
Task-Parallel Programming on NUMA Architectures�

Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey

JARA, RWTH Aachen University, Germany
Center for Computing and Communication

{terboven,schmidl,cramer,anmey}@rz.rwth-aachen.de

Abstract. The multicore era has led to a renaissance of shared memory paral-
lel programming models. Moreover, the introduction of task-level parallelization
raises the level of abstraction compared to thread-centric expression of paral-
lelism. However, tasks might exhibit poor performance on NUMA systems if
locality cannot be controlled and non-local data is accessed.

This work investigates various approaches to express task-parallelism using
the OpenMP tasking model, from a programmer’s point of view. We describe
and compare task creation strategies and devise methods to preserve locality on
NUMA architectures while optimizing the degree of parallelism. Our proposals
are evaluated on reasonably large NUMA systems with both important applica-
tion kernels as well as real-world simulation codes.

1 Introduction

Recent multi-core architectures and the availability of cost-efficient two- and quad-
socket compute nodes with large memory led to an increasing interest in shared memory
programming models, both in combination with MPI or as the sole source of
parallelism. The increasing number of cores imply a non-uniform memory access
(NUMA) to provide appropriate memory bandwidth, even on commodity x86 archi-
tectures. In a NUMA architecture, the memory is partitioned and the latency and band-
width of a memory access depend on the distance to the core from which the access oc-
curs. The thread-centric expression of parallelism, like worksharing in OpenMP, works
fine on such machines for well-structured code and evenly balanced algorithms. How-
ever, this has been found unsuitable to be applied to certain types of codes, such as
recursive algorithms, unbounded loops, or irregular problems in general. Task-level par-
allelism provides solutions for these applications and promises to provide a high level
abstraction for the programmer.

While threads can be bound to cores, or to a subset of the machine in general, re-
cent parallelization paradigms embracing tasks do not offer means to control by which
thread and on which core tasks are executed. Thus, they might exhibit poor perfor-
mance on NUMA systems if tasks are executed on a NUMA node that does not contain
the data being consumed during execution, and non-local data has to be accessed. As
OpenMP [11] has become the de-facto standard for shared memory parallelization in

� Parts of this work were funded by the German Federal Ministry of Research and Education
(BMBF) under Grant No. 01IH11006.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 638–649, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Task-Parallel Programming on NUMA Architectures 639

HPC applications, we concentrate on the OpenMP tasking model in this work. By ob-
serving how current implementations work and execute tasks, we derive strategies for
task-parallel programming that take the data allocation on NUMA architectures into
account. We show that our patterns are successful for real-world applications by com-
paring task-parallel and thread-centric implementations on current NUMA systems.

This paper is structured as follows: Chap. 2 summarizes related work. Chap. 3 first
emphasizes our expectations on the tasking model compared to a thread-centric view of
parallelism and then explains the various patterns to express parallelism with tasks. In
Chap. 4 we discuss our observations on the behavior of task-parallel kernels on NUMA
architectures. In Chap. 5 we report our findings applying the presented patterns to real-
world applications. Chap. 6 contains our conclusions and advice to programmers.

2 Related Work

Tasking [2] has been introduced in OpenMP 3.0 to allow for the expression and ex-
ploitation of unstructured parallelism. In order to extend the OpenMP standard, a ref-
erence implementation has to be provided for every new feature, which in the case of
tasking was done at the Barcelona Supercomputing Center [15]. It was shown early
on that OpenMP tasking is able to deliver comparable performance to OpenMP work-
sharing implementations [3]. While we also compare task-parallel implementations to
worksharing, we additionally focus on the programmer’s view of how to express task-
parallelism especially on NUMA architectures. We introduce patterns for data setup/ini-
tialization as well as the actual computation and carry our findings from kernels to
real-world application codes.

