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Abstract

Cloud computing is required by modern technology. Task scheduling and resource allocation are important

aspects of cloud computing. This paper proposes a heuristic approach that combines the modified analytic

hierarchy process (MAHP), bandwidth aware divisible scheduling (BATS) + BAR optimization, longest expected

processing time preemption (LEPT), and divide-and-conquer methods to perform task scheduling and resource

allocation. In this approach, each task is processed before its actual allocation to cloud resources using a

MAHP process. The resources are allocated using the combined BATS + BAR optimization method, which

considers the bandwidth and load of the cloud resources as constraints. In addition, the proposed system

preempts resource intensive tasks using LEPT preemption. The divide-and-conquer approach improves the

proposed system, as is proven experimentally through comparison with the existing BATS and improved

differential evolution algorithm (IDEA) frameworks when turnaround time and response time are used as

performance metrics.
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Introduction
Cloud computing is an accelerating technology in the

field of distributed computing. Cloud computing can be

used in applications that include storing data, data ana-

lytics and IoT applications [1]. Cloud computing is a

technology that has changed traditional ways in which

services are deployed by enterprises or individuals. It

provides different types of services to registered users as

web services so that the users do not need to invest in

computing infrastructure. Cloud computing provides

services such as IaaS (Infrastructure as a Service), PaaS

(Platform as a Service), and SaaS (Software as a Service)

[2]. In each type of service, the users are expected to

submit the requests to the service provider through the

medium of the Internet. The service provider is respon-

sible for managing the resources to fulfill the requests

generated by users. Service Providers employ scheduling

algorithms to schedule the incoming request (tasks) and

to manage their computing resources efficiently. Task

scheduling and resource management permit providers

to maximize revenue and the utilization of resources up

to their limits. In practice, in terms of the performance

of cloud computing resources, the scheduling and

allocation of resources are important hurdles. For this

reason, researchers have been attracted to studies of task

scheduling in cloud computing. Task scheduling is the

process of arranging incoming requests (tasks) in a

certain manner so that the available resources will be

properly utilized. Because cloud computing is the tech-

nology that delivers services through the medium of the

Internet, service users must submit their requests online.

Because each service has a number of users, a number

of requests (tasks) may be generated at a time. Systems

that do not employ scheduling may feature longer

waiting periods for tasks moreover, some short-term

tasks may terminate, due to the waiting period. At the

time of scheduling, the scheduler needs to consider a

number of constraints, including the nature of the task,

the size of the task, the task execution time, the avail-

ability of resources, the task queue, and the load on the
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resources. Task scheduling is one of the core issues in

cloud computing. Proper task scheduling may result in

the efficient utilization of resources. The major advantage

of cloud computing is that it promotes proper utilization

of resources [3]. Thus, task scheduling and resource

allocation are two sides of a single coin. Each affects

the other.

Currently, Internet users can access content anywhere

and anytime, without needing to consider the hosting

infrastructure. Such hosting infrastructure consists of vari-

ous machines with various capabilities that are maintained

and managed by the service provider. Cloud computing

enhances the capabilities of such infrastructure, which can

access the Internet. Cloud service providers earn profits

by providing services to cloud service users.

The cloud service end user can use the entire stack of

computing services, which ranges from hardware to applica-

tions. Services in cloud computing employ a pay-as-you-go

basis. The cloud service end user can reduce or increase the

available resources, per the demands of the applications.

This is one the major advantages of cloud computing, but

service users may be responsible for paying additional costs

for this advantage. The cloud service user can rent the re-

sources at any time and release them with no difficulty. The

cloud service user has the freedom to employ any service

based on application need. The freedom of service choice

for users has led to problems; that is the next user request

cannot be perfectly predicted. Thus, task scheduling and re-

source allocation are mandatory parts of cloud computing

research. The efficiency of resource uses depends on the

scheduling and load balancing methodologies, rather than

the random allocation of resources. Cloud computing is

widely used for solving complex tasks (user requests).

In solving complex task issues, the use of scheduling

algorithm is recommended. Such scheduling algo-

rithms leverage the resources. The proposed system

employs features of the Cybershake scientific work-

flow and the Epigenomics scientific workflow, which

are described in Section Input Data.

The major contributions of this paper are summarized

as follows.

1. The analytic hierarchy process is modified to rank

scientific tasks.

