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Abstract

Task-Oriented Programming (TOP) is a novel programming para-
digm for the construction of distributed systems where users work
together on the internet. When multiple users collaborate, they need
to interact with each other frequently. TOP supports the defini-
tion of tasks that react to the progress made by others. With TOP,
complex multi-user interactions can be programmed in a declara-
tive style just by defining the tasks that have to be accomplished,
thus eliminating the need to worry about the implementation de-
tail that commonly frustrates the development of applications for
this domain. TOP builds on four core concepts: tasks that represent
computations or work to do which have an observable value that
may change over time, data sharing enabling tasks to observe each
other while the work is in progress, generic type driven genera-
tion of user interaction, and special combinators for sequential and
parallel task composition. The semantics of these core concepts is
defined in this paper. As an example we present the iTask3 frame-
work, which embeds TOP in the functional programming language
Clean.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.11 [Software
Engineering]: Software Architectures—Languages; D.2.11 [Soft-
ware Engineering]: Software Architectures—Domain-specific ar-
chitectures; D.3.2 [Programming Languages]: Language Classifi-
cations—Applicative (functional) languages; H.5.3 [Information
Interfaces And Presentation]: Group and Organization Interfaces—
Computer-supported cooperative work; H.5.3 [Information In-
terfaces And Presentation]: Group and Organization Interfaces—
Web-based interaction

Keywords Task-Oriented Programming; Clean;

1. Introduction

When humans and software systems collaborate to achieve a cer-
tain goal they interact with each other frequently and in various
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ways. Constructing software systems that support human tasks in a
flexible way is hard. In order to do their work properly human be-
ings need to be well informed about the progress made by others.
We lack a formalism in which this aspect of work is specified at a
high level of abstraction.

In this paper we introduce Task-Oriented Programming (TOP),
a novel programming paradigm to define interactive systems us-
ing tasks as the main abstraction. TOP provides advanced features
for task collaboration. We choose tasks as unit of application logic
for three reasons. First, they cover many phenomena that have to be
dealt with when constructing systems in a natural and intuitive way.
In daily life we use this notion to describe activities that have to be
done by persons to achieve a certain goal. In computer systems,
running processes are also commonly called tasks. On a program-
ming language scale, a function, a remote procedure, a method, or a
web service, can all be seen as tasks that can be executed. Second,
in daily life it is common practice to split work into parallel and
sequential sub-tasks and at the same time, during execution, not to
be very strict about their termination behavior and production of
results. Progress of work can be guaranteed even though some, or
all, sub-tasks produce partial results. This contrasts with the usual
concept of computational tasks that are interpreted as well-defined
units of work that take some arguments, take some time to com-
plete, and terminate with a result. Third, tasks abstract from the op-
erational details of the work that they describe, assuming that the
processor of the task knows how to perform it. The processor must
deal with a plethora of issues: generate and handle interactive web
pages, communicate with browsers, interact with web services in
the cloud, interface with databases, and so on. Application logic is
polluted with the management of side effects, the handling of com-
plicated I/O like communication over the web, and the sharing of
information with all users and system components. In this pande-
monium of technical details one needs to read between the lines to
figure out what a program intends to accomplish. Using tasks as ab-
straction prevents this. For these reasons, we conjecture and show
that in the TOP paradigm specifying what the task is that needs to
be done, and how it can be divided into simpler tasks is sufficient
to create the desired application.

We present a foundation for Task-Oriented Programming in a
pure functional language. We formalize the notion of tasks as ab-
stract descriptions of interactive persistent units of work. Tasks
produce typed, observable, results but have an abstract implemen-
tation. When observed by other tasks, a task can either have no
(meaningful) value, have a value that is a temporary result that may
change, or have a stable final result. We show how to program using
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this notion of tasks by defining a set of primitive tasks, a model for
sharing data between tasks, and a set of operators for composing
tasks. Because higher-order function composition provides pow-
erful composition already, only a small set of operators is neces-
sary. These are sequential composition, parallel composition, and
the conversion of task results.

Most notably, we make the following contributions:

• We introduce Task-Oriented Programming as a paradigm for
programming interactive multi-user systems composed of in-
teracting tasks.

• We present tasks as abstract units of work with observable in-
termediate values and continuous access to shared information.

• We present combinators for composition and transformation of
tasks and formally define their semantics.

• We demonstrate real-world TOP in Clean using the redesigned
and extended iTask3 framework.

The remainder of this paper is organized as follows: in Section 2
we informally explain the TOP paradigm by defining its concepts
and a non-trivial example in Clean with the iTask3 framework. In
Section 3 we formalize the foundations of TOP component-wise:
tasks and their evaluation, sharing information, user interaction,
and sequential and parallel task composition. In Section 4 we reflect
on the pragmatic issues that need to be dealt with in frameworks
that facilitate real-world TOP programming. After a discussion of
related work in Section 5, we conclude in Section 6 .

For readability, we use Clean∗ (van Groningen et al., 2010)
which is a dialect of Clean that adapts a number of Haskell lan-
guage features. In this paper we deploy curried function types
(Clean function types have arity), and the unit type () .

2. The TOP Paradigm

Task-Oriented Programming extends pure Functional Program-
ming with a notion of tasks and operations for composing programs
from tasks. Complex interactive multi-user systems are specified as
decompositions of the tasks they aim to support.

2.1 TOP Concepts

Tasks: Tasks are abstract descriptions of interactive persistent
units of work that have a typed value. When a task is executed, by a
TOP framework, it has an opaque persistent state. Other tasks can
observe the current value of a task in a carefully controlled way.
When an executing task is observed, there are three possibilities:

1. The task has no value observable for others: This does not
mean that no progress is made, but just means that no value of
the right type can be produced that is ready for observation.

2. The task has an unstable value: When a task has an unstable
value, it has a value of the correct type but this result may be
different after handling an event. It is even possible that the next
time the task is observed it has no value.

3. The task has a stable value: The task has a clear final result.
This implies that if the task is observed again, it will always
have the same value.

Tasks may be interactive. Such tasks process events and update
their internal state. However, this event processing is abstracted
from in Task-Oriented programs. The effects of events are only
visible as changes in task results.

Many-to-many Communication with Shared Data: When mul-
tiple tasks are executed simultaneously, they may need to share data
between them. How and where this data is stored however, is often
completely irrelevant to the task. What matters is that the data is

available and that it is shared. Thus, when one task modifies shared
data, the other tasks can observe this change. In TOP we abstract
from how and where data is stored and define Shared Data Sources
(SDS) as typed abstract interfaces which can be read, written and
updated atomically.

Generic Interaction: The smallest tasks into which an interactive
system can be divided are single interactions, either between the
system and its users or between the system and another system.
Single interactions can be entering or updating some data, making
a choice or just viewing some information. In TOP we abstract
from how such interactions are realized unless it is essential to the
task. A TOP framework generates user interfaces generically for
any type of data used by tasks. This means that it is not necessary
to design a user interface and program event handling just to enter
or view some information. It is possible to specify interactions in
more detail, but it is not needed to get a working program.

Task Composition: TOP introduces the notion of tasks as first-
class values, but also leverages first-class functions from pure func-
tional programming. This means that only a small carefully de-
signed set of core combinator functions is needed from which com-
plex patterns can be constructed.

1. Sequential composition: TOP uses dynamic sequential com-
position. Because task values are observable, sequential com-
positions are not defined by blindly executing one task after an-
other. They are defined by composing an initial task with a set
of functions that compute possible next steps from the observed
value of the initial task.