Several articles deal with the efficient scheduling of OpenMP tasks on multi-core
multi-socket (NUMA) machines [10,4]. The main challenge is to reflect the system’s
memory hierarchy in the execution of the OpenMP tasks, while little or no knowledge is
present of how task are being executed inside the application. Furthermore, task-stealing
has to be applied in order to perform load balancing, which means the assignment of
tasks from an overutilized thread to an underutilized thread. However, if tasks are moved
to a different NUMA node, data of ’stolen’ tasks remain on the NUMA node of the
initialization, which then leads to remote memory accesses during task execution, as the
Linux operating system does not perform any auto-migration of memory pages. In our
work, we exploit knowledge of the implementation internals to present task generation
patterns that allow task scheduling while maintaining data locality.

3 Patterns for Task-Parallelism

Two performance-critical aspects of shared memory parallel programming are load bal-
ancing and data locality. While the execution of iterations in loop-level parallelization
can be controlled by schedule clauses and the threads in the team executing the work-
sharing construct can be bound to cores, the behavior of tasks is much less predeter-
mined by the OpenMP specification. It is specified that a task may be picked up by
any thread of the current team and that tied tasks may be suspended at so-called
task scheduling points, untied tasks at every point in time. These restrictions allow

640 C. Terboven et al.

0

50

100

150

200

0 5 10 15 20 25 30

%
 o

f a
ve

ra
ge

 w

or
k

pe
r t

hr
ea

d

Thread Numbers

dynamic static tasks single producer tasks parallel producer

Fig. 1. Distribution of loop iterations to threads with linearly increasing load

OpenMP implementors to schedule tasks in many different ways. For example, execut-
ing all tasks by the creating thread immediately after encountering the task construct
would fullfil the specification, but result in sequential execution. Pushing tasks to mul-
tiple task queues and applying work stealing approaches is a similarly valid way to han-
dle tasks. The user has no direct influence on the scheduling decisions of the OpenMP
runtime, but the scheduling has significant influence on the efficiency of a task-parallel
program.

In general, there are two different patterns of task creation:

– single-producer multiple-executors: This pattern is popular for that it often requires
little changes to code and data structures. The single construct ensures that a
code region is executed by one thread only and thus avoids data races. The thread
executing the single construct is responsible for creating all tasks of appropriate
task chunk size (tcs) and all data necessary for the computation inside the tasks
can be packed up at creation time using the firstprivate clause. The implicit
barrier at the end of the single construct waits for the termination of all tasks.

– parallel-producer multiple-executors: A parallel OpenMP for worksharing con-
struct loops over the outer iteration space with an increment specified as task chunk
size (tcs). In every iteration a task is spawned, performing the iteration over a range
of size tcs. Thus, all threads of the team executing the worksharing construct cre-
ate multiple tasks in parallel. The implicit barrier at the end of the for construct
waits for the termination of all tasks. This pattern can also be expressed without
any worksharing construct at all, as the content of a parallel region is executed by
all threads of the corresponding team and thus a task construct encountered by all
threads creates multiple tasks. Then the synchronization is performed at the end of
the parallel region, or by appropriate task synchronization contructs or an explicit
barrier.

Task-Parallel Programming on NUMA Architectures 641

Load Balancing. In order to investigate the load balancing capabilities of tasks, we
created a simple test program and used the Intel C/C++ Compiler version 12.1.2. In this
program, a loop over an array with 128,000 elements has been parallelized with a for
worksharing construct and also with two task-parallel approaches for a direct compar-
ison. In every iteration an array element is filled with a constant value. To investigate
the load balancing behavior, every array is an array itself, and the length of the inner
arrays is increasing linearly. In our experiments we record which thread performed the
work on the elements of the outer array, resulting in a mapping of work to threads. Fig. 1
shows the distribution of iterations for the parallelforworkshare variant with static
and dynamic loop schedules as well as for the task-parallel executions. All measure-
ments were carried out using 32 threads on the system described in Chap. 4, consisting
of four NUMA nodes with 32 physical cores in total. As expected, with a static
schedule the work is distributed unevenly over the threads, resulting in load imbalance.
The linearly increasing load per iteration is the ’worst case’ situation for this schedule.
It assigns 128,000 its

32 threads = 4000 iterations to every thread in which the first iterations are
computationally much less expensive than the last chunk of iterations. The dynamic
schedule distributes the load much better over all threads, which then execute between
87% and 120% of the average work. In the task-parallel single-producer version, the
first thread executes nearly no work, since it is responsible for creating all the tasks. But
the distribution of work to the other 31 threads is as good as in the dynamic schedule
variant. The parallel-producer scheme reaches a nearly even distribution of work over
all threads, close to the optimal load balancing.