2. To manage the resources given bandwidth

constraints and the load on the virtual machine, the

proposed system incorporates a version of the

existing BATS algorithm that has been modified by

introducing BAR system optimization.

3. Bipartite graphs are utilized to map tasks to

appropriate virtual machines once the condition

is satisfied.

4. A preemption methodology gives us the status of the

virtual machine, and a modified divide-and-conquer

methodology has been proposed to aggregate the

results after tasks preemption.

5. The proposed solution is experimentally investigated

using the CloudSim simulator.

The remainder of the paper is organized as follows.

Section “Introduction” provides an introduction to cloud

computing and its outstanding issues, especially task

scheduling and resource allocation. Section “Related

work” focuses on related studies that investigate task

scheduling and resource allocation. Section “Input data”

describes the input data provided to the Cybershake

scientific workflows and the Epigenomics scientific

workflow. Section “Proposed system” addresses the

architecture of the proposed system. Section "Proposed

methodology” explains the proposed methodology.

Section “Evaluation of the proposed heuristic approach”

focuses on evaluating the proposed heuristic approach.

Section “Results and discussion” describes the results

and discusses the proposed system in comparison with

the existing BATS and IDEA algorithms. Finally, con-

cluding remarks and future directions are presented in

Section “Conclusion”.

Related work
This section provides a brief review of task scheduling

and resource allocation strategies. Many researchers

have proposed solutions to overcome the problem of

scheduling and resource allocation. However, further im-

provements can still be made. Tsai et al. [4] proposed a

multi-object approach that employs the improved differ-

ential evolution algorithm. This existing method pro-

vides a cost and time model for cloud computing.

However, variations in the tasks are not considered in

this approach. Magukuri et al. [5] proposed a load balan-

cing and scheduling algorithm that does not consider

job sizes. The authors considered the refresh times of

the server in fulfilling requests. Cheng et al. [6] intro-

duced the scheduling of tasks based on a vacation

queuing model. This methodology does not show the

proper utilization of resources. Lin et al. [7] proposed

the scheduling of tasks while considering bandwidth as a

resource. A nonlinear programming model has been

formed to allocate resources to tasks. Ergu et al. [8] pro-

posed AHP ranking-based task scheduling. Zhu et al. [9]

introduced rolling-horizon scheduling architecture to

schedule real-time tasks. Authors have illustrated the

relationship between task scheduling and energy conser-

vation by resource allocation. Lin et al. [10] proposed

scheduling for parallel workloads. Authors have used the

FCFS approach to order jobs when resources are avail-

able. The proposed system does not focus on aborting

the jobs and starvation. Ghanbari et al. [11] proposed a

priority-based job scheduling algorithm for use in cloud
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computing. Multi criteria decisions and multiple attri-

butes are considered. Polverini et al. [12] introduced the

optimized cost of energy and queuing delay constraints.

Alejandra et al. [13] proposed the use of meta-heuristic

optimization and particle swarm optimization to reduce

execution costs through scheduling. Keshk et al. [14]

proposed the use of modified ant colony optimization in

load balancing. This method improves the makespan of

a job. This system does not consider the availability of

resources or the weight of tasks. Shamsollah et al. [15]

proposed a system based on a multi-criteria algorithm

for scheduling server load. Shamsollah et al. [16] pro-

posed a system based on priority for performing divisible

load scheduling that employs analytical hierarchy

process. Gougarzi et al. [17] proposed a resource alloca-

tion problem that aims to minimize the total energy cost

of cloud computing systems while meeting the specified

client-level SLAs in a probabilistic sense. Here, authors

have applied a reverse approach that applies a penalty if

the client does not meet the SLA agreements. Some

authors have implemented a heuristic algorithm to solve

task scheduling and resource allocation problem de-

scribed above. Radojevic et al. [18] introduced central

load balancing decision model for use in cloud environ-

ments; this model automates the scheduling process and

reduces the role of human administrators. However, this

model is deficient in determining the capabilities of

nodes and, configuration details, and the complete sys-

tem has no backup, thus resulting in a single point of

failure. In addition, Ghanbari et al. [19] and Goswami et

al. [20] focus on scheduling tasks while considering

various constraints. This state-of the art motivates the

authors of this study to conduct additional research on

task scheduling and resource allocation.