2. Parallel composition: Parallel composition is defined as exe-
cuting a set of tasks simultaneously. Tasks in a parallel set have
read-only access to a shared data source that reflects the cur-
rent values of all sibling tasks in the set. In this way tasks can
monitor each other’s progress and react accordingly.

3. Value transformation: Task domains can be converted by pure
functions in order to combine tasks in a type consistent way.

2.2 An Example of TOP in Clean

To illustrate Task-Oriented Programming in practice, we present
a non-trivial example that uses the novel iTask3 framework. In
the example, one specific user, the coordinator, has to collaborate
with an arbitrary number of users to find a meeting date and time.
Figure 1 displays that this task consists of three sub-tasks. This
figure consists of actual screenshots of the user interfaces generated
by the iTask3 framework.

In sub-task one, the coordinator creates a number of date-time
pairs. While doing so, he or she can rearrange their order, insert new
date-time pairs, or remove them. Once satisfied, the coordinator
confirms the work by pressing the Continue button, and steps into
sub-task two.

This sub-task two consists of a number of tasks running in
parallel. The users (Alice, Bob, and Carol in this example) are all
asked to make a selection of the proposed date-time pairs (the Enter
preferences windows). Meanwhile, the coordinator can monitor
and follow the selections being made (the Results so far window).
At any time, the coordinator can either choose to restart the entire
task all over again, by pressing the Try again button. He or she can
also select a date-time pair that is suitable for (the majority of) all
users by pressing the Make decision button. In the first case, they
step into the plan meeting task afresh, and in the latter case, they
step into sub-task three.

In sub-task three the system provides the coordinator with an
overview of available users per date-time pair, thus helping him or
her to make a good decision. The coordinator can also decide not to
pick any of the candidate date-time pairs and override them with a
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Figure 1. Selecting possible dates for a meeting

proposed alternative. Once satisfied with a choice, the coordinator
terminates the entire task by pressing Continue, and returns a stable
date-time value.

In the remainder of this section we show how to specify this
example in a Task-Oriented way. Figure 2 displays the complete
specification. It contains TOP-notions explained in detail further on
in this paper. The key point of this example is to show how Task-
Oriented Programming aids to create a specification that closely
matches the description that is shown above. The semantics of the
used concepts are defined in Section 3.

The entire task of the coordinator is described by planMeeting.
Its type (line 1) expresses that given a list of users, it is a task
that produces a date-time pair. User and DateTime are predefined data
types. User represents a registered user. DateTime is just a pair of Date
(day-month-year triplet) and Time (hours-minutes-seconds triplet)
which also happen to be predefined.

As discussed, the main structure of planMeeting consists of
three subsequent sub-tasks (lines 2-4), which are glued together
by means of the step combinator >>*. The second argument of >>*
enumerates the potential subsequent task steps that can be stepped
into while the first argument task is in progress. Hence, the first
sub-task, enterDateTimeOptions, is followed by askPreferences, which
in turn is followed by either tryAgain or decide. Entering user in-
formation (performed by enterDateTimeOptions, select, and pick) is
an example of a task that may or may not have a task value. This
depends on the input provided by the user. The potential task steps
which can follow can observe the task value and define whether or
not sufficient information is provided to step into the next task. In
case of the transition from the first sub-task to the second sub-task,
this requires an action from the coordinator (line 12). This is only
sensible if the previous task has a task value, which is tested by the
predicate hasValue. In that case, the current task value is retrieved
(getValue) and used to step into the next sub-task, which is to ask
all users to choose preferred date-time pairs.

The observable task value is accessible in the step combinator
to determine the next task steps chosen. The task value and its
access functions are straightforward: hasValue tests for the Val data
constructor, and getValue returns that value if present:

:: Value a = NoVal | Val a Stability

1planMeeting :: [User] → Task DateTime
2planMeeting users= enterDateTimeOptions
3>>* [askPreferences users]
4>>* [tryAgain users, decide]
5

6enterDateTimeOptions :: Task [DateTime]
7enterDateTimeOptions= enterInformation "Enter options" []
8

9askPreferences :: [User]
10→ TaskStep [DateTime] [(User, [DateTime])]
11askPreferences users
12= OnAction (Action "Continue") hasValue (ask users o getValue)
13

14ask :: [User] → [DateTime] → Task [(User, [DateTime])]
15ask users options
16= parallel "Collect possibilities"
17[ (Embedded, monitor)
18:[(Detached (worker u) ,select u options) \\ u←users]
19]
20@ λanswers → [a \\ (_,Val a _)←answers]
21

22monitor :: ParallelTask a | iTask a
23monitor all_results
24= viewSharedInformation "Results so far" []
25(mapRead tl (taskListState all_results))
26@? λ_ → NoVal
27

28select :: User→ [DateTime] → ParallelTask (User, [DateTime])
29select user options _
30= enterMultipleChoice "Enter preferences" [] options
31@ λchoice → (user,choice)
32

33tryAgain :: [User] → TaskStep [(User, [DateTime])] DateTime
34tryAgain users
35= OnAction (Action "Try again") (const True)
36(const (planMeeting users))
37

38decide :: TaskStep [(User, [DateTime])] DateTime
39decide
40= OnAction (Action "Make decision") hasValue (pick o getValue)
41

42pick :: [(User, [DateTime])] → Task DateTime
43pick user_dates
44= (enterChoice "Choose date" [] (transpose user_dates) @ fst)
45-||-
46(enterInformation "Enter override" [])
47>>* [OnAction (Action "Continue") hasValue (return o getValue)]

Figure 2. Complete task specification of the planMeeting example

:: Stability = Unstable | Stable

hasValue :: Value a → Bool
hasValue (Val _ _) = True
hasValue _ = False

getValue :: Value a → a
getValue (Val a _) = a

Tasks with Stable values are terminated and can no longer produce
a different task value. Hence task values are first-class citizens
in Task-Oriented Programming. Two task transformer functions
provide access: @? alters the task value of the preceding task, and @

is similar, but only if a Val is present:

(@?) infixl 1 :: Task a → (Value a → Value b)
→ Task b | iTask a & iTask b

(@) infixl 1 :: Task a → (a → b) → Task b | iTask a & iTask b

The second sub-task of the coordinator is to ask all users in par-
allel to make a selection of the created date-time pairs. In addi-

197



tion, the coordinator constantly monitors their progress. Parallel
composition of tasks is defined with the parallel combinator. It
is used explicitly in the ask task, and implicitly (by means of the
derived parallel-or combinator -||- that provides a shorter nota-
tion for the common case of choice between two alternative tasks)
in the pick task. Parallel composition is a core concept in Task-
Oriented Programming. The second argument of parallel enumer-
ates the sub-tasks that need to be evaluated in parallel. The progress
is shared between all sub-tasks. Relevant to the example is the func-
tion taskListState, which transforms this shared state to share the
current task values. This is used by the monitor task (lines 24-25)
to create a view on the current task values of the users. The monitor
task uses @? to explicitly state that its task value never contains a
concrete value. These can be provided only by the select sub-tasks.
They offer their user the means to make a multiple-choice of the
provided date-time pairs, and use @ to attach the user to identify
who made that specific selection (lines 30-31).

Finally, the last sub-task can be stepped into when the coordina-
tor either decides to start all over again (lines 34-36) or pick a value
(lines 39-40). The first action step is always valid (const True, line
35) and the second action step only when the previous task actually
has a value (line 40). The derived combinator-||-evaluates its two
task arguments in parallel, and has a task value that is either stable
(if one or both sub-tasks have one) or unstable (if one or both have
one) or none. Hence, the action step can only occur when the coor-
dinator has either selected one of the suggested date-time pairs or
chosen to override them.