Data Affinity. We also aim to understand the behavior of worksharing and task con-
structs with regard to data locality, taking the same array of arrays as described above
for our experiment setup. The data has been distributed among the NUMA nodes using
a chunk size of 4000 elements of the outer array, meaning the first 4000 elements (in-
cluding the inner arrays) reside on the NUMA node that thread 0 has been bound to. The
next chunk is on the NUMA node of thread 1, and so on. Again we recorded for every
thread the number of iterations it worked locally and remotely, the averages work (num-
ber of updates of an inner array element) are shown in Table 1. For the static sched-
ule only local accesses occur since the distribution of array elements among the threads
is exactly the same for both the initialization and the iteration phases. The dynamic
schedule and the task-parallel single-producer scheme, which both show good load bal-
ancing, lead to only about 3% of local accesses, because for both the distribution of
iterations or task, respectively, to threads is undeterministic and obviously is not the
same for the initialization and iteration phases. The parallel-producer scheme achieves
a local access rate of about 80%. Note that due to the uneven distribution of data over
NUMA nodes, ’perfect’ data locality would imply weak load balancing. The parallel-
producer pattern delivers the best compromise between load balancing and locality.

We also investigated how to employ tasks in the initialization of a sparse matrix
structure, as it appears for example in CG-type solvers, comparing to the common prac-
tice of initializing the data in a parallel loop over the matrix rows [14]. We compared
four different initialization strategies: using just one thread (serial), a static schedule
with a for workshare construct, the numactl tool to enforce a round robin page dis-
tribution over NUMA nodes when the actual initialization is performed by one thread

642 C. Terboven et al.

Table 1. Average percentage of local and remote data accesses

local iterations remote iterations
for worksharing with static schedule 100% 0%
for worksharing with dynamic schedule 3.06% 96.94%
tasks-parallel single-producer 3.10% 96,90%
tasks-parallel parallel-producer 79.51% 20.49%

only, and finally tasks to initialize the data row-wise. Again, for the tasking variants we
distinguish between the single- and the parallel-producer patterns. Fig. 2 shows that the
static schedule, the round robin and the parallel-producer strategies result in a reg-
ular page distribution while for a serial initialization the complete memory is located
on one NUMA node. However, the results also show that the single-producer pattern
leads to an irregular distribution of pages, in which most are allocated on the ’single’
node. This would lead to a serious performance degradation. The reason is that the ini-
tialization tasks are computationally very cheap and short-lived and the other threads
on NUMA node 0 - besides the one performing the task creation - execute tasks at a fast
enough pace. Task stealing does not occur in a noteworthy amount from other NUMA
nodes.

0%
25%
50%
75%

100%Node 3
Node 2
Node 1
Node 0

Fig. 2. Page distribution over the NUMA nodes after the matrix initialization

Multiple Levels of Parallelism. Composability of software components is not well-
supported in OpenMP, i.e. worksharing constructs may not be nested within the dy-
namic extend of one single parallel region. Tasks can be nested inside other tasks and a
worksharing construct as well, this particularly opens the opportunity for the parallel-
producer pattern. The nesting of parallel regions has been supported by OpenMP early
on, but only few application success stories have been reported [1]. Furthermore, nested
parallel regions introduce several problems in general and on NUMA architectures in
particular: (1) the thread teams for the inner parallel region are not guaranteed to be the
same for two consecutive calls [5], thus data affinity cannot be maintained; and (2) the
end of the inner parallel region always implies a barrier. These problems do not occur

Task-Parallel Programming on NUMA Architectures 643

with nested tasks, especially with the techniques to create tasks we discussed so far. In
Chap. 5 we show that for the FIRE code an implementation with nested tasks clearly
outperforms an implementation with nested parallel regions.