Input data
Cybershake scientific workflow

Cloud computing is the service provider paradigm in which

users submit requests for execution. Thus, the responsibility

of the cloud service provider is to schedule various requests

and manage resources efficiently. To the best of the authors’

knowledge, most existing work involves scheduling tasks

once they enter a task queue. However, the actual procedure

of scheduling tasks and resource management begins with

how the service provider addresses incoming tasks. The pro-

posed system uses Cybershake scientific workflow data as in-

put tasks [21]. Fig. 1 shows a visualization of the Cybershake

scientific workflow, which is used by the Southern California

Earthquake Center (SCEC) to characterize earthquake haz-

ards using the Probabilistic Seismic Hazard Analysis

(PSHA) technique. It also generates Green strain tensors

(GSTs). Table 1 shows the Cybershake seismogram syn-

thesis tasks with their sizes and execution times. The

Cybershake is a collection of various node data that are

available for study [22]. The Cybershake scientific work-

flow sample tasks are available with task size 30,50,100

and 1000. From a computational point of view, the seis-

mogram synthesis tasks are quite demanding. The Cyber-

shake spends a lot of time on seismogram synthesis

during its execution. These types of tasks also require

large amount of computational resources, such as CPU

time, and memory.

Cybershake scientific workflow has been divided

into 5 steps.

1. Extract GST - This step of the workflow extracts the

GST (Green strain tensor) data for processing.

2. Seismogram synthesis – These tasks are the most

computationally intensive. Most of the time spent in

running the Cybershake algorithm is employed on

this step.

3. ZipSeis – This step aggregates the processed data.

Fig. 1 Cybershake scientific workflow

Table 1 Cybershake seismogram synthesis tasks

Tasks Size of tasks Time

Task 3 62,69,51,663 39.06

Task 5 69,47,76,323 38.49

Task 7 58,57,63,637 36.27

Task 9 53,68,97,326 32.29

Task 11 67,05,35,542 62.25

Task 14 40,67,28,38,798 96.91

Task 16 45,23,96,996 45.60

Task 18 50,27,64,231 28.67

Task 20 62,41,88,532 24.56

Task 22 42,65,77,006 31.05

Task 24 51,58,32,878 54.87

Task 26 68,14,99,417 23.99

Task 28 44,14,51,516 26.46
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4. PeakValCalcOkaya – The highest-strength values of

each seismogram are calculated in this step.

5. ZipPSA - This step aggregates the processed data.

Epigenomics scientific workflow

Figure 2 shows the Epigenomics scientific workflow [22],

which is used to automate the process of genome

sequencing. This operation is associated with resource-

intensive tasks. The generated data are converted into

files and forwarded to Mag system. This process also

involves many operations, and these operations are

time consuming.

Proposed system
Figure 3 shows the architecture of the proposed system.

In practice, various types and sizes of tasks arrive at the

cloud data centers for execution. The proposed system

takes the real tasks as an input, as described in Section

3. In general, scientific tasks represent collections of

different types and sizes. To manage the tasks that come

into a cloud data center, the proposed system uses the

analytic hierarchy process (AHP). The primary aim of

this proposed system is to manage incoming tasks.

Therefore, the proposed system uses the AHP method-

ology to assign a rank to each task based on its length

and run time. The procedure for ranking the tasks for

scientific workflows is described in section 5.1. As soon

as the tasks are assigned individual rankings, they are

collected and arranged into task queues. The tasks in

the task queue are strictly arranged following the AHP

ranking. Thus, the first stage of the proposed system is

completed. Next, in the second stage, the proposed sys-

tem also addresses the computing resources of cloud

data centers, such as CPU, memory and bandwidth

using the proposed BATS+BAR optimized allocation

methodology. This methodology works as follows. It

takes the task to be executed from the task’ queue. The

assignment of resources and tasks follows the allocation

Eq. 4. A detailed explanation is given in section 5.2.

