Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIANN ot de Développements en Intelligence Artificielle

4)

Task partitioning in swarms of robots: An
adaptive method for strategy selection

Giovanni PINI, Arne BRUTSCHY, Marco FRISON,
K Andrea RoL1, Marco DORIGO, and Mauro BIRATTARI /

4 ™
IRIDIA — Technical Report Series

Technical Report No.
TR/IRIDIA/2011-013

May 2011
_ Last revision: August 2011)

IRIDIA - Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av E. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2011-013

Revision history:

TR/IRIDIA/2011-013.01 May 2011
TR/IRIDIA/2011-013.02 August 2011

The information provided is the sole responsibility of the authors and does not
necessarily reflect the opinion of the members of IRIDIA. The authors take full
responsibility for any copyright breaches that may result from publication of
this paper in the IRIDIA — Technical Report Series. IRIDIA is not responsible
for any use that might be made of data appearing in this publication.

Task partitioning in swarms of robots: An
adaptive method for strategy selection

Giovanni Pini Arne Brutschy Marco Frison Andrea Roli
Marco Dorigo Mauro Birattari

May 2011

Abstract

Task partitioning is the decomposition of a task into two or more sub-tasks
that can be tackled separately. Task partitioning can be observed in many species
of social insects, as it is often an advantageous way of organizing the work of a
group of individuals. Potential advantages of task partitioning are, among others:
reduction of interference between workers, exploitation of individuals’ skills and
specializations, energy efficiency, and higher parallelism. Even though swarms
of robots can benefit from task partitioning in the same way as social insects do,
only few works in swarm robotics are dedicated to this subject. In this paper,
we study the case in which a swarm of robots has to tackle a task that can be
partitioned into a sequence of two sub-tasks. We propose a method that allows
the individual robots in the swarm to decide whether to partition the given task or
not. The method is self-organized, relies on the experience of each individual, and
does not require explicit communication between robots. We evaluate the method
in simulation experiments, using foraging as testbed. We study cases in which task
partitioning is preferable and cases in which it is not. We show that the proposed
method leads to good performance of the swarm in both cases, by employing task
partitioning only when it is advantageous. We also show that the swarm is able to
react to changes in the environmental conditions by adapting the behavior on-line.
Scalability experiments show that the proposed method performs well across all
the tested group sizes.

1 Introduction

Task partitioning is a way of organizing work that consists in dividing a task into two
or more sub-tasks (Jeanne, 1986; Ratnieks and Anderson, 1999). The sub-tasks can
then be tackled separately by different individuals at the same time, or by the same
individual at different times.

In nature, task partitioning can be observed in many species of social animals. The
most evident example are humans, that exploit the advantages of task partitioning both
at the individual and at the societal level. At the level of the individual, a natural way of
tackling a non-trivial and lengthy task is to decompose it into less complex sub-tasks.
At the level of the society, many activities and interactions are so complex that in order

2 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

to be manageable, they need to be simplified by partitioning them. Partitioning has
been studied and formalized in many different disciplines. In politics and sociology
it is coded in the divide et impera principle, born in ancient roman times and applied
throughout the centuries. In computer science, this principle consists in recursively
breaking down problems into sub-problems, till the sub-problems become solvable,
and then re-combining their solutions (Aho, 1983).

As we move to simpler forms of individuals, such as social insects, problems and
needs also become simpler. Nonetheless, also in insect societies task partitioning can
be an advantageous way of organizing work. In fact, task partitioning can be observed
in several species of ants and bees, for example in material transportation, nest con-
struction and waste removal (Ratnieks and Anderson, 1999). Benefits of task partition-
ing in all the mentioned activities are, among others, reduction of interference between
workers, better exploitation of individuals’ skills and specializations, increased energy
efficiency, and higher parallelism. On the other hand, it has to be noticed that task
partitioning also has associated costs, typically due to coordination efforts, delays and
overheads where two sub-tasks interface with each other. Nonetheless, the fact that
many examples of task partitioning can be observed in nature suggests that the gain of
using partitioning often overcomes its costs.

In this paper, we study task partitioning in the context of swarm robotics. Swarm
robotics deals with the study and the implementation of distributed robotic systems
composed of a large number of autonomous robots. Such systems are implemented
drawing inspiration from social insects. Therefore, they have many similarities with
swarms of insects. As in social insects, the individuals are simple with respect to the
task they have to solve, and the control of the swarm is decentralized. Complex behav-
iors result from individuals’ decisions based on local perceptions, local interactions,
and local communication. Parallels between swarm robotics and the world of social in-
sects are not limited to the characteristics of the individuals, but they can also be drawn
at the level of the problems to be solved. In fact, many of the problems faced by social
insects have also a relevance for swarm robotics. Examples are: foraging, collective
transport of heavy objects, self-assembly, exploration, and collective decision making
(see Beni (2005) and Sahin (2005) for a review). The fact that there are cases in which
insects obtain benefits by employing task partitioning, makes appealing the study of
task partitioning in swarms of robots facing similar situations.

In this paper, we propose a method that allows a swarm of robots to decide which
strategy to use for tackling a given task: a strategy that makes use of task partitioning,
and decomposes a task into a sequence of sub-tasks, or one that does not, and tackles
the given task as a single, unpartitioned task. The method is fully distributed, based on
the individuals’ local perception and requires no explicit communication between the
robots. We test the method using a swarm of robots in simulation-based experiments.
The testbed for these experiments is foraging, where the task of retrieving each ob-
ject is pre-partitioned into a sequence of two sub-tasks. We test different experimental
conditions that vary in terms of the cost of employing task partitioning. The method
proposed in this paper allows each robot in the swarm to make a choice depending on
this cost. The choice is either to perform the object retrieval task as single, unparti-
tioned task, or to employ task partitioning and perform one of the two sub-tasks. We
show that the proposed method gives good performance in all the cases, with the robots

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 3

selecting an advantageous strategy. The method is able to react to changes in the en-
vironment by adapting the strategy to new conditions. Additionally, the method scales
well with the number of robots, providing good performance across different swarm
sizes.

The rest of the paper is organized as follows. Section 2 provides a review of related
works. Section 3 defines the task partitioning problem studied in this work. Section 4
presents the method we propose for tackling this problem. Section 5 presents the ex-
perimental framework we use for evaluating the proposed method. Section 6 presents
and discusses the experiments and the results we obtained. Section 7 concludes the
paper by summarizing the contribution of the research and describing directions for
future work.

2 Related work

Task partitioning and task allocation are ways of organizing work in groups of individ-
uals. Gordon (1999) defines task allocation as “the process that adjusts the numbers
of workers engaged in each task”. Ratnieks and Anderson (1999) describe task parti-
tioning as “the phenomenon in which a piece of work is divided among two or more
workers”. The difference between task partitioning and task allocation resides in the
fact that, while task allocation acts at the level of the workforce, task partitioning acts
on the tasks themselves by decomposing them into smaller sub-tasks. The two top-
ics are strongly intertwined as task allocation is often applied to previously partitioned
tasks.

Task allocation has been intensively studied both in biology and in robotics. Bonabeau
et al. (1996) describe the response threshold model and show that it can explain the di-
vision of labor observed in Pheidole ants. Bonabeau et al. (1999) introduce a simple
algorithm that is based on the response threshold model and can be used to obtain
flexible task allocation in artificial systems.

Threshold-based task allocation methods have been studied, among others, in the
context of robotic foraging (Krieger and Billeter, 2000; Labella et al., 2006) and ob-
jects clustering (Agassounon and Martinoli, 2002). Kalra and Martinoli (2006) com-
pared threshold-based and market based task allocation methods. The authors claim
that, when the information is not accurate, threshold-based methods and market-based
methods have similar performance. With accurate information market-based methods
perform better. Threshold-based methods have the advantage of being less costly in
terms of communication and computational resources.