Summing Up. We have shown that both task-parallel implementations perform the
load balancing as well as OpenMP’s for workshare with the dynamic schedule, but
the parallel-producer pattern provides significantly better data locality. Tasks created in
a thread bound to a particular NUMA node are picked up for execution on the same
NUMA node, so that data locality is maintained if the same pattern is used during data
initialization and the actual computation. This observation complies with the sched-
ule strategies expressed in articles on OpenMP task implementations, as outlined in
Chap. 2. Furthermore, one can expect the parallel-producer pattern to scale better than
the single-producer in case of many small tasks, since the task creation occurs in parallel
instead of being serialized. This will be analyzed in Chap. 4.

4 Task Behavior on NUMA Architectures

In this chapter we examine the behavior of two kernels, which both employ tasks, on
a NUMA architecture. All measurements in this chapter have been performed on a
bullx s6010 compute node, equipped with four Intel Xeon X7550 processors running
at 2.0 GHz, offering 32 physical cores and 64 logical cores with hyper-threading, and
256 GB of main memory. The Intel Quickpath Interconnect (QPI) used to connect the
four sockets with each other and with I/O facilities creates a system topology with four
NUMA domains, with every NUMA node being separated from any other by just one
hop. The system is running Scientific Linux 6.1.

4.1 STREAM

The first set of experiments has been carried out with the STREAM [9] benchmark. We
picked this particular kernel to investigate effects of task-parallel implementations on
NUMA architectures for two reasons: (1) if the data initialization is not done in the right
way, the performance will be degraded significantly, as the computation performed in
the individual kernels is memory-bound; and (2) the naive worksharing implementation
delivers optimal performance if the same loop schedule is used during the data initial-
ization and the actual computation. For the sake of brevity we only discuss results from
the triad (daxpy) operation, since they are consistent with the other ones.

In Fig. 3 we compare the original parallel STREAM implementation referred to as
workshare: static-init for-loop to several task-parallel versions. The original parallel
version employs an OpenMP forworksharing construct with a static schedule both
during data initialization and the actual computation, meaning that for t threads the
arrays are divided into t parts of approximately equal size. Given four NUMA nodes
in the system and a scatter thread binding, meaning threads are spread as far apart as
possible, t

4 threads will be bound to each NUMA node. This results in an even data
distribution over all NUMA nodes in the system. And as the computation is performed
in the same manner, the number of remote accesses should be minimal. The arrays

644 C. Terboven et al.

Fig. 3. STREAM triad operation: worksharing vs. task-parallel variants

have a dimension of 256, 435, 456 double elements, which results in 1.96 GB of
memory consumption per array, or 5.87 GB of total kernel size in the triad operation.
Although the system offers 64 GB of memory per NUMA node, this kernel size is much
larger than the cumulated cache size and thus we achieve reliable measurements of the
memory bandwidth of the system. We implemented the following task-parallel variants,
in all three the task chunk size (tcs) refers to the number of iterations grouped together
in a single task:

– tasks: static-init single-producer: The data initialization is performed in the same
way as in the original parallel version. The generation of tasks is performed by one
thread only within a single construct (single-producer pattern).

– tasks: static-init parallel-producer: Again the data initialization is performed in
the same way as in the original parallel version, but now the creation of tasks is
performed in parallel (parallel-producer multiple-executors pattern).

– tasks: task-init parallel-producer: In this version both the data initialization and the
computation is performed task-parallel by applying the same pattern to both code
regions.

The results in Fig. 3 show that the worksharing version outperforms the best task-
parallel version by just 3 %. The two task-parallel variants employing the parallel-
producer pattern deliver approximately the same performance, as both distribute the
data in an optimal fashion over the NUMA nodes. The single-producer tasking version
clearly suffers from two effects: (1) the runtime cannot maintain data affinity, as all task
are created from a single NUMA node and the work-stealing will just pick arbitrary
tasks from the queue; and (2) the single thread responsible for creating the tasks cannot
completely keep the other threads executing the tasks busy. The parallel-producer pat-
tern has to be used in the data initialization and the computation so that the OpenMP
runtime is able to maintain data affinity. If only one thread creates all the tasks, the
runtime’s task-stealing mechanism cannot take the data distribution into account dur-
ing the ’stealing’ and thus the performance on NUMA systems obviously suffers. As
with the results discussed in the previous chapter, the task chunk size does not have a

Task-Parallel Programming on NUMA Architectures 645

significant influence on the performance as long as enough tasks are spawned to gen-
erate enough parallelism and as long as the work per task is computationally expensive
enough compared to the task creation and scheduling overhead.