This stage is the second part of the procedure in which

the allocations of resources have been carried out using

BATS+BAR. In the next part, the proposed system uses

a preemption methodology, i.e., the preemption

method. LEPT continuously checks the load of the vir-

tual machine. If it is exceeded the proposed system

then uses a virtual machine status table to determine

the current status of other virtual machines (VMs). In

this regard, if the current virtual machine is overloaded

and others are idle, then such VMs are located. After

this identification, the proposed system uses a divide-

and-conquer methodology, which breaks up the task

and distributes it to other virtual machines, as de-

scribed in detail in section 5.3. In this way, the pro-

posed system has overcome the limitations of BATS in

terms of the allocation of resources on the basis of

CPU, memory and bandwidth. If any one resource (CPU,

Fig. 2 Epigenomics scientific workflow

Fig. 3 Proposed system architecture
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memory, bandwidth) is not available in sufficient amounts,

then the tasks must wait. In addition, existing systems do

not consider preemption, and the inputs to existing sys-

tems are tasks of the same size. Fig. 4 presents a flow chart

that represents the proposed heuristic approach.

Proposed methodology
Here, we provide a detailed explanation of the proposed

system to overcome the scheduling challenge.

Analytic hierarchy process

The analytic hierarchy process [23] is designed to

solve complex problems with multiple criteria. The

proposed system uses this procedure in cloud comput-

ing environments to rank the incoming tasks in a

certain manner. The proposed system uses scientific

workflow tasks, such as those of Cybershake and

Epigenomics, for experiments because such require

long execution times. Initially, the workflow is divided

into five stages, which are introduced in the input

data section. Before proceeding with the proposed

system, the AHP methodology is applied for the

Fig. 4 Proposed system flowchart

Fig. 5 Complete Bipartite graph

Table 2 Numerical saaty preferences

Numerical rating Judgment preference

9 Extremely preferred

8 Very strongly to extremely preferred

7 Very strongly preferred to preferred

6 Strongly to very strongly

5 Strongly preferred

4 Moderately to strongly preferred

3 Moderately preferred

2 Equally to moderately preferred

1 Equally preferred
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overall Cybershake workflow. The Cybershake work-

flow is control flow dependent; thus, the second stage

will execute only after the execution of the first stage.

To evaluate preferences, the proposed system uses

the Saaty preference table, which is given in Table 2

with its numerical ratings. To promote understanding

while accounting for space limitations, the proposed

system divides each calculation table into two parts.

The first part extends from Task 3 to Task 18,

whereas the other part shows the calculations from

Task 20 to Task 28.

Here, the proposed system considers two significant cri-

teria that are involved in scientific tasks; task length and task

run time. The comparison numerical ratings are given in

Table 2, which is known as the Saaty preference table. Before

the actual calculation is begun, the proposed system assigns

preference values to the tasks. Here, the preferences associ-

ated with the tasks are based on their lengths and the execu-

tion times of the different tasks. The proposed system

slightly modifies the Saaty table preferences because, as tasks

with different ranks are on a server, the ranks of subsequent

tasks change, and new rankings must be calculated. The pro-

posed system calculates such rankings of tasks. Tables 3

and 4 show the assignment of Saaty preferences according

to comparing the sizes and runtimes of tasks. In the bottom

row, the sum of each column is noted.

Tables 5 and 6 show the multiplication of the Saaty pref-

erence values by the results arranged in the bottom rows of

Tables 3 and 4 and then present the results of adding each

column at the bottom.