While studies in task allocation assume the existence of two or more tasks and
focus on the problem of assigning individuals to these tasks, this paper focuses on the
problem of self-organized task partitioning. In the following we give a detailed review
of the literature on the topic. We start by reviewing the large body of research that has
been carried out on the topic in the field of biology. Then we review the few works that
have been devoted to the topic in the context of swarm robotics.

Task partitioning can be observed in many species of social insects, with variations
in terms of the task being performed, the number of sub-tasks, and the modality by
which it is realized (Ratnieks and Anderson, 1999). Theraulaz et al. (2002) study the

4 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

hunting strategy of the ponerine ant Ectatomma ruidum. The ant partitions the hunting
task into stinging and transporting. Some individuals kill prey animals that are then
transported to the nest by others. The authors mention the fact that individuals’ differ-
ences and learning could be the reasons why task partitioning is employed: it allows
a better exploitation of the specialization of the individuals. The work of Hart and
Ratnieks (2001b) describes how task partitioning is employed by the leaf cutting ant
Atta cephalotes when performing garbage disposal and management. This ant grows
fungi in gardens located in the nest. Garbage has to be removed from these gardens and
stored in garbage heaps. The garbage removal task is partitioned into two sub-tasks:
first the garbage is removed by the ants working in the garden and then stored in the
garbage heaps by other workers. Partitioning the garbage removal task allows the ants
to isolate heap workers from the rest of the colony, as they are possibly contaminated
by hazardous pathogens. The one of Atta cephalotes is an example of another benefit
of task partitioning: it can be used to obtain physical separation of groups of workers.
Lopes et al. (2003) and Hubbell et al. (1980) point out that partitioning a foraging task
allows workers to return quickly to a food source, reinforcing the pheromone trail that
leads to it. In this case partitioning is beneficial as it increases the performance of the
swarm.

When the task being partitioned involves the transportation of materials, the ma-
terial needs to be transferred between individuals working on the different sub-tasks.
There are two possible ways to make this happen: either through direct transfer be-
tween workers, or through indirect transfer (Hart et al., 2002; Ratnieks and Anderson,
1999). Anderson et al. (2002) review partitioned foraging through bucket brigades: ma-
terial is transferred directly from one individual to another. Transfers usually happen
in locations that are not determined a priori, but depend on the occasional encounters
between workers. A benefit of direct transfer is that it allows the adaptation of the
weight of the load to the strength of the transporter. The result is an increase of the
throughput of objects delivered to the nest (Reyes and Fernandez Haeger, 1999; An-
derson and Jadin, 2001). Most of the examples cited by Anderson et al. (2002) concern
ants, but direct material transfer has also been reported in the foraging activity of social
wasps (Jeanne, 2002) and bees (Seeley, 1989; Anderson and Ratnieks, 1999).

When material transfer is indirect, specific locations called caches serve as tempo-
rary storage, where materials can be dropped and picked up. Caches allow the indi-
viduals to exchange material in an asynchronous fashion. The use of caches has been
reported in several species of social insects. Fowler and Robinson (1979) describe the
strategy employed in leaf foraging by the Affa ants: some individuals work on the tree,
cutting the leaves and then dropping them to the ground, which serves as cache. On the
ground, leaves are cut in pieces and transported to the nest by other workers. Here the
advantage of partitioning stems from the fact that the individuals do not need to repeat-
edly climb the tree. Partitioning the task therefore reduces the energy requirements at
the level of the swarm. Hart and Ratnieks (2000, 2001a) point out that caches can be
beneficial because they can reduce material losses due to imbalances between foraging
and processing rates.

Despite the potential advantages, task partitioning received only marginal attention
in swarm robotics research. In the work of Fontan and Matari¢ (1996), a foraging task
is pre-partitioned into several sub-tasks; each robot works on one of the sub-tasks in

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 5

an exclusive area, assigned a priori. The study shows that the partitioning strategy
increases task efficiency by reducing robots’ competition for space. A similar result,
with non-exclusive and dynamically assigned working areas was presented by Pini
et al. (2011a). Shell and Matari¢ (2006) and @stergaard et al. (2001) compared ho-
mogeneous foraging and bucket brigade algorithms. They focused on the importance
of spatial subdivision in reducing interference and improving performance. Lein and
Vaughan (2008) extended the work of Shell and Matari¢ (2006) by introducing a mech-
anism that adapts the size of the working areas of the robots in response to the interfer-
ence experienced by them. Parker and Zhang (2010) studied the case in which a group
of robots has to perform a predefined sequence of two mutually exclusive sub-tasks: a
sub-task should begin only when the preceding one is completed and no robot is work-
ing on it anymore. The focus of the study is on the decision making process that allows
the robots to collectively estimate whether a sub-task is complete and the group can
start working on the following one. Lately, Scheidler et al. (2008) studied the influence
of partitioning in a task allocation system. More specifically, they studied the basic
properties of task partitioning methods, like stability and efficiency, in a self-organized
service system.

To the best of our knowledge, the few works listed here are the only ones that
have been devoted to the topic of task partitioning in swarm robotics. No work has
been published so far in which the robots autonomously decide, on the basis of the
characteristics of the environment and of the task, whether to partition a given task or
not.

3 Definition of the task-partitioning problem

This work focuses on the case in which a given task can be partitioned into two sub-
tasks. These sub-tasks are sequentially interdependent, meaning that they have to be
executed in a specific order. This situation is depicted in the bottom part of Figure 1:
a given task can be partitioned into two sub-tasks ¢ and ¢, that have to be performed
in sequence. The output of sub-task ¢; serves as input to sub-task ¢,. We consider
the case in which the sub-tasks interface with each other in an asynchronous way: the
output of ¢; can be stored at an interface I, of finite storage capacity, and has then to
be processed in the sub-task ¢,.

As an example, let us consider the testbed employed in this work: foraging. For-
aging is the activity that consists in multiple (and in general parallel) repetitions of the
object retrieval task, that is harvesting an object from the environment and storing it in
the nest. Consider the case in which the object retrieval task can be partitioned into an
harvest and a store sub-tasks. The use of a cache, as described in Section 2, allows the
transfer of objects from the harvest to the store sub-tasks. The sequential dependency
resides in the fact that, in order to retrieve an object to the nest (thus completing once
the object retrieval task), the harvest and the store sub-tasks have to be performed once
in the correct order.

Returning to Figure 1, the given task can be performed using two different strate-
gies. One strategy is to tackle the given task as single, unpartitioned task. The other
strategy is to employ task partitioning, and tackle each of the two sub-tasks ¢; sepa-

6 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

duration typ

unpartitioned task

on stratedy

no\'\—Paﬂm
Given
task . ;
‘ task interface [‘
sub-task @, sub-task @,
i i
interfacing interfacing
time IT1 time Iz
duration to, duration tg,

Figure 1: Representation of the sequential task partitioning problem. A given task
can be completed either using a non-partition or a partition strategy. When the non-
partition strategy is employed, the given task is tackled as a single, unpartitioned task,
that requires a time typ to be completed. When the partition strategy is employed,
the given task is partitioned into a sequence of two sub-tasks ¢; and ¢,, that require
respectively a time fy, and ty, for their completion. The two sub-tasks are linked one
to the other by means of an interface /, whose usage imposes an overhead in terms of
interfacing times I1; and I1,. In general, the time needed to perform the sub-task ¢;
differs from the one needed to perform ¢,. Typically, typ differs from the sum of #g,
and t¢,. This makes task partitioning advantageous or not; the figure represents the
case in which partitioning is advantageous.

rately. In the following, we will refer to these strategies as the non-partition strategy
and the partition strategy, respectively. Each strategy entails a cost that can be mea-
sured in different ways, depending on the context; examples are: energy, time, and
resources required to perform the unpartitioned task and the sub-tasks.