4.2 Sparse-Matrix-Vector-Multiplication in a CG-Method

While STREAM served our purpose as a simple benchmark indicating fine differences
in the memory access pattern, the Sparse-Matrix-Vector-Multiplication (SMXV) in a
CG-Method [8] much more resembles a real-world compute kernel as part of many
PDE solvers. Depending on the problem the matrix for the system of linear equations
can be very irregular. In this case the sparse matrix vector product is a typical example of
the importance of adequate load balancing. Especially in cases where the optimal work
distribution cannot be calculated in advance, we expect task-parallel implementations to
help avoiding performance issues. On the one hand the programmer has to ensure that a
sufficient number of tasks is used to avoid load imbalance, on the other hand too many
tasks introduce additional overhead. In our CG implementation all vector operations
and the dot-product are parallelized with OpenMP for constructs. Only the SMXV is
parallelized with tasks. The work is distributed by chunks of rows and the chunk size is
the same for each task, calculated as

chunk size(tasks) =

{ �N/tasks�, if N%tasks = 0
�N/tasks�+ 1, otherwise

(1)

where N is the dimension of the square matrix and tasks the number of tasks. The
matrix used here represents a computational fluid dynamics problem (Fluorem/HV15R)
and is taken from the University of Florida Sparse Matrix Collection [6]. The dimension
is N = 2, 017, 169 and the number of nonzero values is nnz = 283, 073, 458, which
results in a memory footprint of approximately 3.2 GB. As shown in Fig. 4 the sparsity
pattern is slightly unbalanced regarding a static distribution.

Fig. 5 shows the SMXV performance when executing 1000 CG iterations. It com-
pares the effect of different initialization strategies for both tasking patterns introduced
in Chap. 3. The page distribution after the initialization of the sparse matrix correlates
with the performance results of this experiment (see Fig. 2). As shown in Fig. 5(a), we
reach a peak performance of 10 GFLOPS for the given workload. It also shows that
using a static schedule for the data initialization is much better than using serial or a
serial-producer task initialization. However, the performance for the static schedule
decreases for more than 256 tasks while the random initialization still works well for
8192 tasks, which translates to a chunk size of 247 rows. It is obvious that the num-
ber of tasks is very important to reach the best performance. If too few tasks are used
the load imbalance decreases the performance slightly. The overhead for the use of too
many tasks dominates the runtime if chunks consists of only a few rows. Fig. 5(b) shows
that for the parallel-producer pattern the peak performance reaches almost 13 GFLOPS.
The performance of the round-robin initialization (10 GFLOPS) is comparable to the
performance of the single-producer case, but the performance decline only occurs for

646 C. Terboven et al.

Fig. 4. Sparsity pattern of the matrix used in the CG-method

0
2
4
6
8
10
12
14

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48
57
6

20
17
16
9

G
FL

O
PS

Tasks

.

(a) Single-Producer Pattern

0
2
4
6
8
10
12
14

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48
57
6

20
17
16
9

G
FL

O
PS

Tasks

.

(b) Parallel-Producer Pattern

Fig. 5. Performance of the SMXV kernel within the CG-method

more than 100,000 tasks and is not that significant. This proves that the task creation
overhead in the OpenMP runtime is ’parallelized’ in the parallel-producer pattern. The
fact that results for the static schedule and the parallel-producer variants are better
shows that the programmer has a much better influence on data locality by using this
pattern.