Table 3 Summation of each column-I

Task Task 3 Task 5 Task 7 Task 9 Task 11 Task 14 Task 16 Task 18

Task 3 1 2 3 4 1/7 1/6 1/9 6

Task 5 1/2 1 3 4 1/5 1/6 1/3 6

Task 7 1/3 1/2 1 4 1/6 1/7 1/4 6

Task 9 1/4 1/7 1/2 1 1/7 1/8 1/5 6

Task 11 2 2 2 4 1 1/2 3 6

Task 14 3 3 3 4 2 1 2 6

Task 16 2 2 3 4 1/3 1/4 1 6

Task 18 1/5 1/5 1/4 1/3 1/8 1/9 1/6 1

Task 20 1/4 1/4 1/4 1/3 1/7 1/8 1/5 1/2

Task 22 1/4 1/4 1/3 1/2 1/7 1/8 1/5 6

Task 24 3 3 3 4 1/2 1/3 2 6

Task 26 1/5 1/5 1/5 1/4 1/8 1/9 1/6 1/3

Task 28 1/5 1/5 1/4 1/3 1/8 1/9 1/6 1/2

Sum 791/60 46/3 1195/60 365/12 601/112 183/56 3229/360 338/6

Table 4 Summation of each column-II

Task Task 20 Task 22 Task 24 Task 26 Task 28

Task 3 8 5 1/8 9 7

Task 5 8 5 1/4 9 7

Task 7 8 5 1/5 9 7

Task 9 8 5 1/6 9 7

Task 11 8 5 3 9 7

Task 14 8 5 2 9 7

Task 16 8 5 1/2 9 7

Task 18 8 1/2 1/7 9 7

Task 20 1 1/3 1/6 9 1/2

Task 22 8 1 1/6 9 7

Task 24 8 5 1 9 7

Task 26 1/2 1/4 1/7 1 1/3

Task 28 8 1/3 1/7 9 1

Sum 179/2 509/121 2161/280 109 431/6

Table 5 Normalization of column value-I

Tasks 3 5 7 9 11 14 16 18

3 60/791 6/46 35/239 48/365 16/601 28/549 40/3229 9/84

5 30/791 3/46 35/239 48/365 112/300 28/549 120/3229 9/84

7 20/791 3/92 60/119 48/365 56/1803 8/183 90/3229 9/84

9 15/791 1/46 6/239 12/365 16/601 7/183 70/3229 9/84

11 120/791 6/46 24/239 48/365 112/601 28/183 1080/3229 9/84

14 180/791 9/46 35/239 48/365 224/601 56/183 720/3229 9/84

16 120/791 6/46 35/239 49/365 112/1803 14/183 360/3229 9/84

18 12/791 3/230 3/239 4/365 14/601 56/1647 60/3229 6/338

20 15/791 3/184 3/239 4/365 16/601 7/183 72/3229 3/338

22 15/791 3/184 4/239 6/365 16/601 7/183 72/3229 9/84

24 180/791 9/46 35/239 48/365 56/601 56/549 720/3229 9/84

26 12/791 3/230 12/119 3/365 14/601 56/1647 60/3229 1/168

28 12/791 3/230 3/239 4/365 14/601 56/1647 60/3229 3/338

Sum 1 0.96 0.9723 1 1.0576 0.9817 1.09 1.005

Table 6 Normalization of column value-II

Tasks 20 22 24 26 28

3 16/179 60/509 35/2161 9/109 42/431

5 16/179 60/509 70/2161 9/109 42/431

7 16/179 60/509 65/2161 9/109 42/431

9 16/179 60/509 140/6483 9/109 42/431

11 16/179 60/509 840/2161 9/109 42/431

14 16/179 60/509 560/2161 9/109 42/431

16 16/179 60/509 140/2161 9/109 42/431

18 16/179 16/509 40/2161 9/109 42/431

20 2/179 4/509 140/6483 9/109 3/43

22 16/179 12/509 140/6483 9/109 42/431

24 16/179 60/509 280/2161 9/109 42/431

26 1/179 3/509 40/2161 1/109 2/43

28 16/179 4/509 40/2161 9/109 6/43

Sum 1 1.066 1.034 1 1.351
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Tables 7 and 8 show the normalized values of Tables 5

and 6, which appear earlier in the manuscript. These

tables include average at the bottom. The results show

that the summation of each column is equal to 1.

After this calculation, the rankings of Cybershake

seismogram synthesis scientific workflow tasks are given

in Table 9.

BATS+ BAR system

The proposed system has two aspects, which involve

scheduling tasks and managing resources. Here, we

improve upon the BATS algorithm, which was originally

proposed by Weiwei Lin [7]. Independent tasks of equal

size are considered in the design of this system. How-

ever, in allocating resources, the system does not con-

sider the load on virtual machines because the waiting

period for the tasks is long. In other cases, one virtual

machine is busy while it executes a task, whereas others

are occupied and waiting for jobs. The bar systems (BSs)

algorithm was proposed by Acebo and Rosa (2008) [24].

The social behavior of bartenders is the basis of BS

systems. Swarm intelligence has added an optimization

aspect to BS. In a bar, bartenders must act in a highly

dynamic, asynchronous and time-critical environment,

and no obvious greedy strategy (such as serving the best

customer first, serving the nearest customer first or serv-

ing the first-arriving customer first) gives good results.