This example demonstrates how a TOP approach can lead to a
concise specification in which tasks are glued together and overall
progress can be achieved even though the tasks themselves might
not terminate or consume too much time.

3. A Formal Foundation of TOP

In this section we introduce and semantically define the core con-
cepts of Task-Oriented Programming. These are task values, tasks
and their evaluation (Section 3.1), many-to-many communication
(Section 3.2), user-interaction (Section 3.3), sequential task com-
position (Section 3.4), and parallel task composition (Section 3.5).

Except for Section 3.1, every section has the same structure: we
first introduce the core concept and illustrate it by means of the
iTask3 system, and then formally define the operational semantics
using rewrite semantics. The rewrite rules are specified in Clean∗.
Such a way of formal specification of semantics is somewhat un-
usual, but this approach has certain advantages over traditional ones
(Koopman et al., 2009). The specification is well-defined, concise,
compositional, executable, and can express even complicated lan-
guage constructs as the ones introduced in this paper. Since we
are dealing with constructs embedded in a functional language it
is an advantage to describe their semantics as pure functions in a
functional language as well. We have experimented with several al-
ternative definitions which can easily introduce errors that remain
overlooked. It is an advantage that the descriptions are checked by
the compiler and that we have been able to test their correct work-
ing by applying it to concrete examples. Furthermore, the formal
semantics is very suited and also used as blue print for the actual
implementation and can serve as a reference implementation for
implementations in other programming languages as well. In order
to distinguish semantic definitions from iTask3 API and code snip-
pets, we display semantic definitions as framed verbatim text, and
iTask3 fragments as unframed verbatim text.

3.1 Tasks and their Evaluation

In this section we define task results and task values (Section 3.1.1),
tasks (Section 3.1.2), their evaluation (Section 3.1.3), and a number
of task transformer functions (Section 3.1.4).

3.1.1 Task Results and Task Values

A task of type Task a is a description of work which progress can
be inspected by a task value of type Value a (Section 2.2). Tasks
handle events. Events have a time stamp, for which we use an
increasing counter, making it possible to determine the temporal
order of events. The task result of handling an event may be a
new task value. Semantically, we extend the task value with the
time stamp of the event that caused the creation of that task value.
Tasks that run into an exceptional situation have as task result an
exception value instead of a task value. The domains of task results
and task values capture these situations:

:: TaskResult a= ValRes TimeStamp (Value a)
| ∃e: ExcRes e & iTask e

:: TimeStamp :==Int
:: Value a = NoVal | Val a Stability
:: Stability = Unstable | Stable

The task value of a task result can be in three different states: there
can be no value at all (NoVal), there can be an Unstable value which
may vary over time, or the value is Stable and fixed. To illustrate,
consider the task of writing a paper p. At time t0 you have no paper
at all (ValRes t0 NoVal). After a while, at time t1 there may be a draft
paper p1, which is updated many times at subsequent time stamps
t2 . . . tn with draft papers p2 . . . pn (ValRes ti (Val pi Unstable)).
You may even start all over again (ValRes tn+1 NoVal). At a certain
point in time, tn+k say, when you decide that the paper is finished
the task has result ValRes tn+k (Val pn+k Stable) meaning that the
paper can no longer be altered.

Some tasks never produce a stable value. Examples are the in-
teractive tasks (enterInformation, viewSharedInformation, enterChoice,
enterMultipleChoice) that were used in Section 2.2: a user can create,
change or delete a value as many times as wanted. Typical exam-
ples of tasks that produce a Stable value are ordinary functions,
or system and web service calls. A task can raise an exception
value (ExcRes e) in case it is known that it can no longer produce
a meaningful value (for instance when a call to a web service turns
out to be unavailable). Any value can be thrown as exception and
inspected by an exception handler (Section 3.4), using existential
quantification ∃e and the type class context restriction & iTask e.
Tasks with stable values or exception values have no visualization
but memorize their task result forever. The other tasks require a
visualization to support further interaction with the user.

3.1.2 Tasks

Semantically, we define a task to be a state transforming function
that reacts to an event, rewrites itself to a reduct, and accumulates
responses to users:

:: Task a :==Event→ *State → *(Reduct a, Reponses, *State)
:: Event = RefreshEvent

| EditEvent TaskNo Dynamic / / Section 3.3.1
| ActionEvent TaskNo Action / / Section 3.4.1

:: *State = { taskNo :: TaskNo
, timeStamp :: TimeStamp / / Section 3.3.1

, mem :: [Dynamic] / / Section 3.2.1
, world :: *World
}

:: Reduct a = Reduct (TaskResult a) (Task a)
:: TaskNo :==Int
:: Responses :== [(TaskNo, Response)] / / Section 3.3.1

We distinguish three sorts of events: a RefreshEvent, e.g. when an
user wants to refresh a web page, an EditEvent, e.g. a new value that
is committed intended for an interactive task (Section 3.3), and an
ActionEvent which is used to tell the step combinator which task to
do next (Section 3.4). The latter two cases identify the task that is
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required to handle the event. The interactive task and step task are
provided with a fresh identification value and current time stamp,
using the semantic function newTask:

newTask :: (TaskNo → TimeStamp → Task a) → Task a
newTask ta ev st=:{taskNo = no, timeStamp= t}
= ta no t ev {st & taskNo= no+1}

Fresh task identification numbers are generated by keeping track
of the latest assigned number in the State. The State extends the
external environment of type *World with internal administration
and is passed around in a single-threaded way which is enforced
by the uniqueness attribute *.

The reduct contains both the latest task result and a continuation
of type Task a, which is the remaining part of the work that still has
to be done. This continuation can be further evaluated in the future
when the next event arrives.

The responses collect all responses of all subtasks the task is
composed of. They are used to update every client with the proper
information about the latest state of affairs. A client can use this
information to adjust the page in the browser or in an app.

In the remainder of this paper we define semantic task functions
for the core basic tasks and task combinators, thus explaining how
these elements rewrite to the next reduct.

3.1.3 Task Evaluation

A TOP application consists of one top level task, the main task,
which has to be evaluated. The work continues until either an
exception escapes handling, or the work at hand has obtained a
stable task value.

1evaluateTask :: Task a → *World → *(Maybe a, *World) | iTask a
2evaluateTask ta world
3# st = {taskNo= 0, timeStamp = 0, mem= [] , world= world}
4# (ma,st) = rewrite ta st
5= (ma,st.world )
6

7rewrite :: Task a → *State → *(Maybe a, *State) | iTask a
8rewrite ta st=:{world}
9# (ev,world) = getNextEvent world
10# (t, world) = getCurrentTime world
11# st = {st & timeStamp= t, world= world}
12# (Reduct res nta, rsp, st) = ta ev st
13= case res of

14ValRes _ (Val a Stable) → (Just a, st)
15ExcRes _ → (Nothing, st)
16_ → rewrite nta
17{st & world= informClients rsp st.world}

In Clean(∗), passing around multiple unique environments explic-
itly, such as st (::*State) and world (::*World), is syntactically sup-
ported by means of the non-recursive #-let definitions. The main
task is recursively rewritten by the function rewrite. Rewriting is
triggered by an event. We abstract from the behaviour of clients
and just assume that they send events and handle responses. We as-
sume that all events are collected in a queue. In getNextEvent (line
9) the next event is fetched from this queue. If there are no events,
the system waits until there is one. The current time is stored in the
state (lines 10-11) to ensure that all tasks which update their value
in this rewrite round, will get the same time stamp. Hereafter (line
12), the main task ta is evaluated given the event and current state.
Any sub-task defined in the main task is a task as well, and can be
evaluated in the same way: just apply the corresponding task func-
tion to the current event and the current state. Rewriting stops when
the main task has delivered a stable value (line 14), or an uncaught
exception is raised (line 15). Otherwise, the main task is not fin-
ished yet, and the continuation task returned in the reduct defines
the remaining work which has to be done. First the accumulated

responses are sent to the clients (informClients, line 17) to inform
them about the latest state-of-affairs. We abstract in the semantics
from the way this is done. Rewriting continues with the continua-
tion nta and the updated state.