5 Application Case Studies

In order to prove the applicability of the patterns and strategies we discussed so far,
we employed them to two real-world application codes. In this chapter we show that
our tasking implementation of TrajSearch reaches the same performane as the state of
the art worksharing implementation, and for the FIRE code it event outperforms the

Task-Parallel Programming on NUMA Architectures 647

corresponding worksharing variant. For all performance experiments in this chapter we
use a Bull BCS system consisting of four bullx s6010 system as described in Chap. 4.
The four systems are equipped with Bull’s proprietary BCS cards providing a cache-
coherent and high performant interconnect, creating a 128 core system with 16 NUMA
nodes.

5.1 Trajectory Search

TrajSearch is a code to investigate turbulences which occur during combustion. It is a
post-processing code for dissipation element analysis developed by Peters and Wang [12]
from the Institute for Combustion Technology1 at the RWTH Aachen University. It
decomposes a highly resolved 3D turbulent flow field obtained by Direct Numerical
Simulation (DNS) into non-arbitrary, space-filling and non-overlapping geometrical el-
ements called ’dissipation elements’. Starting from every grid point in the direction of
ascending and descending gradient of an underlaying diffusion controlled scalar field,
the local maximum and minimum point are found. A dissipation element is defined as
a volume from which all trajectories reach the same minimum and maximum point.

Every trajectory can be investigated independently from the others in parallel. A
version of this code was parallelized with traditional worksharing and a different version
has been parallelized with tasks. Fig. 6 (left) shows the performance results of tests done
with both versions on the NUMA system. Due to the long execution time, we restricted
our experiments to at least 16 threads. The static tests with the for worksharing
construct perform slightly worse than the dynamic workshare and the task-parallel
version. This is because the time for a single search for a trajectory is not constant, it
depends on the length of the trajectory which is unknown a priori. This leads to some
load imbalance and thus to a performance penalty when a static schedule is used.
The dynamic parallel for loop and the tasking versions perform better, since the
load is distributed among the threads more evenly. In conclusion it can be seen, that
the load balancing capabilities of tasks for this application are as good as when a for
worksharing loop with dynamic schedule is used.

5.2 FIRE

The Flexible Image Retrieval Engine (FIRE) [7] was developed at the Human Language
Technology and Pattern Recognition Group2 of RWTH Aachen University. The retrieval
engine takes a set of query images and for each query image it returns a number of sim-
ilar images from an image database. The similarity is derived from comparing various
image features. The existing parallelization of the FIRE code uses OpenMP [13] on two
nested levels. On the outer level all query images are processed in parallel and on the
inner level the comparison of one query image to the database images is also done in
parallel.

We re-implemented the parallelization using OpenMP tasks. For every query image
one task is created. Inside these tasks for every comparison of the query image to one

1 http://www.itv.rwth-aachen.de
2 http://www-i6.informatik.rwth-aachen.de

http://www.itv.rwth-aachen.de
http://www-i6.informatik.rwth-aachen.de

648 C. Terboven et al.

0
20
40
60
80
100
120
140

0

5

10

15

20

16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 h

ou
rs

Number of Threads
Tasks Dynamic Static
Task-Speedup Task-Dynamic Task-Static

0
20
40
60
80
100
120
140

0
50
100
150
200
250
300
350
400

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads
Nested Tasks
Nested-Speedup Task-Speedup

Fig. 6. Runtime and speedup of two application codes, TrajSearch (left) and FIRE (right). A
comparison of tasking versions with a parallel for loop using different schedules for TrajSearch
and with a version applying nested parallel regions for FIRE.

element of the database another task is created. Both parallel versions express the same
amount of parallelism. Our test dataset comparing both versions processes 18 query
images in a database consisting of 1000 images. The measured runtime and speedup on
the 16-socket machine are shown in Fig. 6 (right). For the nested parallel regions the
best combination of threads at the outer and inner regions has been used. E.g. the value
for 16 threads is the minimum runtime for 1:16, 2:8, 4:4, 8:2 and 16:1 threads used at
the outer:inner parallel regions.

Both versions of the code deliver nearly the same serial runtime, so the overhead
of the OpenMP constructs is in the same order of magnitude. With more threads the
tasking version outperforms the nested parallel region. For 128 threads the tasking ver-
sion reaches a nearly linear speedup of 127 on 128 threads, whereas the nested parallel
region only reaches a speedup of 85.