Thus, multi-agent systems provide a good framework

within which to address the challenge of developing a

new class of adaptive and robust systems. In general, the

crucial step in the BS algorithm is the choice of the task

that the agent must execute in the next time step. In

BSs, agents acting as bartenders, operate concurrently in

Table 7 Compute weighted sum-I

3 5 7 9 11 14 16 18

Task 3 0.075 0.086 0.146 0.131 0.026 0.051 0.012 0.107

Task 5 0.037 0.086 0.146 0.131 0.037 0.051 0.037 0.107

Task 7 0.025 0.032 0.050 0.131 0.031 0.043 0.027 0.107

Task 9 0.018 0.021 0.025 0.032 0.026 0.038 0.021 0.107

Task 11 0.151 0.130 0.100 0.131 0.186 0.153 0.334 0.107

Task 14 0.227 0.195 0.146 0.131 0.372 0.306 0.222 0.107

Task 16 0.151 0.021 0.146 0.131 0.062 0.076 0.111 0.107

Task 18 0.015 0.013 0.012 0.010 0.023 0.034 0.018 0.017

Task 20 0.018 0.016 0.012 0.010 0.026 0.038 0.022 0.008

Task 22 0.018 0.016 0.016 0.016 0.026 0.038 0.022 0.107

Task 24 0.227 0.195 0.146 0.131 0.093 0.102 0.222 0.107

Task 26 0.015 0.013 0.010 0.008 0.023 0.034 0.018 0.005

Task 28 0.015 0.013 0.012 0.010 0.023 0.034 0.018 0.008

Sum 1 0.96 0.972 1 1.057 0.981 1.09 1.005

Table 8 Compute weighted sum-II

20 22 24 26 28 Average of I and II

Task 3 0.089 0.117 0.016 0.082 0.097 0.079

Task 5 0.089 0.117 0.032 0.082 0.097 0.116

Task 7 0.089 0.117 0.026 0.082 0.097 0.065

Task 9 0.089 0.117 0.021 0.082 0.097 0.053

Task 11 0.089 0.117 0.388 0.082 0.097 0.158

Task 14 0.089 0.117 0.259 0.082 0.097 0.180

Task 16 0.089 0.117 0.064 0.082 0.097 0.096

Task 18 0.089 0.011 0.018 0.082 0.097 0.033

Task 20 0.011 0.007 0.021 0.082 0.069 0.026

Task 22 0.089 0.023 0.021 0.082 0.097 0.055

Task 24 0.089 0.117 0.129 0.082 0.097 0.133

Task 26 0.005 0.005 0.018 0.009 0.046 0.016

Task 28 0.089 0.007 0.018 0.082 0.139 0.036

Sum 1 1.066 1.034 1 1.351 1.046

Table 9 AHP rankings of cybershake seismogram synthesis tasks

Rank Before AHP After AHP

1 Task 5 Task 26

2 Task 3 Task 20

3 Task 9 Task 18

4 Task 7 Task 28

5 Task 20 Task 09

6 Task 22 Task 22

7 Task 11 Task 07

8 Task 24 Task 03

9 Task 16 Task 16

10 Task 26 Task 05

11 Task 14 Task 24

12 Task 28 Task 11

13 Task 18 Task 14
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an environment in a synchronous manner; that is, they

execute tasks by deciding which drinks to pour. After an

initial phase, the “bartenders” make their decisions accord-

ing to different problem-dependent properties (e.g. weight,

speed, location, response time, maximum load, etc.), in-

stead of making decisions randomly. Over time, if an agent

is unable to adapt the environment to the preconditions of

the task (such as the cost for the agent to execute the task

in the current state of the environment) or if it is unable to

carry the task out by itself, it will be eliminated. To over-

come this behavior, we propose modifying BATS by adding

a BAR system. The procedure is as follows:

1. Aggregate all of the task information that is ordered

by rank.

2. Virtual machine (server) information is collected.

This information includes the initial load on the virtual

machine, its bandwidth and the time required to process

the tasks on the server.

3. A bipartite graph is generated with the number

of tasks. The ranking priorities, can be used to con-

structed a graph, by which each task is allocated to a

virtual machine.

The Load on the virtual machine(S) is calculated as,

L
ini ¼ Ls

ini j s ⊂S ð1Þ

The bandwidth is calculated as,

DBw ¼ b
’
i <¼ bi ð2Þ

The total time taken to process the tasks is calculated as,

Ls
fin

αð Þ ¼ Ls αð Þ ð3Þ

Where, (α) = any task.