3.1.4 Utility Functions for Converting Tasks

The semantic function stable, when applied to a time stamp t and
value va, defines a task that has reached a stable value:

stable :: TimeStamp → a → Task a
stable t va _ st
= (Reduct (ValRes t (Val va Stable)) (stable t va) , [] ,st)

Notice that the continuation of the task stable t va in the reduct is
exactly the same functionstable t va. It is a kind of fixed point task,
which, whenever it is evaluated in some future, always returns the
same reduct (value and continuation). With this semantic function,
we can define the semantic function of the core task return:

return :: a → Task a
return va ev st=:{timeStamp= t}= stable t va ev st

Here, return has a similar role as the return function in a monadic
setting: it lifts an arbitrary value va of type a to the task domain.

Raising an exception is similar, except that the task result is
always an exception value:

throw :: e → Task e | iTask e
throw e _ st= (Reduct (ExcRes e) (throw e) , [] ,st)

With operator @? and a function f of type Value a → Value b a
task ta of type Task a can be converted to a task of type Task b:

1(@?) infixl 1 :: Task a → (Value a → Value b)
2→ Task b | iTask a & iTask b
3(@?) ta f ev st
4= case ta ev st of
5(Reduct (ValRes t aval) nta,rsp,nst)
6→ case f aval of

7Val b Stable
8→ stable t b ev nst
9bval→ (Reduct (ValRes t bval) (nta @? f) ,rsp,nst)
10(Reduct (ExcRes e) _,_,nst)
11→ throw e ev nst
12

13(@) infixl 1 :: Task a → (a → b) → Task b | iTask a & iTask b
14(@) ta f= t @? λaval→ case aval of

15NoVal = NoVal
16Val a s= Val (f a) s

First the task ta is evaluated (line 3). Exceptions raised by ta are
simply propagated (lines 10-11). The resulting task value, if any,
is converted by function f. If this results in a stable value, then the
entire task becomes stable with the current time stamp (lines 7-
8). Notice that this has as consequence that the original task ta is
no longer needed. If the result is not stable, the original task may
change its value over time, and we need to apply the conversion
function to values produced in the future as well. Therefore, the
current result bval of the conversion is stored in the reduct with the
continuation nta @? f which takes care of the conversion of the new
task values produced in the future (line 8). The derived operator
@ uses @? to transform task values only when a concrete value is
present.

3.2 Many-to-many Communication

For collaborating tasks it is important to keep each other up-to-date
with the latest developments while the work is going on. Hence
we need to be able to share information between tasks and support
many-to-many communication.
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How and where this data is stored, is completely irrelevant to the
tasks. What matters is that the data is available and that it is shared.
To achieve this abstraction we use the concept of multi-purpose
Shared Data Sources (SDS) (Michels and Plasmeijer, 2012). SDSs
are typed, abstract interfaces which can be read, written and up-
dated atomically.

A SDS can represent a shared file, a shared structured database,
reveal the current users of a system, or it can be a physical entity,
like the current time or temperature. In general, a SDS abstracts
from any shared entity that holds a value that varies over time.

:: RWShared r w

:: ROShared r :==RWShared r ()
:: WOShared w :==RWShared () w
:: Shared a :==RWShared a a

A SDS has abstract type RWShared r w. Reading its current value re-
turns a value of type r, and writing is done with a new value of
type w. Read-only shared objects (ROShared r) only support reading
as type r, write-only shared objects (WOShared w) only support writ-
ing as type w, and Shared a objects demand that the read and write
values have the same type a.

As an example, we show a few shares that are offered by the
iTask3 system to create SDSs:

sharedFile :: Path→ a → Shared a | iTask a
currentTime :: ROShared Time
currentUsers :: ROShared [User]

With (sharedFile fname content) a task is described that associates
a file identified by fname with an initial value of type a. A task
gains access to the current time and registered users with the tasks
currentTime and currentUsers.

SDSs provide many-to-many communication both between
tasks and other applications. We make a difference between exter-
nal and internal SDSs. External SDSs are abstractions of external
objects such as files and databases and can be accessed anywhere
in the application. For the internal communication between tasks
only, one can create a shared memory SDS of type Shared a which
has a limited scope. A task ta can be parameterized with a freshly
created shared memory SDS saof typeShared a that has some initial
value va using the combinator withShared va (λsa → ta):

withShared :: a → (Shared a → Task b) → Task b | iTask a

In this way, a shared memory is created which can only be accessed
by the sub-tasks defined within ta. For an example of its use, see
Section 4.

To write a value to a SDS, one can connect a task ta with a SDS
s using a function f with the combinator ta @> (f,s):

(@>) infixl 1 :: Task a
→ (Value a → r → Maybe w, RWShared r w)
→ Task a | iTask a

This enforces f to be repeatedly applied to the current task value of
ta (if any) and the currently read value of s, the result of which is the
new value (if any) that is written to s. The combinators withShared
and @>are defined in Section 3.2.1.

SDSs integrate smoothly with interactive tasks. For every ba-
sic interactive task (such as enterChoice and enterMultipleChoice) a
shared version (such as enterSharedChoice and enterSharedMultiple-
Choice) is provided that expects a SDS instead of a common value.
This is discussed in Section 3.3 in more detail. In this way tasks
can monitor and alter SDSs.

3.2.1 Semantics of Memory Shared between Tasks

To explain the semantics of SDSs, we restrict ourselves to their use
for offering shared memory between (parallel) tasks. These SDSs

cannot be accessed by external applications. Hence the semantic
definition does not need to handle concurrency and atomicity is-
sues: there is only one rewrite function (Section 3.1.3) that handles
rewriting of all tasks defined in an application.

Shared memory cells are stored in the State, in record field mem

of type [Dynamic]. Each SDS memory cell can be used to store a
value of arbitrary type, hence mem is modeled as a heterogeneous
list using Clean’s built-in dynamic types (Vervoort and Plasmeijer,
2003; van Weelden, 2007). Any shared value of any type can be
stored in a value of type Dynamic, together with a representation of
its type (using the function serialize :: a→ Dynamic | iTask a). It
can be fetched from this store any time later, using a dynamic type
pattern match that guarantees that no type errors can occur at run-
time (using the function de_serialize :: Dynamic→ a | iTask a). We
define a SDS creation function, and two functions to update a SDS:

1:: RWShared r w= { get :: *State → *(r,*State)
2, set :: w → *State → *State
3}
4

5createShared :: a → *State → *(Shared a,*State) | iTask a
6createShared a st=:{mem}
7= ({get= get,set= set},{st & mem= mem ++ [serialize a]})
8where

9idx = length mem
10get st=:{mem}= (de_serialize (mem!!idx) ,st)
11set a st=:{mem}= {st & mem= updateAt idx (serialize a) mem}
12

13updateShared :: (r → w) → RWShared r w → *State → *(w,*State)
14updateShared f sh_a st
15# (rv,st) = sh_a.get st
16# wv = f rv
17= (wv,sh_a.set wv st)
18