In this study we use time as the cost of a strategy. Under this definition, the cost of
the non-partition strategy is the time #yp needed to perform the unpartitioned task; the
cost of the partition strategy is the sum of the times #y, and f, needed to perform the
two sub-tasks ¢; and @,. The optimal strategy is the strategy that requires the least time
to complete the given task. Notice that the time needed to perform the unpartitioned
task and the sub-tasks not only depends on the nature of the tasks themselves, but it also
depends on the strategy employed. For example, #yp can increase due to conflicts in
accessing shared resources, while ¢y, and ¢, include possible overheads at the interface
I (i.e., interfacing times I1; and IT).

In the example of foraging, the non-partition strategy could entail costs in terms of
interference between individuals along the path, as well as conflicts in accessing the
objects or in entering the nest. The partition strategy, by constraining the movement of
individuals within areas of the environment, can reduce these costs. On the other hand,
it entails costs in terms of overheads and delays when transferring objects between
individuals. Which of the two strategies is better depends on the characteristics of the
environment.

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 7

4 The proposed method

In this work we propose an adaptive method that allows a swarm of robots to tackle the
problem depicted in Figure 1. The method allows each robot to autonomously decide
whether to partition a given task into the sequence of two sub-tasks or not. We study
different cases in which the partition strategy can be more or less advantageous than
the non-partition one. The method does not make use of explicit communication: each
robot takes its own decision on the basis of the perceived costs of the two strategies.'
If a robot chooses to employ task partitioning, it works only on one of the possible sub-
tasks ;. If a robot chooses not to employ task partitioning, it performs the given task
as a single, unpartitioned task. After completing a task, be it either the unpartitioned
task or one of the two sub-tasks ¢;, a robot decides which strategy to employ next.
Note that, while for a single robot the choice of the strategy is binary, at the level of the
swarm there can be simultaneously some robots that adopt the partition strategy and
other robots that adopt the non-partition strategy.

In the proposed method, each robot has a probability P, of employing task parti-
tioning. This probability is defined by the following sigmoid functions:
[1 +eiS(fNP/(’A‘P1+’A‘P2)*1)} 1, if inp > (T, +1p,)
P, = 1
’ [1 +e*s('*(fw1+fwz>/f~f)} T v < Gy i) W

where S is a steepness factor, fyp is an estimate of the time fyp required to complete
the unpartitioned task. In other words, fyp is the estimated cost of the non-partition
strategy. On the other hand, 7y, and 7, are estimates of the times 7y, and #,, required
to perform each of the two sub-tasks. In other words, the sum of f(pl and fq,z is the
estimated cost of the partition strategy. The robots are never inactive, meaning that
if a robot decides not to employ task partitioning then it works on the unpartitioned
task (with a probability B,, = 1 — P,). By using the functions given in Equation 1,
there is always a non-null probability of selecting the strategy perceived as the worst.
Nonetheless, this probability decreases sharply with the difference between the costs
of the two strategies. The exploration-exploitation balance can be regulated by varying
the parameter S: the higher the value of S, the higher the amount of exploitation.

Each estimate is computed as a weighted average of the time it takes to perform the
sub-tasks or the unpartitioned task. For the sub-task ¢;, the time estimate is updated as
follows:

g (1—ot) fp+ 0ty , 2)

where 1,/ is the robot’s measure of the time that took the last execution of the sub-task
@i a € (0,1] is a weight factor that influences the responsiveness to changes: a high
value of « leads to a faster responsive behavior. An analogous formula is used for the
estimate fyp.

The estimates 7 depend not only on the intrinsic characteristics of the environment
and of the tasks, but also on the choices made by the other robots. Interference among

I'The fact that the method does not employ active communication increases its applicability in contexts
where agents have none or limited communication capabilities. This is the case of this study, as we employ
e-puck robots. For more details about the robots please refer to Section 5.1

8 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

robots impacts on the time needed to perform the sub-task and the unpartitioned task,
and depends on how many robots are performing the same (sub-)task. In addition, in
case the partition strategy is employed, the time required to complete a sub-task ¢;
also depends on the performance of the robots working on the other sub-task. In fact,
poor performance of one of the sub-tasks reduces the throughput at the interface; this
impacts negatively on the waiting time experienced by the robots working on the other
sub-task.

In the example of foraging previously mentioned in Section 3, each robot would
keep an estimate of the time it takes to complete the object retrieval task when per-
formed as a single, unpartitioned task, as well as when performed as sequence of har-
vest and store sub-tasks. This information would be used by the robot to decide whether
to employ task partitioning: if the sum of the times needed to perform the two sub-tasks
is less than the time needed to perform the unpartitioned task, then the probability of
employing the partition strategy is higher than the one of employing the non-partition
strategy.

As each robot has only estimates of the real costs, noise might lead to sub-optimal
decisions. Furthermore, the optimal choice that a robot can make can change over
time as result of the choices made by the other robots or changes in the environment.
Therefore, the different strategies need to be sampled by the robots from time to time,
in order for the system to be reactive.

When a partition strategy is employed, a robot working on ¢ might be waiting for
a free store spot at the interface; analogously a robot working on ¢, might be waiting
for input at the interface. When a robot finds itself in one of the two waiting situations,
it can decide to give up performing its sub-task with a probability defined as:

Pag, (w1) = [1420min)] 3)

where wy is the current measured time the robot has been waiting at the interface 1.
© (wy,fg,) is computed as:

to, + to,

where K and O are a steepness and an offset factor, respectively, and 7, computed
using Equation 2, is the estimated time required for performing sub-task ¢;. When
a robot gives up performing a sub-task ¢;, and its current waiting time wy is greater
than 7, the value of 7y, is updated using Equation 2 (w; replaces #y; in the formula).
The probability function defined in Equation 3 ensures that a robot eventually gives up
waiting at the interface while performing a sub-task.

Returning to the example of foraging, a robot working on the store sub-task might
wait very long for an object to become available at the cache. A long waiting time
means that the performance of the rest of the swarm on the harvest sub-task is poor.
In this case, the robot should switch to perform that sub-task. Analogously, a robot
working on the harvest sub-task should switch to the store sub-task when it has been
waiting too long for an empty spot in the cache to deliver an object. The concept of
giving up on a task when waiting too long is not a novelty proposed in the work here

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 9

SOURCE NEST
AREA AREA

SOURCE
NEST

CORRIDOR

Figure 2: Conceptual representation of the environment used to study the partitioning
problem on a swarm of robots performing foraging. The environment is divided into
two areas (source and nest area), separated by the cache. The robots cannot cross the
cache: to reach the source area from the nest area and the other way around the robots
must take the corridor. In this case the given task is retrieving objects from the source
to the nest. This task can be performed as single, unpartitioned task or partitioned
into two sub-tasks. The corridor allows a robot to perform the object retrieval task
as unpartitioned task: an object can be directly retrieved from source to nest. The
cache allows the object retrieval task to be partitioned into sub-tasks: @4y cOnsists
in harvesting objects from the source and dropping them at the cache, @y, in picking
up objects from the cache and storing them in the nest.

presented. It has been adopted many times before both in swarm robotics (Labella
et al., 2006) and in collective robotics (Parker, 1998).

5 Experimental framework

This section describes the experiments we employ to assess the validity of the method
presented in Section 4. We test the method with a swarm of robots performing a single
nest, single source homogeneous foraging activity (see Winfield, 2009, for a taxon-
omy). This activity consists in the parallel repetition of the object retrieval task: har-
vesting an object from the source and storing it in the nest. Objects can be found at the
source, which is at a known location and never depletes. The objects need to be stored
in the nest, which is assumed to have unlimited storage capacity. A way of partitioning
the object retrieval task is by separating the harvest and store sub-tasks (@Qparvess and
Psrore, Tespectively) and allowing material transfer between individuals working on the
two sub-tasks.