Bipartite graph

A bipartite graph is produced based on the following

conditions:

1. A bipartite graph is constructed as-, G = (Tn U S, E) in

which ‘Tn’ represents the number of tasks, ‘S’ represents

the servers, and ‘E ⊆ T X S’ that is, the set of edges

that are present between the task and the server. An

edge represents the tasks ‘Ti ⊂ Tn’, which are present

on virtual machine ‘s ⊆ S’. A graph is constructed

using bipartite graph with the number of tasks.

2. Balance the constructed graph with constraints

including the local cost, the initial load and the

bandwidth.

3. Based on the local cost and the initial load we

compute the total load on the virtual machine.

Ls¼Ls
ini þ TN S j

� �

:C loc ð4Þ

4. Next, we apply the condition represented by Eq. 4. If

this condition is satisfied, then we allocate the tasks

to that particular virtual machine. If this condition is

not satisfied by that virtual machine, then we move

on the next server and check this condition.

5. After allocating the tasks, the constructed bipartite

is updated if any task remain to be processed. Fig. 5

is the bipartite graph of the set of virtal machine

and set of resources.

After allocating the tasks, the constructed bipartite
is updated if any task remain to be processed
Preemption of the task

As described in earlier sections, the proposed system

ranks the tasks and allocates them as per the constraints

of bandwidth and load on the virtual machine. The

proposed system next checks the tasks’ preemption

conditions according to the LEPT policy. Before a task is

preempted, we must check the status of the existing

virtual machine (i.e. whether it is free or busy).

The system considers situations in which the resource-

intensive tasks are still running on allocated virtual

machines while other VMs are waiting for tasks at the

same time. Therefore, the tasks must be distributed

Table 10 Data center information

Sr. No. Characteristic Value

1 Number of data center 1

2 Number of hosts 1

3 Number of processing units 4

4 Processing capacity 9600 mips

5 Storage capacity 11 TB

6 Total amount of RAM 40 GB
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among the free VMs. However, we must first consider

how and when to preempt tasks.

Here, we propose a mathematical description of the

preemption scenario,

� Given the ranking of the tasks, they are allocated to

the VMs using a bipartite graph, but the issue is

now one oftime,

� Suppose ‘P1’-‘VM1’ has complete ‘t1’, or VMn-1 has

completed at time ∑ Pn-1. However, one VM is

stillrunning with high-priority tasks, and its

processing time is also greater.

� Therefore, we preempt the task per the following

methodology. Before preempting, we should check the

status of the VM (i.e. whether it is free or busy).

V ¼ mintn; tm

�

1

λnþ λm
þ

λn

λnþ λm
þ V

� nf gð Þ þ
λn

λnþ λm
V � mf gð Þ

�

ð5Þ

Here

� V(t) denotes the expected value of the minimum

remaining time needed to finish all of the jobs given

the set

t = {t1,———,tn}

� V*(t) denotes the time quantity t = {t1,——————, tn}

� V* denotes the expected value of the

remaining completion time when no task

has yet been completed i.e., all tasks are in the

running state.

� λtn denotes the experimentally distributed time

required for task tn
� λtm denotes the experimentally distributed time

required for task tm.

1

⋋ tn þ ⋋ tm
þ

⋋tn

⋋ tn þ ⋋ tm
V � tnf gð Þ

� �

ð6Þ

Eq. 6 is the probability that task n (m) is the first task

to be completed, multiplied by the expected remaining

time needed to complete the tn-1 tasks.

⋋ tm

⋋ tn þ ⋋ tm
V � mf gð Þ ð7Þ

We can rewrite Eq. 5 in the following way:,

0 ¼ min
n;mð1þ ⋋ tn V � tnf gð Þ−V �ð Þ þ ⋋ tm V � tnf gð Þ−V �ð Þ

þ ⋋ tn þ ⋋ tmð Þ V �
−Vð ÞÞ

ð8Þ

Because λ1 and λ2 are the two smallest λt values, V* ≥V.

The last term is minimized by tn,tm = 1, 2 of the second

and third terms.