19updateMaybeShared :: (r → Maybe w) → RWShared r w → *State
20→ *(Maybe w,*State)
21updateMaybeShared f sh_rw st
22# (readv,st) = sh_rw.get st
23= case f readv of

24Nothing = (Nothing,st)
25Just wv = (Just wv,sh_rw.set wv st)

A SDS is represented by two access functions get and set that re-
trieve and store the required information from and to the state. Cre-
ating a shared value with createShared appends an initial serialized
value to the list of memory locations (line 7), and returns two ded-
icated get and set functions that access this new memory location.
The SDS update functions both obtain the current read value of
the SDS argument (line 15 and 22). However, updateShared always
updates the SDS with a new value, and updateMaybeShared does this
only if the argument function actually produces a new value. With
these internal functions, we can define withShared and @>:

1withShared :: a → (Shared a → Task b) → Task b | iTask a
2withShared va tfun ev st
3# (sh_a,st) = createShared va st
4= tfun sh_a ev st
5

6(@>) infixl 1 :: Task a
7→ (Value a → r → Maybe w, RWShared r w)
8→ Task a | iTask a
9(@>) ta (f,sh_rw) = update NoVal ta
10where
11update otval ta ev st
12= case ta ev st of

13(Reduct (ExcRes e) nta, _, nst)
14→ throw e ev nst
15(Reduct (ValRes ts ntval) nta,rsp,nst)
16→ ( Reduct (ValRes ts ntval) (update ntval nta)
17, rsp
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18, if (ntval==otval)
19nst
20(snd (updateMaybeShared (f ntval) sh_rw nst))
21)

withShared creates a fresh SDS for its argument task function and
applies it to obtain the proper task. The combinator @>memorizes
the previous task value (initially NoVal) and the current task contin-
uation (initially the task argument ta) (line 9 and 16). As usual, at
each event the current task continuation is evaluated (line 12). Ex-
ceptions are propagated (lines 13-14). The only difference is that
if the new task value ntval is different from the memorized task
value otval, then the SDS is updated using the argument function
of @>and the local function updateSDS (line 18). This function only
updates the SDS if a new value is computed (lines 23 and 25). In
this way unnecessary updates of shared data is avoided. Because
@> keeps checking the SDS using the most recent task value, this
leads to reactive behavior: every time the watched task is chang-
ing its value, the shared memory also gets updated conditionally, as
described above.

3.3 User Interaction

In Task-Oriented Programming user-interactions are defined as
tasks that allow a user to enter and modify a visualized value of
some type. Such an interactive task is called an editor. The type of
the value to be edited plays a central role. By using type indexed
generic functions (Alimarine, 2005; Hinze, 2000) this visualization
is generated fully automatically for any (first order) type. This way
one can focus on defining tasks, without having to deal with the
complexities of web protocols and formats.

Interaction tasks follow a model-view pattern where the value
of the task is the model and the visualization is the view. Events
in the view are processed by the TOP framework to update the
model. Conversely, when the model changes the view is updated
automatically by the TOP framework.

Interaction tasks are all alike, yet different. In this section we
define the semantics of one core editor task (Section 3.3.1). How-
ever, to improve readability TOP frameworks can offer a range of
predefined interaction tasks derived from this core editor. A few
examples from the iTask3 framework are:

enterInformation :: d → [EnterOpt m]
→ Task m | descr d & iTask m

updateInformation :: d → [UpdateOpt m m] → m
→ Task m | descr d & iTask m

viewInformation :: d → [ViewOpt m] → m
→ Task m | descr d & iTask m

updateSharedInformation :: d → [UpdateOpt r w] → RWShared r w
→ Task w | descr d

& iTask r & iTask w
viewSharedInformation :: d → [ViewOpt r] → RWShared r w

→ Task r | descr d & iTask r

With enterInformation an editor for type m is created, no initial
value needs to be given. The update-editor variants allow editing
of a given local, respectively shared, value. The view-editor vari-
ants only display the value of a given local, or shared, value.
There are many more similar editor functions predefined in the li-
brary, with names like enterChoice, enterSharedChoice, updateChoice,
updateSharedChoice, enterSharedMultipleChoice, and so on.

The overloaded argument d of class descr in these tasks is de-
scription of the task. This can be a simple string, or a more elab-
orate description. Although the generated view is certainly good
enough for rapid prototyping, more fine-grained control is some-
times desirable. Therefore, the EnterOpt, UpdateOpt and ViewOpt argu-
ments provide hooks for fine-tuning interactions.

:: ViewOpt a =∃v: ViewWith (a → v) & iTask v

:: EnterOpt a =∃v: EnterWith (v → a) & iTask v
:: UpdateOpt a b=∃v: UpdateWith (a → v) (a v → b) & iTask v

By defining a mapping, a different type v can be used to view, enter
or update information. In Section 4 we discuss in more detail how
this and other pragmatic issues are dealt with.

3.3.1 Semantics of a Task Editor

The iTask3 library provides many different editor task functions be-
cause this clarifies in the task descriptions what kind of interaction
is required, and aids in creating the desired user interface. However,
both in the implementation and the semantics all editor task variants
can be created and handled by one single function. To understand
how it works we restrict ourselves to a simplified version in which
we omit the view list details because these are just trivial mapping
functions. Before we discuss this function edit we first have a look
at the use of Events and Responses. Due to the model-view nature of
editor tasks, every user manipulation of an editor task of a value
of type a can be expressed as sending a new value new of type a

from the client to the server. If we wrap this value-type pair into a
Dynamic and include the task identification number, no say, then this
amounts to the (EditEvent no (dynamic new :: a)) event. The unique
task number is used to map a task described in the code to the cor-
responding interactive view generated in the client, and is used to
label the events and corresponding responses.

The responses of the server tell the client what interface should
be rendered to the user.

:: Response = EditorResponse EditorResponse
| ActionResponse ActionResponse / / Section 3.4.1

:: EditorResponse = { description :: String
, editValue :: EditValue
, editing :: EditMode
}

:: EditValue :== (LocalVal, SharedVal)
:: LocalVal :==Dynamic
:: SharedVal :==Dynamic
:: EditMode = Editing | Displaying

The response to an editor task executed on a client informs the
client about the latest state of the editor (EditorResponse) and con-
tains, in serialized form, the current local value to edit and a shared
value to show. With these Events and Responses, we can define the
semantics of the editor task combinator which updates a local value
of type lwhile displaying the latest value r stored in an SDS of type
RWShared r w.

1edit :: String → l → RWShared r w → (l → r → Maybe a)
2→ Task a | iTask l & iTask r
3edit descr lv sh_rw cv= newTask (edit1 lv)
4where

5edit1 lv tn t ev st
6# (nt,nlv) = case ev of

7EditEvent tid dyn
8→ if (tid==tn)
9(st.timeStamp,de_serialize dyn)
10(t,lv)
11_ → (t,lv)
12# (sr,st) = sh_rw.get st
13= ( Reduct (ValRes nt (toValue (cv nlv sr))) (edit1 nlv tn nt)
14, [(tn,EditorResponse
15{ description= descr
16, editing = Editing
17, editValue = (serialize nlv, serialize sr)
18}
19)]
20, st
21)
22where

23toValue :: Maybe a → Value a
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24toValue (Just a) = Val a Unstable
25toValue Nothing = NoVal

The edit function, and its continuation in the reduct (line 13), is
defined in terms of edit1 that keeps track of the latest local value
edited, the unique task number given to this interactive task, and
the time the latest modification has been made.