Figure 2 provides a conceptual representation of the environment. The environment
is divided into two separate areas, referred to as source area and nest area. The two
areas are separated by a temporary storage area referred to as cache in the rest of the
paper. The cache cannot be crossed by the robots. A direct path, referred to as corridor,
links the source area and the nest area and can be used by the robots to reach the source
area from the nest area and vice versa.

The problem described above is an instance of the problem described in Section 3
and represented in Figure 1, with the given task being the object retrieval task. The two

10 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

>i Go to nest I ****************************

I-F, P

Pharvest

Harvest from Py Drop in Pick up from < P Store in
source cache cache nest

o | P 1-P,

Pstore

,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Go to source 54

Figure 3: Finite state machine describing the behavior of each robot. The black con-
tinuous arcs marked with a label represent stochastic choices that a robot can make. P,
is the probability of employing task partitioning. Pge,,,. and Pge, are the proba-
bilities of giving up the store and the harvest sub-tasks respectively (see Section 4 for
more details). Dashed gray arcs represent transitions when the robot does not make a
choice.

sub-tasks ¢ and @, correspond to the @y, esr and Qg ,p sub-tasks. The cache serves as
the interface I between the two sub-tasks. The object retrieval task can be performed
once by executing once the Qpgyvesr and Qg sub-tasks in this order. The choice the
robots face about the strategy to be employed translates in choosing whether to use
the cache or the corridor: a partition strategy makes use of the cache, a non-partition
strategy makes use of the corridor. Which of the two strategies is advantageous depends
on the length of the corridor and on the costs for using the cache, most notably the
interfacing times (I1; and I1,) that the robots have to spend at the cache for dropping
or picking up an object. In the rest of the paper, we will consider the interfacing times
IT; and I, to be equal, and will indicate both of them with II.

Note that the situation here described can be generalized to all those cases where
the sub-tasks develop in physically separated areas and material can flow from one
sub-task to the following on a path that differs from the one the workers can use. An
example is the leaf foraging task performed by the Arta ants, described in Section 2.
In this case, the two working areas are the top of the tree and the ground. The ants
can reach one area from the other by climbing the tree — i.e., without partitioning. The
trunk plays the same role as the corridor in Figure 2. The leaves can instead be dropped
from the top of the tree to the ground — i.e., when the foraging task is partitioned. The
time spent searching the leaves defines the interfacing time I, while I1; is null in
this example. Another example is a robotic warehouse that extends on two floors, with
materials that can be transferred from one floor to the other by using a dedicated lift
and the robots task being transporting items from one floor to the other. The path the
robots need to cover for reaching one floor from the other plays the role of the corridor.
The interfacing times I1; and I, in this case are linked to the time it takes to load and
unload the lift and the time it takes by the lift to move from one floor to the other.

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 11

The state diagram of Figure 3 represents the behavior of each individual. Each robot
takes its own decision on the strategy to employ. After storing an object in the nest, a
robot has to decide where to retrieve the next object. The robot has a probability P,
of trying to pick up the object from the cache (i.e., partition the task). This choice can
be abandoned with a probability Pgy,,,. that grows at each time-step (see Equation 3).
Analogously, after harvesting an object from the source a robot has to decide where to
leave it. The robot has a probability P, of trying to drop the object in the cache (i.e.,
partition the task). Again, this choice can be abandoned with a probability Pgg, ..
that grows at each time-step.

As mentioned in Section 4, the probability P, depends on the perceived cost of the
partition strategy (Equation 1). This cost is computed as the sum of the estimates 7y,
and 7y, ; the cost of the non-partition strategy is the estimate Zyp of the time it takes to
retrieve an object to the nest without partitioning. The estimate 7, . is updated when
a robot chooses to use the cache for dropping an object. It is updated with the time it
takes from the moment the robot harvested an object from the source, to the moment
it harvests the next one, after using the cache. The estimate 7, is updated when a
robot chooses to use the cache for picking up an object. It is updated with the time it
takes from the moment the robot stores an object in the nest, to the moment the robot
stores the next object, taken from the cache. 7y, ., and 7y, . are also updated when
the robot gives up dropping or picking up an object respectively. The estimate fyp is
updated each time the robot chooses to use the corridor, either for reaching the source
or the nest. It is updated with twice the time it took to cross the corridor, including
the time to enter the source or the nest?. fyp is not updated when a robot crossed the
corridor after giving up using the cache. Giving up is a consequence of selecting the
partition strategy and therefore impacts on 7, andfg,,,, .

Robots do not communicate explicitly, none of them knows what the others are
doing or has any notion of the swarm’s performance. The strategy observed at the level
of the swarm is the result of the individuals’ decisions and is a self-organized process.

5.1 Simulation

The experiments described in this article have been carried out in simulation. The sim-
ulation framework we employed is ARGoS (Pinciroli et al., 2011), developed within
the Swarmanoid project’. ARGoS is a discrete time, physics-based simulation envi-
ronment that allows the real-time simulation of large swarms of heterogeneous robots.
The main characteristic of ARGoS is that it allows the user to tune the level of detail of
the simulation. The level of detail can go from bi-dimensional environments governed
by kinematic rules to three-dimensional environments governed by dynamics. For the
work presented in this article we chose to employ a kinematics model of the robots in
a two dimensional space.
The robots simulated in the experiments have a real counterpart: the e-puck* robot (Mon-

dada et al., 2009). The e-puck is a small wheeled robot, developed at EPFL, Lausanne,

2The estimate fyp is computed this way because a robot using the non-partition strategy in one direction
could decide to change strategy on the way back

3http://www.swarmanoid.org/

“http://www.e-puck.org/

12 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

L

e-puck robot

entering a booth N
\

RGB LEDs

light barrier 4.

:

Figure 4: Representation of the an array of booths, composed of three booths on each
of the two sides. Each booth can detect the presence of a robot through a light bar-
rier, represented with the black semicircles and the dotted line in one of the booths.
RGB LEDs, represented with the blank semicircles, can signal objects or drop spots by
lighting up in different colors.

Switzerland. ARGoS simulates all the sensors and actuators available on the e-puck.
In the experiments presented in this paper we employed the wheel actuators, the 8 in-
frared proximity sensors for light and proximity detection, the VGA camera, and the
ground sensors.

5.2 Abstraction of objects

The e-pucks do not have the ability of grasping and transporting objects. Therefore,
we had to overcome this limitation by using an abstraction: instead of actual objects
we simulated a physical device, referred to as a booth, that has been developed and
prototyped by us (Brutschy et al., 2010). Each booth features a light barrier and two
RGB LEDs. The robot enters the booth, attracted by the LEDs that it can perceive using
its RGB camera. The booth detects the presence of a robot using the light barrier. When
a robot is perceived, the booth reacts by executing a user-defined logic. Reactions
consist in changing the status of the RGB LEDs. In the work presented in this article
booths are organized into arrays that implement the source, the nest, and the cache.
Figure 4 shows a schematic representation of the cache, which is composed of three
booths on each of its two sides. In the experiments, a booth whose LEDs are lit up in
green represents an object available at the booth. On the other hand, a booth whose

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 13

a) b)
| — 1
w w w 5
2 5 6
——— 1

d)
— 1
—————— N

Figure 5: The behavior of a cache implemented with two paired booths. The source
(not shown) is located at the left and the nest (not shown) is located at the right. The
robots carrying an object are marked with a black arrow, and the robots not carrying
objects with a white arrow. (a) Initially the cache is empty: LEDs are blue on the
source side and off on the nest side. (b) A robot working on the harvest sub-task enters
the booth to drop an object that was harvested in the source. Once finished, the LEDs
of the booth on the source side turns off while the LEDs of the booth on the nest side
turn to green to represent an available object. (c) A robot working on the store sub-task
enters the booth to pick up the object. (d) Once the robot leaves towards the nest to
store the object, the booth returns to its initial configuration. When a booth perceives
the presence of the robot, its LEDs temporarily turn to red, so that the robot realizes it
is inside the booth (not shown in the above sequence of events).