6 Conclusion

The introduction of task-level parallelism in OpenMP raised the level of abstraction
compared to thread-centric worksharing models, by delegating the responsibility of dis-
tributing the work among the threads to the runtime. On hierarchical NUMA architec-
tures, tasks exhibit poor performance if remote data is accessed frequently, that means
if the runtime cannot maintain data locality when selecting a thread to execute a given
task. As we have shown, if thread binding is used and the task-parallelism is expressed
using an appropriate pattern during both the data setup/initialization as well as during
the actual computation, modern OpenMP runtimes, like the one from Intel we used,
can maintain data affinity and thus achieve performance on par with state-of-the-art
worksharing implementations.

Furthermore, with the real-world application use cases we have shown that task-
ing implementations may outperform the comparable worksharing implementations.
This is particularly true for situations in which the load is not evenly balanced and a
dynamic scheduling scheme is employed, in which case tasks may offer an even finer

Task-Parallel Programming on NUMA Architectures 649

load balancing plus the ability to maintain data locality by applying the patterns pre-
sented above. This also extends to cases in which the worksharing approach is limited,
such as when OpenMP parallel regions have to be nested.

References

1. an Mey, D., Sarholz, S., Terboven, C.: Nested Parallelization with OpenMP. International
Journal of Parallel Programming 35, 459–476 (2007), 10.1007/s10766-007-0054-1

2. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X., Unnikr-
ishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions on Parallel and
Distributed Systems 20(3), 404–418 (2009)

3. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimental Evaluation
of the New OpenMP Tasking Model. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC
2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg (2008)

4. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: ForestGOMP: An
Efficient OpenMP Environment for NUMA Architectures. International Journal of Parallel
Programming 38, 418–439 (2010), doi:10.1007/s10766-010-0136-3

5. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Wagner, M.: Data and Thread Affinity in
OpenMP Programs. In: Proceedings of the 2008 Workshop on Memory Access on Future
Processors: a Solved Problem?, MAW 2008, pp. 377–384. ACM (2008)

6. Davis, T.A.: University of Florida Sparse Matrix Collection. NA Digest 92 (1994)
7. Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval - a quantitative comparison.

Information Retrieval 11(2), 77–107 (2008)
8. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems.

Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)
9. McCalpin, J.: STREAM: Sustainable Memory Bandwidth in High Performance Computers

10. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task parallelism on
multi-socket multicore systems. In: Proceedings of the 1st International Workshop on Run-
time and Operating Systems for Supercomputers, ROSS 2011, pp. 49–56. ACM, New York
(2011)

11. OpenMP ARB. OpenMP Application Program Interface, v. 3.1,
http://www.openmp.org

12. Peters, N., Wang, L.: Dissipation element analysis of scalar fields in turbulence. C. R.
Mechanique 334, 493–506 (2006)

13. Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-Memory Parallelization for
Content-based Image Retrieval. In: ECCV 2006 Workshop on Computation Intensive Meth-
ods for Computer Vision (CIMCV), Graz, Austria (May 2006)

14. Terboven, C., Spiegel, A., an Mey, D., Gross, S., Reichelt, V.: Parallelization of the C++
Navier-Stokes Solver DROPS with OpenMP. In: Joubert, G.R., Nagel, W.E., Peters, F.J.,
Plata, O.G., Tirado, P., Zapata, E.L. (eds.) PARCO. John von Neumann Institute for Com-
puting Series, vol. 33, pp. 431–438. Central Institute for Applied Mathematics, Jülich (2005)

15. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP tasks in
Nanos v4. In: Lyons, K.A., Couturier, C. (eds.) Proceedings of the 2007 Conference of the
Centre for Advanced Studies on Collaborative Research, pp. 256–259. IBM (October 2007)

http://www.openmp.org

	Task-Parallel Programming on NUMA Architectures
	Introduction
	Related Work
	Patterns for Task-Parallelism
	Task Behavior on NUMA Architectures
	STREAM
	Sparse-Matrix-Vector-Multiplication in a CG-Method

	Application Case Studies
	Trajectory Search
	FIRE

	Conclusion
	References