Editor tasks always have an unstable value (if any). They return
a response containing the latest information on the state of the
editor (lines 14-19 and 23-25). It includes the latest value of the
data stored in shared memory (line 12) which might have been
changed by some other task (e.g. using the @>operator). Only when
the received event is an edit event intended for this editor (the task
numbers match), the local value is updated with the new value
received from the client (line 9). The new task value is computed
using the most recent local and shared value (line 13).

3.4 Sequential Tasks

Once a task is started, it stays alive until it is no longer needed. Its
value, which might change over time, can be inspected while the
work is going on in order to decide whether or not to step to a next
task. The task step operator >>* does exactly this.

(>>*) infixl 1 :: Task a → [TaskStep a b] → Task b | iTask a
& iTask b

:: TaskStep a b
= OnAction Action (Predicate a) (NextTask a b)
| OnValue (Predicate a) (NextTask a b)
| ∃e: OnException (e → Task b) & iTask e

:: Predicate a :==Value a → Bool
:: NextTask a b :==Value a → Task b

:: Action= Action String | ActionOk | ActionCancel | ...

The step operator is similar to an ordinary monadic “bind-operator”
in the sense that it defines a sequence between two tasks. The first
operand, a task of type Task a, is evaluated. Its current task value
can be inspected to decide whether the next task can be stepped
into. If so, the evaluation of the first task is abandoned and the
application proceeds with the chosen task step. The step operator
can offer several tasks to continue with in the list, but only one task
step can be stepped into.

There are three categories of task steps: those that require the
user to actively select an action (OnAction), those that inspect the
current task value (if any) (OnValue), and those that handle excep-
tions (OnException). OnAction task steps are labeled with an Action

that is presented to the user as a button or menu item. For frequently
used action names such as Ok and Cancel, the Action data type enu-
merates a number of special combinators to enable the client to
use special icons. The predicate determines which action steps are
available at all. Selection of an action by the user causes the corre-
sponding alternative to be continued with. OnValue task steps inspect
the current task value to determine whether or not a task step can
be performed. Finally, OnException task steps handle an exception
only if their argument function matches the type of the exception.
Uncaught exceptions are propagated by>>*.

It sometimes can be the case that none of the candidate task
steps can be chosen. However, task values change over time, hence
also the candidates that can be chosen change over time.

We illustrate the use of >>*with two examples.

palindrome :: Task (Maybe String)
palindrome= enterInformation "Enter a palindrome" []

>>* [ OnAction ActionOk ifPalindrome
(return o Just o getValue)

, OnAction ActionCancel (const True)
(const (return Nothing))

]

The palindrome task prompts the user to enter a palindrome. As
usual, the user can enter a string and change it over time. With
>>* two possible action task steps are added. The user can choose
action Ok, but only when the entered string is indeed a palindrome.
If Ok is chosen,Just p is returned, where p is the entered and checked
palindrome. At any time, the user can choose Cancel, and the task
returns Nothing.

In the second example we implement a traditional monadic bind
operator >>= to demonstrate the general nature of >>*:

(>>=) infixl 1 :: Task a → (a → Task b) → Task b | iTask a
& iTask b

(>>=) ta atb= ta >>* [OnValue isStable (atb o getValue)]

Task evaluation starts with the first argument ta. Only when this
task produces a stable value a, evaluation continues with atb a. For
this reason, >>= is less suited in the domain of tasks that may not
produce a stable result.

3.4.1 Semantics of the Step Combinator

First we finalize the details of ActionResponses. The client is in-
formed by >>* about the current set of actions and whether they
are enabled or disabled. This information is collected in the
ActionResponse list and added to the response accumulator.

:: ActionResponse :== [(Action, Enabled)]
:: Enabled :==Bool

The client may react by sending an action event ActionEvent taskno
action telling which action is triggered by the user.

The complete semantic definition of >>* is given in Figure 3. It
is rather long because it needs to handle allTaskStep cases and prior-
itize them properly. However, each of these cases is rather straight-
forward. The step combinator is handled by step1 which memo-

1(>>*) infixl 1 :: Task a → [TaskStep a b] → Task b | iTask a
2& iTask b
3(>>*) ta steps= newTask (step1 ta)
4where

5step1 ta tn t ev st
6# (Reduct tval nta, rsp, st) = ta ev st
7= hd ( findTriggers tval
8++ findActions tval ev
9++ [step1‘ tval nta rsp]
10) ev st
11where

12findTriggers (ExcRes e) = catchers e ++ [throw e]
13findTriggers (ValRes _ v) = values v
14

15findActions (ValRes _ v) (ActionEvent tid act)
16| tid==tn = actions act v
17findActions _ _ = []
18

19step1‘ (ValRes _ v) nta rsp _ st
20= (Reduct no_tval (step1 nta tn t) , nrsp ++ rsp, st)
21where

22no_tval = ValRes t NoVal
23as = [(a,p v) \\ OnAction a p _←steps]
24nrsp = if (isEmpty as) [] [(tn, ActionResponse as)]
25

26catchers e= [etb e \\ OnException etb←steps ]
27values v= [atb v \\ OnValue p atb←steps | p v]
28actions act v= [atb v \\ OnAction a p atb←steps | act==a
29&& p v]

Figure 3. The complete semantic definition of >>*.

rizes the current task description in its first argument (initially task
ta, line 3, and in the reduct nta, line 20). The semantic function
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newTask (Section 3.1.2) provides it with a unique task number for
communication with the client and current time stamp t (line 3).
The current task description is evaluated first (line 6), resulting in
a new task value that is inspected to decide which task step can be
stepped into. Triggers (line 7) take priority over actions (line 8). If
no task step is applicable, then we proceed with step1 again, but
now parameterized with the calculated reduced task (line 9).

A trigger is a task step that can continue without interference of
the user. These are the OnException and OnValue task steps. In case of
an exception, an exception handler is searched for (line 12 and 26).
If none is defined, then the exception propagates (line 12). In case
of a task value, all available OnValue task steps are searched for (line
13 and 27).

The actions are selected only if the event is an action event for
this task (line 15 and 16). In that case all available OnAction task
steps are searched for that match the received action and that are
available, as determined by their predicate (lines 28-29).

Finally, when no task step can be selected a reduct is made by
step1‘ that waits for a new event (line 20). All actions are collected
in the response accumulator (line 23 and 24).

3.5 Parallel Tasks

Tasks can often be divided into parallel sub tasks if there is no
specific predetermined order in which the sub tasks have to be done.
It might not even be required that all sub tasks contribute sensibly to
a stable result. All variants of parallel composition can be handled
by a single parallel combinator:

parallel :: d → [(ParallelTaskType, ParallelTask a)]
→ Task [(TimeStamp, Value a)] | descr d & iTask a

:: ParallelTaskType= Embedded | Detached ManagementMeta
:: ManagementMeta = { worker :: Maybe User

, role :: Maybe Role
, ...
}

:: ParallelTask a :==SharedTaskList a → Task a
:: SharedTaskList a :==ROShared (TaskList a)
:: TaskList a= { state :: [Value a]

, ...
}

We distinguish two sorts of parallel sub-tasks: Detached tasks get
distributed to different users and and Embedded tasks are executed
by the current user. The client may present these tasks in differ-
ent ways. Detached tasks need a window of their own while em-
bedded tasks may by visualized in an existing window. With the
ManagementMeta structure properties can be set such as which worker

must perform the sub-task, or which role he should have.
Whatever its sort, every parallel sub-task can inspect each oth-

ers progress. Of each parallel sub-tasks its current task value and
some other system information is collected in a shared task list.
The parallel sub-tasks have read-only access to this task list. The
parallel combinator also delivers all task values in a list of type
[(TimeStamp,Value a)] . Hence, the progress of every parallel sub-
task can also be monitored constantly from the “outside”. For in-
stance, a parallel task can be monitored with the step combinator
>>* to decide if the parallel task as a whole can be terminated be-
cause its sub tasks have made sufficient progress for doing the next
step. It is also possible to observe the task and convert its value to
some other type using the conversion operator @? (Section 3.1.4).