LEDs are lit up in blue, represents a free spot where an object can be dropped. With
this representation, when a robot enters a booth whose LEDs are lit up in green, we
assume that the robot will pick up an object from that booth. Analogously, when a robot
transporting an object enters a booth with LEDs lit up in blue, we assume that the object
being carried will be dropped in that booth. In both cases the booth acknowledges the
robot presence by temporarily turning the LEDs to red, until the robot has left. The
behavior of the booths changes with their location in the environment. The nest booths
are always blue, representing an unlimited number of spots where objects can be stored.
The source booths are always green, representing the fact that objects can always be
found at the source.

The behavior of the cache is more complex. At the beginning the cache booths
facing the source are lit up in blue, and those facing the nest have their LEDs turned
off (Figure 5a). In this configuration the cache is empty. Once a robot has dropped an
object in the cache, by subsequently entering and exiting a free (i.e., blue) booth facing
the source side, the booth turns off so that it is no longer available to accept an object,

14 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

and the corresponding booth on the nest side turns to green (Figure 5b). This represents
an object deposited in the cache that becomes immediately available on the nest side.
A robot working on the store sub-task can pick up this object by subsequently entering
and exiting the booth on the nest side (Figure 5c). Once the object has been picked up,
the nest side of the booth turns off and the source side turns to blue, to signal that the
booth is available again for dropping an object (Figure 5d).’

The robots themselves keep track of whether they are carrying an object or not. A
robot without an object assumes it has picked up an object from a booth if it perceives
the acknowledgement (i.e., the booth’s LEDs turn to red) and if the booth’s LEDs
were green before. Conversely, a robot carrying an object assumes it has dropped an
object in a booth if it perceives the acknowledgement and the booth’s LEDs were blue
before. Given the geometry of the robots and of the booths, there is no room for errors
in the acknowledgement mechanism: the booth can perceive a robot only when it is
completely inside and only in that case its LEDs turn to red and remain red until the
robot has left (i.e., the robot perceived the acknowledgement).

The only possible inconsistency happens if a robot enters a booth unintentionally.
This is not a problem for the source and nest booths: they would simply temporar-
ily turn their LEDs to red and then return to their default states. The cache instead
is affected by such an event, as its state could become inconsistent. The event here
mentioned is very unlikely, but still observable; all the results reported in this work are
taken from the experimental runs in which cache inconsistencies were not observed.

5.3 Environment

The environment in which the robots have to perform foraging is shown in Figure 6.
The source booths are located at the top-left and the nest booths at the top-right corners
of a 1.6m by 2.1 m rectangular arena surrounded by walls. The cache booths are located
between source and nest. The different areas of the arena are marked with a specific
ground color, which can be perceived by the robots and used to determine their location
in the arena. A light source, located on the bottom of the arena, is used as a landmark
for navigation. A colored path marks the floor in the corridor, and is followed by the
robots when moving from one area to the other.

6 Experiments and results

To test the properties of the proposed method we run four sets of experiments. The
goal of the first set of experiments is to understand how the parameters of the proposed
method impact on the system and derive guidelines on how to assign values to them.
The goal of the second set of experiments is to assess the performance of the method.
The goal of the third set of experiments is to study the responsiveness of the method
to changes in the environment. Finally, the goal of the fourth set of experiments is to
study the scalability of the method.

3 A video illustrating the behavior of the cache can be found in the online supplementary material, see
also Pini et al. (2011b).

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 15

0.8m | 0.8m |

0.6m

1.5m

L]

Figure 6: The environment used in the simulation experiments. Nest and source arrays
are composed of four booths, the cache array is composed of three booths for each side.
The color of the ground is used by the robots as a clue to recognize their location in
the arena. The light source, marked with “L”, is used by the robots as a landmark for
navigation. A colored path in the corridor is followed by the robots when navigating
through the corridor.

Each experimental run lasts a total of 600,000 simulation steps of 0.1s each. This
amounts to a simulated time of sixteen hours and forty minutes. In the experiments
we simulate a swarm of ten e-pucks; in the scalability experiment we study the per-
formance of swarms of various size. At the beginning of each run half of the swarm
is randomly positioned in the nest area, the rest of the swarm in the source area. The
speed of the robots is set to 3.5cm/s, a value determined while performing tests with
the real robots. This relatively low speed is due to the limited computational capabili-
ties of the e-puck. The camera data cannot be processed at high speeds and therefore
the robots need to move slowly in order to obtain precise movements towards a booth.
To avoid bias in the robots’ behavior, the estimates 7y, . .., f¢,,.... and fyp are randomly
initialized: 7y, . andfy,,. are uniformly sampled in [50,100], fyp in [100,200].

The rest of the section describes in detail each set of experiments and presents the
results obtained within each of them.

6.1 First set of experiments: ANOVA

To get an insight on the impact of each parameter of the adaptive method, we ana-
lyze the system using a well known design of experiments method: analysis of vari-
ance (ANOVA) (Cox and Reid, 2000). Table 1 summarizes the parameters included in

16 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

Table 1: Parameters space used for the analysis of variance. The values define a grid of
points in the parameters space; ANOVA then performs a regression using these points.

Parameter Values
Interfacing time IT (seconds) 0, 100, 200
Weighted average factor o 0.5,0.75, 1.0

Strategy selection steepness S 05,5, 10
Give up partitioning steepness K -0.5, -1.5, -2.5
Give up partitioning offset O -1,-5,-9

ANOVA and the possible values they can assume in the analysis. For each combination
of the parameters values, we run 15 randomly seeded simulations. What follows is a
summary of the results of ANOVA. For the complete results we refer the reader to Pini
et al. (2011b).

We perform four analyses, one including IT as factor, and other three fixing IT to
a value and using the remaining parameters as factors. The four analyses agree in
indicating that a high value of the weight factor o should be used, independently of
the value of the interfacing time I1. This is due to the fact that for low values of «,
the swarm is not able to quickly estimate the costs of each strategy; this leads to poor
performance. The effect of the steepness S depends on the value of IT: the higher
I1, the lower S should be, and vice-versa. Therefore the value of S should be chosen
depending on the specific environment. If the value of IT is known, and it does not
vary in time, S can be selected accordingly. On the other hand, if the value of the I1
is unknown or can vary significantly over time, then S should be set to an intermediate
value. An alternative, not implemented in this work, would be to adaptively select the
value of S on the basis of a measure of the value of I1. The parameters K and O have
a strong impact on the performance of the system. Unfortunately, the results of the
analyses do not recommend any particular values for these parameters. To address this
issue, ANOVA needs more data and higher order interactions should be studied to have
deeper insights concerning how to select the two parameters values.

Please note that the goal of the analysis of variance is not the optimal selection of
the parameters, but the study of the main effects each parameter has on the system.
In accordance with the results of ANOVA, we chose a high value for the parameter o
(0.8). Since we want our method to be able to deal with both high and low values of
I, we set S to 5.0. As mentioned, our analysis did not provide enough information
for selecting the parameters K and O, with the exception that some combinations of
the two were shown to be bad choices. The values of K and O have been determined
through trial and error, and their values have been set to K = —0.5 and O = —1. All
the results presented in the following have been obtained with this set of parameters.

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 17

Method

Q .

Q7 * —— adaptive

-¥- never—partition
- always—partition

Objects retrieved per robot (average on 50 runs)
50
|

T T T T T T T T T
0 25 50 75 100 150 200

Interfacing time M (seconds)

Figure 7: Average amount of objects retrieved per robot at the end of the experiment for
different values of the interfacing time Il. The same plot, also reporting the 95% confi-
dence intervals (omitted for clarity here), can be found online (see Pini et al. (2011b)).

