoping dominant stiffness, but perform the task

using the sequential insertion strategy.

4) Our method with motion planning: We use our pro-

posed method to compute a design d∗ and a motion

plan that can navigate the environment.

In this simple environment we can analytically derive

a design ddom which would allow the robot to navigate

the passage under the assumption of telescoping dominant

stiffness: both tubes would have radii of curvature κi equal to

that of the torus from which the environment was generated

and the curved section lengths would each have to be at

least as long as half the environment’s center-line length. A

collision-free configuration qseq which would reach the goal

can also be analytically defined: have the outer tube’s plane

of curvature coincide with that of the first portion of the

torus, and the inner tube’s plane of curvature coincide with

that of the rotated portion. The insertion length of the outer

tube would be the length of the first part of the environment

and the insertion length of the inner tube would be the length

of the entire passage.

Under the telescoping dominant stiffness assumption, a

concentric tube robot of design ddom should be able to

reach the goal while avoiding collisions by following a

sequential insertion strategy ending in configuration qseq. To

best approximate a real-world concentric tube robot which

may exhibit the telescoping dominant stiffness property, we

simulated a robot with both the thickest outer tube and the

thinnest inner tube found in prior literature [6], [23], with the

inner tube having an inner radius large enough to still allow

for passing tools through. We chose the inner tube’s inner

and outer radii to be 0.824 mm and 0.924 mm respectively

(for a thickness of 0.1 mm), and the outer tube’s inner and

outer radii to be 0.925 mm and 1.1175 mm respectively (for



Dominant

stiffness

with

sequential

insertion

Our

method

with

sequential

insertion

Our

method

with

motion

planning

Fig. 3. Three mechanically accurate simulations of the insertion of a 2-tube concentric tube robot through a red twisted torus environment with varying
designs and insertion strategies. The robot’s outer tube is pictured in yellow and the inner tube in light blue. The top row shows a robot under design ddom

which collides with the environment because it was designed and inserted under the assumption of telescoping dominant stiffness, which does not hold
under a mechanically accurate kinematic model of concentric tube robots. When motion planning was applied to this design, a collision-free path through
the tube under design ddom could not be found (not pictured). The middle row shows a robot design d

∗ computed by our design method, but it is inserted
with a sequential insertion strategy which does not require motion planning; when simulated under realistic robot kinematics, the insertion collides with
the environment and fails. The bottom row shows a robot of our computed design d

∗ successfully navigating the environment without collisions because
it combines an accurate kinematic model of concentric tube robots with motion planning to enable collision-free performance of the task.

a thickness of 0.25 mm). In order to realistically simulate the

robot’s behavior, we use a highly accurate, mechanics-based

kinematic model of the robot [23].

Under design ddom and using a sequential insertion strategy

ending at qseq, the robot failed to navigate the passage as

shown in Fig. 3 (top row). We also ran a motion planner [26]

to see if there existed some other motion plan which, under

design ddom, could still navigate the passage. The planner

failed to find such a plan, even when allowed 10 hours of

computation time. A design deemed task-feasible under the

telescoping dominant stiffness assumption is unlikely to fully

avoid the obstacle wall for real-world concentric tube robots.

Next, we applied our new design method to this problem,

which incorporates motion planning under the realistic, tor-

sionally compliant kinematic model. Using pdesign = 0.0001,

we found a robotic design d∗ which allows for collision-

free navigation through the environment when simulated

with the realistic kinematic model. The inner and outer tube

curvatures of d∗ were 0.00525mm−1 and 0.00885mm−1,

respectively; the inner and outer tube curved segment lengths

were 351mm and 205mm; the inner and outer tube straight

segment lengths were 659mm and 240mm. Averaged over 20

executions, the method required 24 minutes on a 2.40 GHz

Intel R©Xeon Quad-Core PC with 12 GB RAM. The design

d∗ and collision-free path are shown in Fig. 3 (bottom row).

We also simulated a sequential insertion of the robot

under design d∗ that ended in the final configuration of

the collision-free path yielded by our method. This failed

to navigate the passage as shown in Fig. 3 (middle row).

This demonstrates that motion planning is indeed vital to

the design process of concentric tube robots under realistic

kinematics.

B. Bronchial Anatomy Scenario

Biopsy is required for a definitive diagnosis of lung cancer.

However, many sites within the lung currently cannot be

safely accessed for biopsy without highly invasive procedures

[12], which makes early definitive diagnosis and treatment of

lung cancer impossible for many patients who cannot tolerate

highly invasive procedures. A properly designed concentric

tube robot may have the dexterity to safely reach sites deep

within the lung that currently available medical instruments

cannot.

We apply our presented method to design a 3-tube concen-

tric tube robot that can access two sites in distinct bronchi

without damaging (e.g. colliding with or piercing) the walls

of the bronchial tubes. Irregularity of the bronchial tubes’

shapes combined with very narrow passageways make this a

difficult problem. A simulation of one of the resulting designs

is pictured in Fig. 4 with two configurations reaching the

specified points with the robot’s end-effector. Averaged over

50 runs, our method took 174 seconds to compute designs

which can reach these two points without colliding with the

surrounding environment. Since pre-operative CT scans are

typically obtained at least a day before an actual biopsy, this

is a clinically acceptable computation time.

VII. CONCLUSION

We develped a task-oriented design method for concentric

tube robots which combines a search of the robot’s design

space and sampling-based motion planning of the robot’s

configuration space in order to find a task-feasible design for

performing a given task without colliding with anatomical



(a) Target 1 in Lung

(b) Target 2 in Lung

Fig. 4. Sequential snapshots of virtual simulations of two concentric tube
robot motion plans. Both simulations are of one robot design computed by
our design method in order to navigate to two specified points in narrow
bronchial anatomy without colliding with the bronchial walls.

obstacles. Our method relaxes assumptions made in prior

work in order to consider a broader class of concentric tube

robots and generalizes probabilistic completeness to design

space.

In future work, we will extend the scope of our design

method to other modular robots. Our method is easily gen-

eralizable because its formulation makes almost no assump-

tions about the robot’s kinematics. Specifically concerning

concentric tube robots, we plan to consider cases in which

the robot is allowed to make contact with some tissues

subject to constraints on forces. We also will evaluate our

computed designs on concentric tube robots operating in

tissue phantoms.
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