For completeness, we remark that the shared task list is also
used to allow dynamic creation and deletion of parallel sub-tasks.
We do not discuss this further in this paper.

In the iTask3 library parallel is used to predefine several fre-
quently used task patterns. In Section 2.2 the-||- combinator was
used to start to tasks in parallel.

(-||-) infixr 3 :: Task a → Task a → Task a | iTask a
(-||-) a b
= parallel () [(Embedded,const a) , (Embedded,const b)] @? first

where
first NoVal= NoVal
first (Value vs _)
= hd ( [v \\ (_,v=:(Val _ Stable))←vs]

++ [v \\ (_,v=:(Val _ _))←sortBy newer vs]
++ [NoVal]
)

newer (t1,_) (t2,_) = t1> t2

The first function inspects the progress of both parallel sub-tasks
to determine the task value of the composition. The first sub-task to
produce a stable task value turns the composition into a stable task
with that value. If no sub-task has produced a stable value, then the
most recent unstable task value, if any, is the observable result, or
no task value is observable at all.

3.5.1 Semantics of the Parallel Combinator

In the semantic description we ignore the meta information as-
signed to detached tasks and therefore do not distinguish embedded
tasks from detached tasks. As another non-essential simplification,
we define the shared task list as a read-write SDS instead of a read-
only SDS. The shared task list is a finite map from process ids to
task reducts:

:: SharedTaskList a :==RWShared (TaskList a)
:: TaskList a :== [(Pid a, Reduct a)]
:: Pid a :==Int

The complete semantic definition of parallel is given in Figure 4.
The semantic function parallel‘ (lines 15-26) defines the purpose
of the parallel combinator: to evaluate each and every sub-task
(line 18) until either an exception has been thrown (line 19), or
all sub-tasks have become stable (lines 23-24). While this is not the
case, parallel‘ proceeds to rewrite to itself (line 25-26).

Both parallel‘ and its sub-tasks require access to their progress,
which is stored in the shared task list which is created as the first
step of the parallel combinator (line 4 and lines 7-13). Initially, the
task list consists of all initial parallel sub-tasks that have access to
the shared task list.

The semantic functions evalParTasks and evalParTask define the
evaluation of the parallel sub tasks: evalParTasks collects the current
list of sub-tasks (line 31) and applies evalParTask to each and every
sub-task (line 32). Evaluation of a sub-task (line 39) might result
in an exception (line 41), in which case the exception is propagated
throughout the evaluation of all sub-tasks (lines 44-45). If a sub-
task does not result in an exception, then its new reduct is stored in
the shared task list (line 42), thus allowing the other sub-tasks to in-
spect its progress (updateFM (pid,newr) updates any existing element
(pid,_) in the shared task list with (pid,newr)). The responses of the
evaluated sub-task are collected and returned (line 43).

4. Practical TOP

Although the TOP paradigm adopts functional programming’s em-
phasis of what over how, some pragmatic issues remain unavoid-
able in practical TOP programming. In this section we discuss prag-
matics issues that we encountered in the implementation of the TOP
concept in the iTask3 toolkit, and show examples of iTask3 pro-
grams to illustrate its use in real-world applications.

4.1 Pragmatic Issues

Custom Interaction: TOP programs focus on defining decompo-
sitions of tasks without worrying how interactions of basic tasks
are implemented by the TOP framework. The underlying imple-
mentation has to take care of that. The iTask3 system follows the
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1parallel :: [ParallelTask a]
2→ Task [(TimeStamp,Value a)] | iTask a
3parallel ptas ev st
4# (stt,st) = createTaskList ptas st
5= parallel‘ stt ev st
6

7createTaskList :: [ParallelTask a]
8→ *State → *(SharedTaskList a,*State) | iTask a
9createTaskList ptas st=:{timeStamp = t}
10# (stt,st) = createShared [] st
11= (stt,stt.set [ (pid,Reduct (ValRes t NoVal) (pta stt))
12\\ pta←ptas & pid← [0..]
13] st)
14

15parallel‘ :: SharedTaskList a
16→ Task [(TimeStamp,Value a)] | iTask a
17parallel‘ stt ev st
18= case evalParTasks stt ev st of

19(Left (ExcRes e) ,st) = throw e ev st
20(Right rsp,st)
21# (values,st) = get_task_values stt st
22# maxt = foldr max 0 (map fst values)
23| all (isStable o snd) values
24= stable maxt values ev st
25| otherwise = (Reduct (ValRes maxt (Val values Unstable))
26(parallel‘ stt) ,rsp,st)
27

28evalParTasks :: SharedTaskList a → Event→ *State
29→ *(Either (TaskResult a) Responses,*State) | iTask a
30evalParTasks stt ev st
31# (tt,st) = stt.get st
32= foldl (evalParTask stt ev) (Right [] ,st) tt
33

34evalParTask :: SharedTaskList a → Event
35→ *(Either (TaskResult a) Responses,*State)
36→ (Pid a,Reduct a)
37→ *(Either (TaskResult a) Responses,*State)
38evalParTask stt ev (Right rsp,st) (pid,Reduct _ ta)
39# (newr,nrsp,st) = ta ev st
40# (Reduct ntval nta) = newr
41| isExcRes ntval = (Left ntval,st)
42# (_,st) = updateShared (updateFM (pid,newr)) stt st
43= (Right (nrsp ++ rsp) ,st)
44evalParTask _ _ (Left e,st) _
45= (Left e,st)
46

47get_task_values :: SharedTaskList a → *State
48→ *([(TimeStamp, Value a)] ,*State)
49get_task_values stt st
50# (tt,st) = stt.get st
51= ([(t,val) \\ (_,Reduct (ValRes t val) _)←tt] ,st)

Figure 4. The complete semantic definition of parallel.

semantic definitions, with additional support for customization for
obtaining practical applicable applications. The interactive applica-
tions that are generated by default by the system suffice for rapid
prototyping. However, aesthetic and ergonomic properties of these
interactions affect the ease of use and attractiveness of a system.
For example, the task of choosing a file from a file system is per-
formed more easily by navigating a tree structure than by selecting
an item from a long list of all files.

To allow for such task specific optimization, all interaction tasks
in the iTask3 framework have a views parameter, in which optional
mappings between the task’s domain and another arbitrary domain
can be defined. The library provides types that represent abstract
user interface controls with which customized interactions can be
composed. Here is an example (see Figure 5):

Figure 5. A very simple text editor

1:: Statistics= { lineCount :: Int, wordCount :: Int }
2derive class iTask Statistics
3

4simpleEdit :: Task Note
5simpleEdit= withShared (Note "") edit
6where

7edit note
8= updateSharedInformation "Enter text:" [] note
9-||-
10viewSharedInformation "Statistics:" [ViewWith stat] note
11<<@ horizontal
12

13stat (Note txt) = { lineCount = length lines
14, wordCount = length words
15}
16where lines = split Newline txt
17words = split " " (replaceSubString Newline " " txt)

By default, if a value of the predefined type Note is used in an iTask3
editor, a text box is presented to the user on the client to enter text.
In simpleEdit we create a shared memory for a value of this type
Note with initial value Note "" and we define two interactive tasks
on this shared value. The first task allows the user to update the
initial text (line 8), while the second gives a view on the shared text
that is fine-tuned with ViewWith which, in this case, converts the text
into a value of type Statistics. As a result, while entering text, the
user sees the corresponding statistics.