6.2 Second set of experiments: performance of the adaptive method

To assess the performance of the adaptive method, we compare it with the performance
of two reference methods, referred to as never-partition and always-partition methods.
The never-partition method always makes use of the corridor (P, = 0), while the always-
partition method always makes use of the cache (P, = 1) without giving up (Pgg,,,. =
P8 = 0)- We tested 7 different settings, each corresponding to a different value of
the interfacing time I1. The values we studied for IT are 0, 25, 50, 75, 100, 150, and
200 (values are in seconds, simulated time). The upper bound for the value of IT was
selected so that the resulting cost for using the cache is considerably higher than the
one for using the corridor. In fact, a robot takes an average time that is roughly 400s
for traveling along the corridor, while using the cache requires roughly 120s when
I1=05s°

The graph in Figure 7 shows the results of the second set of experiments. The
graph plots the average performance of the three methods for different values of the
interfacing time I'1. As expected, each reference method performs well only for a subset
of values of Il. The always-partition method performs well when IT is low. In this
case, the time needed for traveling along the corridor is much higher than the one for

The time needed for traveling along the corridor was measured using the never-partition method, the
time for using the cache using the always-partition method. In a more general case, where the robots can
choose the strategy to employ, the values can differ as they depend on how cache and corridor are employed.

18 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

Robot action
B select cache
O give up cache
O select corridor

Action frequency (%)

o - -

T T T T T T T
0 25 50 75 100 150 200

Interfacing time M (seconds)

Figure 8: Actions performed by the robots using the adaptive method, for different
values of the interfacing time I1. Each bar reports, for each value of I, the percentage
of times an action was performed. The actions reported are: selection and actual usage
of the cache (dark gray), selection of the cache and give up (light gray), and selection
of the corridor (white). The percentage of times the robots chose to employ the cache
is the sum of the values reported by the light gray and the dark gray bars. The values
reported are averages computed over 50 experimental runs.

using the cache, therefore the corridor should be avoided and the given task should
be partitioned into sub-tasks. On the other hand, the never-partition method performs
better when the cache is costly: using the corridor is preferable for high values of I1.
The adaptive method is able to perform well in both cases, showing good performance
on the whole spectrum of the parameter I1.

Figure 8 provides a summary of the strategy employed by the robots in the swarm
when using the adaptive method, for the different values of Il. Each bar reports the
percentage of times that each action was performed by the robots; the reported values
are averages over 50 runs. The graph confirms that the robots select the corridor with
a higher frequency for increasing values of Il. For small values of I, the preferred
choice is the cache.

Figure 9 reports the time needed by the robots to use the corridor (fyp) and the
cache (tg,, .. and ty) employing the three different methods, when the interfacing
time is Os (left), 25s (center), and 50s (right). When IT = Os the always-partition
method performs better than the never-partition method (see Figure 7). Figure 9 (left)
shows that the time needed to pick up an object from the cache (zg,,,,) is considerably
lower than the one needed to cross the corridor(zyp). This means that the objects are
delivered to the nest faster by using the cache. Despite the fact that less robots are

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 19

n=0s Time Time Time
O corridor O corridor O corridor
o @ cache pick up o @ cache pick up o @ cache pick up
g O cache drop 2 O cache drop 2 O cache drop

Time (seconds;
500
11
J
o
Time (seconds;
500
----C k-
N
5
[|
Time (seconds;
500
11
{17

0oz & I@ =

never always adaptive never always adaptive never always adaptive
partition partition partition partition partition partition

Method Method Method

Figure 9: Time needed for using the corridor and the cache for the three different
methods. The graphs report the data for IT = Os (left), IT = 255 (center), and IT = 50s
(right).

contributing to depositing objects in the nest (half of the swarm works on the source
side), the boost in terms of speed that comes from using the cache makes the always-
partition strategy preferable to the never-partition strategy. For increasing values of I,
the relative gain in terms of speed progressively decreases (Figure 9, center and right),
and for IT = 50s always using the corridor becomes more advantageous than never
using it (see performance in Figure 7).

Figure 9 shows that with the adaptive method the times needed to access the cache
(tggore and 1y,) are always lower than with the always-partition method. This can be
explained by the fact that with the always-partition method all the robots try to access
the cache. This increases the competition for accessing the cache booths, and it is likely
that a robot finds the cache busy when trying to use it. For large values of I1, the time
the robots have to wait for a free cache booth is also large, as the robots using the cache
spend more time inside the booths (as result of a higher Pi). This effect can be seen on
Figure 9 in the fact that the variance of the pick up and drop time increases with the
value of I, when using the always-partition method. The adaptive method can reduce
the competition when the cache is not very advantageous (intermediate values of IT)
by increasing the frequency at which the robots use the corridor (see actions reported
in Figure 8). Additionally, the robots employing the adaptive method can benefit from
the give up mechanism which prevents them for waiting too long when the cache is not
immediately available.

6.3 Third set of experiments: adaptivity to changes

We test the adaptiveness of the method in response to a sudden variation in the environ-
mental conditions. The effect of the variation is to modify the relative costs of the two
strategies. In order to achieve this, we change the value of the interfacing time IT when
the experiment reaches half of its duration. We consider two cases: one in which IT
changes from 200s to Os and another in which it changes from Os to 200s. In the first

20 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

o T
- 7 Strategy _ } _
® cache I'I—ZOOs} M=0s
= o | O corridor }
> - |
<] N i
;0§ 8 B 8 8 g
g8l & ! : | AR
1 : | ' I
£ o] | I] +)
s\i o } i
g |
8 < ! ‘
S g ! ! T |
5 | l 1oL
r | T8 0§ 8 & s
[l i K ! i
N I T T R
o | : !
° T T T T T T T T : T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (hours)
o~ T
- Strategy _ i —
B cache M=0s iI'I—ZOOS
O corridor |
T S | .
2 | . g B B B
g . | -
2 31 PR b w ! B :
o T
: : S B I
c "
g &7 Co
@ I
5 . L
5 3 P
g g : !
<. 8 B s 8 f§ B B;
n & H } I I . N
|
o | | .
© L

Time (hours)

Figure 10: Strategy used in time when the interfacing time IT is varied from 200s to Os
(top) and from Os to 2005 (bottom). The vertical dashed line marks the instant in which
IT is changed (time ¢ = 8 hours and 20 minutes). The total duration of the experiment
is divided into windows of 1 hour, each box reports the percentage of usage (over 50
experimental runs) of each strategy in the time window preceding the value reported
on the X axis.

case it is expected that the corridor is used more frequently by the swarm in the initial
phase and, once IT changes to zero, the usage of the cache becomes more frequent; the
other way around is expected to happen in the second case. Figure 10 reports the results
of the two experiments, showing that by employing the method proposed in this paper
the swarm is able to adapt the strategy. The graph of Figure 10 (top) refers to the first
case described (decrease of I1); the graph of Figure 10 (bottom) to the second (increase
of IT). Each graph provides a summary of the data collected in the corresponding 50
experimental runs. In the graphs of Figure 10, the total time frame of the experiment
has been divided into windows of 1 hour. Each point of the plot reports, for each strat-

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 21

egy, the percentage of usage in the time window preceding the value indicated on the
X axis. The cases in which the robots give up using the cache are counted as usage of
the corridor.

In both cases, at half the experiment time, one of the two strategies is employed
more frequently than the other, indicating that the swarm identifies it as the best strat-
egy. The results at the end of both experiments show that the swarm reacts to the change
in the environmental conditions. In fact, the strategy of the swarm changes after the
value of IT is modified. The swarm converges to a new strategy more suited to the new
value of I1.