Customized Layout: For task compositions a similar need for
customization exist. Depending on the composition, it may be more
appealing or easier to use when tasks are divided over tabs or
windows than when tasks are shown side-by-side. To customize
layout, the iTask3 framework provides an annotation operator (<<@)
that can be used to annotate tasks with custom layout functions
or post-layout processing functions. Such functions combine a set
of abstract GUI definitions into a single definition. By default a
heuristic layout function is used to provide a sensible default. Post-
processing functions modify a GUI definition after a task is layed
out. Such modifications are for example changing its size, adding
margins or changing to a horizontal layout as is done with the
<<@ horizontal annotation in the simple editor. It is defined as:

horizontal= AfterLayout (tweakUI (setDirection Horizontal))

Localization: Another pragmatic aspect one may need to deal
with is localization. Because task definitions contain many prompts,
hints and other texts, one needs to deal with localization of such
texts without compromizing the readability of task definitions. Fur-
thermore, localization may also be required on the task level. To
comply with local law and regulations, different task definitions
may have to be used in different countries. The iTask3 framework
does not offer any special support for localization, but one can make
use of the standard modular structure of Clean to create different
local versions.

Third Party Formats and Protocols: To integrate TOP applica-
tions with other applications, the gap between the domain of tasks
and the formats or protocols required to interact with these systems
must be bridged. With TOP one does not escape writing the pars-
ing, formatting and communication code that is necessary for such
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integrations, but it can be separated from the application code by
moving it to task libraries.

4.2 Examples

A Generic Work List: A major leap in the development of TOP
as a general paradigm was the insight that, from a user’s point of
view, interaction with a “Work List”, in which users can work on
tasks assigned to them, is actually part of the work that has to be
done. Work list handling e.g. as offered by an email application or
a workflow system is commonly hard coded in the systems used. In
iTask3 this functionality is defined in the system itself as “just” any
other task. Figure 6 shows the generic work list task we offer as a

Figure 6. A generic WFMS Work List

standard example. In the left panel a tree of tasks that can be started
is displayed. The tasks to do are displayed in the upper-right pane,
similar to an inbox in a email application. The user can work on
several tasks at the same time in the lower right pane, by opening
them in separate tabs. This complete work list application is defined
in less than 200 lines of TOP code.

The Incidone Incident Coordination Tool: The Coast Guard
case study (Jansen et al., 2010; Lijnse et al., 2011) not only fu-
eled the refinement of the task concept and the TOP paradigm, it
also lead to the development of the Incidone tool (Lijnse et al.,
2012). A preview of this tool for supporting Coast Guard opera-
tions is shown in Figure 7. It is being developed using the iTask3

Figure 7. The Incidone Tool

framework to illustrate the use of TOP for crisis management appli-
cations. In this tool immediate information sharing between team
members working together is crucial to handle incidents properly.

5. Related Work

The TOP paradigm emerged during continued work on the iTask
system. In its first incarnation (Plasmeijer et al., 2007), iTask1, the
notion of tasks was introduced for the specification of dedicated
workflow management systems. In iTask1 and its successor iTask2
(Lijnse and Plasmeijer, 2010), a task is an opaque unit of work
that, once completed, yields a result from which subsequent tasks
can be computed. When deploying these systems for real-world
applications, viz. in telecare (van der Heijden et al., 2011) and
modeling the dynamic task of coordinating Coast Guard Search
and Rescue operations (Jansen et al., 2010; Lijnse et al., 2011) we
experienced that this concept of task is not adequate to express the
coordination of tasks where teams constantly need to be informed
about the progress made by others. The search for better abstraction
has resulted in the TOP approach and task concept as introduced in
this paper.

Task-Oriented programming touches on two broad areas of re-
search. First the programming of interactive multi-user (web) ap-
plications, and second the specification of tasks.

There are many languages, libraries and frameworks for pro-
gramming multi-user web applications. Some academic, and many
more in the open-source and proprietary commercial software mar-
kets. Examples from the academic functional programming com-
munity include: the Haskell cgi library (Meijer, 2000); the Curry
approach (Hanus, 2001); writing xml applications (Elsman and
Friis Larsen, 2004) in SMLserver (Elsman and Hallenberg, 2003);
WashCGI (Thiemann, 2002); the Hop (Loitsch and Serrano, 2007;
Serrano et al., 2006) web programming language; Links (Cooper
et al., 2006) and formlets (Cooper et al., 2007). All these solutions
address the technical challenges of creating multi-user web applica-
tions. Naturally, these challenges also need to be addressed within
the TOP approach. The principal difference between TOP and these
web technologies is the emphasis on using tasks both as modeling
and programming unit to abstract from these issues, including co-
ordination of tasks that may or may not have a value.

Tasks are an ambiguous notion used in different fields, such
as Workflow Management Systems (WFMS), human-computer in-
teraction, and ergonomics. Although the iTask1 system was influ-
enced and partially motivated by the use of tasks in WFMSs (van
der Aalst et al., 2002), iTask3 has evolved to the more general TOP
approach of structuring software systems. As such, it is more sim-
ilar in spirit to the WebWorkFlow project (Hemel et al., 2008),
which is an object oriented approach that breaks down the logic
into separate clauses instead of functions. Cognitive Task Analy-
sis methods (Crandall et al., 2006) seek to understand how peo-
ple accomplish tasks. Their results are useful in the design of soft-
ware systems, but they are not software development methods. In
Robotics the notion of task and even the “Task-Oriented Program-
ming” moniker are also used. In this field it is used to indicate a
level of autonomy at which robots are programmed. To the best of
our knowledge, TOP as a paradigm for interactive multi-user sys-
tems, rooted in functional programming is a novel approach, dis-
tinct from other uses of the notion of tasks in the fields mentioned
above.

6. Conclusions and Future Work

In this paper we introduced Task-Oriented Programming, a para-
digm for programming interactive multi-user applications in a pure
functional language. The distinguishing feature of TOP is the abil-
ity to concisely describe and implement collaboration and complex
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interaction of tasks. This is achieved by four core concepts: 1) Tasks
observe intermediate values of other tasks and react on these values
before the other tasks are completely finished. 2) Tasks running in
parallel communicate via shared data sources. Shared data sources
enable useful lightweight communication between related tasks.
By restricting the use of shared data sources we avoid an overly
complex semantics. 3) Tasks interact with users based on arbitrary
typed data, the interface required for this type is derived by type
driven generic programming. 4) Tasks are composed to more com-
plex tasks using a small set of combinators. The step combinator
>>* subsumes the classic monad bind operator >>=. The presented
operational semantics specifies the constructs unambiguously. The
development of this semantics was an important anchor point dur-
ing the design of TOP.

TOP is embedded in Clean by offering a newly developed
iTask3 library. We have used TOP successfully for the develop-
ment of a prototype implementation of a Search and Rescue deci-
sion support system for the Dutch Coast Guard. The coordination
of such rescue operations requires up-to-date information of sub-
tasks, this is precisely the goal of TOP. In collaboration with Dutch
industry we started to investigate and validate the suitability of the
TOP paradigm to handle specific complex real world distributed
application areas.
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