6.4 Fourth set of experiments: scalability

We test the scalability of the system when using the adaptive method and the two ref-
erence methods, for IT = 0s and IT = 25s. We vary the swarm size using the following
values: 4, 6, 8, 10, 14, 18, 22, 26, and 30. In the following, we will refer to area
coverage as the percentage of the total area actually covered by the robots. The area
coverage depends on the size of the swarm. As the total area of the environment is
roughly 2.5m? and the radius of an e-puck is 70mm, the area coverage varies from
a minimum of 2.46%, when the swarm is composed of 4 robots, to a maximum of
18.47%, when the swarm is composed of 30 robots.” Figure 11 reports the results of
the scalability experiments for IT = Os (top) and IT = 25s (bottom). The graphs report,
for each of the three methods, the average number of objects retrieved by each robot for
different area coverages. The graphs show that, using the never-partition method, the
individual performance constantly decreases for increasing swarm sizes. This is due
to a growing interference, that progressively makes it harder to navigate through the
corridor. The adaptive method and the always-partition method instead, have a peak
in performance when the area coverage is 4.93% (8 robots), for both the values of I1
here considered. This suggests that, in the experimental setup presented in this work, 8
robots is the optimal size for the swarm in order to exploit the cache at the maximum
efficiency. With more than 8 robots, both the adaptive method and the always-partition
method decrease in performance, but the adaptive method does so at a slower rate.
Thus, the method shows to be more scalable. The reason for which the performance
of the adaptive method is higher than the one of the always-partition method resides in
the fact that it can balance the number of robots trying to use the cache and the corri-
dor. This reduces the competition for accessing the cache (thus the expected waiting
time) and increases the navigability in the corridor with respect to the never-partition
method.

7 Conclusions

The work presented in this article is part of a broader research that aims at conceiving
methods that allow a swarm to partition complex tasks in smaller, manageable sub-
tasks. Partitioning tasks into sub-tasks and defining interfaces of these sub-tasks in an

"The area of the arena is computed excluding the space available inside each booth.

22 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

Number of robots

4 6 8 10 14 18 22 26 30
o | | | | | | | | |
B =051 .- * % __ method
<] s == — i
27 9 P = adaptive
e c g - -v- never*pamllon
5 2 k- always—partition
oo o
o o n —
oc o Voo Voo T -
>0 v Ska
34 V- -
£5 8 v *
2 g = -v--
o T
2> EE
O ® v
o= B
)
o
o
T T T T T T T T T
2.46 3.69 4.93 6.16 8.62 11.08 13.55 16.01 18.47
Area coverage (%)
Number of robots
4 6 8 10 14 18 22 26 30
o | | | | | | | | |
& 7 method
kS —
'S @ o adaptive
°g 8-+ -9~ never-partition
52 - always—partition
Qo o
o B s
Qs = | VTtV
[}
55 3
g& =7 e
08 T oy
O m®
2= B
a
[¢]
o
T T T T T T T T T
2.46 3.69 4.93 6.16 8.62 11.08 13.55 16.01 18.47

Area coverage (%)

Figure 11: Results of the scalability experiment for IT=0s (top) and I1 = 25 (bottom).
The plots report, for each of the three methods, the average individual performance for
different area coverages (the top axis reports the corresponding number of robots). The
same plot, also reporting the 95% confidence intervals (omitted for clarity here), can
be found online (see Pini et al. (2011b)).

autonomous way is a major challenge. Nevertheless, we are confident that task parti-
tioning can make a significant contribution to the future of swarm robotics. Swarms
of robots can obtain benefits from task partitioning in terms of reduction of interfer-
ence between individuals, better exploitation of specialization and heterogeneity, par-
allelism, and efficiency gains. Task partitioning also entails costs in terms of synchro-
nization overheads where sub-tasks interface with each other.

In the work presented in this paper, we focused on a task pre-partitioned into a
sequence of two sub-tasks that interface with each other in an asynchronous way. We
tested different experimental conditions, considering settings in which it is, or it is not,
advantageous to use a partition strategy. The settings are different in terms of the cost
of using a partition strategy for solving the overall task.

We proposed an adaptive method that allows a swarm of robots to decide whether
to employ task partitioning or not depending on the environmental conditions. The
method is fully distributed and relies on the individuals’ perception of the cost of em-
ploying task partitioning. Task partitioning at the level of the swarm is a self-organized

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 23

process that results from individual decisions. We tested the method in simulation,
using foraging as testbed and comparing the proposed method to two reference meth-
ods. The results show that with the proposed method the swarm selects a strategy that
suits the specific environment, leading to good performance in the different cases we
considered. We also performed experiments with the aim of assessing the capability
of the swarm to react to changes in the environmental conditions. The results show
that the swarm is able to respond to changes and to adapt the strategy being employed.
Scalability tests show that the adaptive method performs well across different swarm
sizes.

The work presented here is a first step towards a more general method for tackling
a general task partitioning problem, in which there are more than two sub-tasks. Short
term goals for future research will concern studying how the general N sub-tasks case
can be derived from the two sub-tasks case presented here and what modifications need
to be done to the method we proposed in this work. A straightforward approach would
be to apply the method to a series of N sub-tasks, with each robot deciding either
to perform the overall task, or one of the sub-tasks. We believe the method can be
transferred to such a situation without any modification. Nevertheless, this needs to be
verified experimentally. Another possibility would be a top-down recursive approach,
where (sub-)tasks can be partitioned at different levels of granularity, independently of
each other. This would allow the swarm to adopt “hybrid” strategies, with some parts
of the overall task partitioned in atomic sub-tasks and others in higher-level sub-tasks.
We think such an approach would be extremely powerful and flexible, but it would also
require major modifications to the proposed method for explicitly taking into account
how (sub-)tasks relate to each other.

Another direction for future work is the addition of a social component to the sys-
tem, using explicit local communication within the swarm. For example, the robots
could communicate to each other their perception of the costs associated to each strat-
egy, and take decisions based on the information received. The swarm might benefit
from communication in terms of a faster responsiveness and lower sensitiveness to
noisy conditions. The method proposed in this paper would require minor modifica-
tions in order to take into account the information received and to use it to update the
costs estimates.

Acknowledgements. Marco Dorigo acknowledges support by the European Union
through the ERC Advance Grant “E-SWARM: Engineering Swarm Intelligence Sys-
tems” (contract 246939). Marco Dorigo, Mauro Birattari, and Arne Brutschy acknowl-
edge support from the Belgian F.R.S.-FNRS. Marco Frison acknowledges support
from “Seconda Facolta di Ingegneria”, Alma Mater Studiorum, Universita di Bologna.
Andrea Roli acknowledges support from the “Brains (Back) to Brussels” 2009 pro-
gramme, funded by the Institut d’encouragement de la Recherche Scientifique et de
I’Innovation de Bruxelles (IRSIB). The authors thank Prasanna Balaprakash for his
help and suggestions during the preparation of this paper. The authors also thank the
reviewers for their suggestions and advice for improving the work presented here.

24 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

References

Agassounon, W. and Martinoli, A. (2002). Efficiency and robustness of threshold-
based distributed allocation algorithms in multi-agent systems. In Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1090-1097. ACM Press, New York.

Aho, A. (1983). Data Structures and Algorithms. Addison-Wesley, Boston, MA.

Anderson, C., Boomsma, J. J., and Bartholdi, III, J. J. (2002). Task partitioning in
insect societies: Bucket brigades. Insectes Sociaux, 49:171-180.

Anderson, C. and Jadin, J. L. V. (2001). The adaptive benefit of leaf transfer in Atta
colombica. Insectes Sociaux, 48:404—405.

Anderson, C. and Ratnieks, F. L. W. (1999). Worker allocation in insect societies:
Coordination of nectar foragers and nectar receivers in honey bee (Apis mellifera)
colonies. Behavioral Ecology and Sociobiology, 46(2):73-81.

Beni, G. (2005). From swarm intelligence to swarm robotics. In Sahin, E. and Spears,
W. M., editors, Swarm Robotics, volume 3342 of Lecture Notes in Computer Science,
pages 1-9. Springer, Berlin, Germany.

Bonabeau, E., Sobkowski, A., Theraulaz, G., and Deneubourg, J.-L. (1999). Adaptive
task allocation inspired by a model of division of labor in social insects. In Lundh,
D., Olsson, B., and Narayanan, A., editors, Bio-computing and emergent computa-
tion, pages 36—45. World Scientific, Skovde, Sweden.

Bonabeau, E., Theraulaz, G., and Deneubourg, J.-L. (1996). Quantitative study of
the fixed threshold model for the regulation of division of labour in insect societies.
Proc. R. Soc. Lond. B., 263(1376):1565-1569.

Brutschy, A., Pini, G., Baiboun, N., Decugniere, A., and Birattari, M. (2010). The
IRIDIA TAM: A device for task abstraction for the e-puck robot. Technical Report
TR/IRIDIA/2010-015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Cox, D. R. and Reid, N. (2000). The Theory of the Design of Experiments. Chapman
and Hall/CRC, London.

Fontan, M. S. and Matari¢, M. J. (1996). A study of territoriality: The role of critical
mass in adaptive task division. In Maes, P., Matarié¢, M. J., Meyer, J.-A., Pollack,
J., and Wilson, S., editors, From Animals to Animats 4: Proceedings of the Fourth
International Conference of Simulation of Adaptive Behavior, pages 553-561. MIT
Press, Cambridge, MA.

Fowler, H. G. and Robinson, S. W. (1979). Foraging by Atta sexdens (Formicidae:
Attini): Seasonal patterns, caste and efficiency. Ecological Entomology, 4(3):239—
247.

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 25

Gordon, D. M. (1999). Interaction patterns and task allocation in ant colonies. In
Detrain, C., Pasteels, J. M., and Deneubourg, J.-L., editors, Information Processing
in Social Insects, pages 51-67. Birkhduser Verlag, Basel, Switzerland.

Hart, A., Anderson, C., and Ratnieks, F. L. W. (2002). Task partitioning in leafcutting
ants. Acta ethologica, 5:1-11.

Hart, A. G. and Ratnieks, F. L. W. (2000). Leaf caching in Atta leafcutting ants: Dis-
crete cache formation through positive feedback. Animal behaviour, 59(3):587-591.

Hart, A. G. and Ratnieks, F. L. W. (2001a). Leaf caching in the leafcutting ant Atta
colombica: Organizational shift, task partitioning and making the best of a bad job.
Animal Behaviour, 62(2):227-234.

Hart, A. G. and Ratnieks, F. L. W. (2001b). Task partitioning, division of labour and
nest compartmentalisation collectively isolate hazardous waste in the leafcutting Atta
cephalotes. Behavioral Ecology and Sociobiology, 49:387-392.

Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., and Fowler, H. (1980). Forag-
ing by bucket-brigade in leaf-cutter ants. Biotropica, 12(3):210-213.

Jeanne, R. L. (1986). The evolution of the organization of work in social insects.
Monitore zoologico italiano, 20:119-133.

Jeanne, R. L. (2002). Social complexity in the Hymenoptera, with special attention
to the wasps. In Kikuchi, T., Azuma, N., and Higashi, S., editors, Proceedings of
the 14th Congress of the IUSSI, pages 81—130. Hokkaido University Press, Sapporo,
Japan.

Kalra, N. and Martinoli, A. (2006). Comparative Study of Market-Based and
Threshold-Based Task Allocation. In Gini, M. and Voyles, R., editors, Distributed
Autonomous Robotic Systems 7, pages 91-101. Springer Japan.

Krieger, M. J. B. and Billeter, J.-B. (2000). The call of duty: Self-organized task
allocation in a population of up to twelve mobile robots. Robotics and Autonomous
Systems, 30(1-2):65-84.

Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006). Division of labor in a group
of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous
and Adaptive Systems, 1(1):4-25.

Lein, A. and Vaughan, R. (2008). Adaptive multi-robot bucket brigade foraging. In
Bullock, S., Noble, J., Watson, R., and Bedau, M. A., editors, Artificial Life XI: Pro-
ceedings of the Eleventh International Conference on the Simulation and Synthesis
of Living Systems, pages 337-342. MIT Press, Cambridge, MA.

Lopes, J. E, Forti, L. C., Camargo, R. S., Matos, C. A. O., and Verza, S. S. (2003). The
effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera:
Formicidae). Sociobiology, 42(1):87-91.

26 IRIDIA — Technical Report Series: TR/IRIDIA/2011-013

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J. C., Floreano, D., and Martinoli, A. (2009). The e-puck, a robot designed
for education in engineering. In Gongalves, P. J. S., Torres, P. J. D., and Alves,
C. M. O,, editors, Proceedings of the 9th Conference on Autonomous Robot Sys-
tems and Competitions, pages 59-65. IPCB: Instituto Politecnico de Castelo Branco,
Castelo Branco, Portugal.

@stergaard, E. H., Sukhatme, G. S., and Matari¢, M. J. (2001). Emergent bucket brigad-
ing: A simple mechanisms for improving performance in multi-robot constrained-
space foraging tasks. In AGENTS ’01: Proceedings of the Fifth International Con-
ference on Autonomous Agents, pages 29-30. ACM Press, New York.

Parker, C. A. C. and Zhang, H. (2010). Collective unary decision-making by decen-
tralized multiple-robot systems applied to the task-sequencing problem. Swarm In-
telligence, 4(3):199-220.

Parker, L. E. (1998). ALLIANCE: an architecture for fault tolerant multirobot cooper-
ation. Robotics and Automation, IEEE Transactions on, 14(2):220-240.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews,
N., Ferrante, E., Di Caro, G., Ducatelle, F,, Stirling, T., Gutiérrez, A., Gambardella,
L. M., and Dorigo, M. (2011). ARGoS: a Modular, Multi-Engine Simulator for Het-
erogeneous Swarm Robotics. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2011). In press.

Pini, G., Brutschy, A., Birattari, M., and Dorigo, M. (2011a). Task partitioning in
swarms of robots: reducing performance losses due to interference at shared re-
sources, volume 85 of LNEE, pages 217-228. Springer, Berlin, Germany.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birattari, M. (2011b).
Task partitioning in swarms of robots: An adaptive method for strategy se-
lection — Online supplementary material. http://iridia.ulb.ac.be/supp/
IridiaSupp2011-003/.

Ratnieks, F. L. W. and Anderson, C. (1999). Task partitioning in insect societies.
Insectes Sociaux, 46(2):95-108.

Reyes, J. L. and Fernandez Haeger, J. (1999). Sequential co-operative load transport in
the seed-harvesting ant Messor barbarus. Insectes Sociaux, 46:119-125.

Sahin, E. (2005). Swarm robotics: From sources of inspiration to domains of appli-
cation. In Sahin, E. and Spears, W. M., editors, Swarm Robotics, volume 3342 of
Lecture Notes in Computer Science, pages 10-20. Springer, Berlin, Germany.

Scheidler, A., Merkle, D., and Middendorf, M. (2008). Stability and performance of ant
queue inspired task partitioning methods. Theory in Biosciences, 127(2):149-161.

Seeley, T. D. (1989). Social foraging in honey bees: How nectar foragers assess their
colony’s nutritional status. Behavioral Ecology and Sociobiology, 24:181-199.

IRIDIA — Technical Report Series: TR/IRIDIA/2011-013 27

Shell, D. J. and Matari¢, M. J. (2006). On foraging strategies for large-scale multi-
robot systems. In Proceedings of the 19th IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2717-2723. IEEE Press, Pitscataway,
NJ.

Theraulaz, G., Bonabeau, E., Solé, R. V., Schatz, B., and Deneubourg, J.-L. (2002).
Task partitioning in a ponerine ant. Journal of theoretical biology, 215:481-489.

Winfield, A. F. T. (2009). Towards an engineering science of robot foraging. In Asama,
H., Kurokawa, H., Ota, J., and Sekiyama, K., editors, Distributed Autonomous
Robotic Systems 8, pages 185—-192. Springer, Berlin, Germany.