Table 11 Data center configuration details

Sr. No. Characteristic Value

1 Allocation policy BATS +BAR

2 Architecture X86

3 Operating system Linux

4 Hypervisor Xen

5 Upper threshold 0.8

6 Lower threshold 0.2 GB

7 VM migration Enabled

8 Monitoring interval 180

Table 12 Host configuration details

Sr. No. Characteristic Value

1 RAM 40,000 MB

2 Bandwidth 10,00,000

3 Operating System Linux

4 Hypervisor Xen

5 Upper threshold 0.8

6 Lower Threshold 0.2 GB

7 VM Migration Enabled

8 Monitoring Interval 180

Table 13 Customer configuration details

Sr. No. Information Contains

1 User 1

2 Cloudlets sent per minutes 50

3 Avg. length of cloudlet 50,000

4 Avg. cloudlet file size 500 bytes

5 Avg. cloudlet output size 500 bytes

Table 14 Customer configuration details

Sr. No. Information Contains

1 Number of VMs 20

2 Avg. image size 1000 bytes

3 Avg. RAM 512 MB

4 Avg. bandwidth 1,000,000 Mbps

5 Procedure element 1

6 Priority 1

7 Hypervisor Xen

8 Scheduling policy Dynamic workload
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Ctn ¼ ⋋ tn V � tnf gð Þ − V �ð Þ ð9Þ

Moreover, let,

Dtn;m ¼ Ctn − Ctm ð10Þ

Here

� Ctn denotes the time at which the first VM has

finish its task execution

� Ctm denotes the last task completed by

another VM

� D denotes the difference between the completion

of the first task and that of the last task i.e., in

Eq. 10

Substituting for Ctn and Ctm. Eq. 10 becomes,

⋋tn V � nf gð Þ−V �ð Þ þ ⋋tm V� mf gÞ−V�ð Þ ð11Þ

Equation 11 is minimized by j,k = 1,2 Let,

⋋tn ∠⋋tm≅Ctn ≤ Ctm ð12Þ

Therefore, we must improve D to obtain better results.

Ctn and Dtn,m are considered to be functions of

λ1————λn.
Assuming tasks tn and tm are not members of set t,

we define Ctn(t) and Dtn,m (t); Ctn and Dtn,m

Ctn tð Þ ¼ ⋋tn V� t U tnð Þ−V� tð Þð Þ ð13Þ

Before, the procedure can continue, a number of

identities must be formally described. If tn and tm are

the two smallest tasks in set J, the LEPT process

tasks tn and tm will be executed first.

The following condition is the first task comple-

tion result.

V� tð Þ ¼
1

⋋tn þ ⋋tm
þ

⋋tn

⋋tn þ ⋋tm
V

� t U tnf gð Þ

þ
⋋tn

⋋tn þ ⋋tm
V

� t U tnf gð Þ

ð14Þ

Equation 14 can be rewritten as follows:

⋋tn þ ⋋tmð ÞV � tð Þ ¼ 1þ ⋋tnV
� t U tnð Þð Þ

þ ⋋tmV
� t U tmð Þð Þ

ð15Þ

Fig. 6 Turnaround time

Fig. 7 Turnaround time

Table 15 Comparison of the proposed heuristic approach with

the BATS and IDEA frameworks in terms of TAT in ms

Tasks BATS with
20 VM

IDEA with
20 VM

Heuristic approach
with 20 VM

Task 3 3599.29 3666.27 2832.94

Task 5 3599.29 3666.27 2914.42

Task 7 3599.29 3666.27 2913.87

Task 9 3599.29 3666.27 2911.75

Task 11 3599.29 3666.27 2907.67

Task 14 3599.29 3666.27 2772.11

Task 16 3599.29 3666.27 2857.89

Task 18 3599.29 3666.27 2855.97

Task 20 3599.29 3666.27 2833.36

Task 22 3599.29 3666.27 2834.72

Task 24 3599.29 3666.27 2841.49

Task 26 3599.29 3666.27 2832.86

Task 28 3599.29 3666.27 2833.96

Table 16 Comparison of the proposed heuristic approach with

the BATS and IDEA frameworks in term of TAT in ms

BATS with 20 VMs IDEA with 20 VMs Heuristic approach with 20 VMs

3738 3895 2033.72
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Similarly, the exponentially distributed processing

times for 3 tasks are approximately λ1, λ2, λ3. Next,

we substitute these values into Eq. 13,

Given tn = λ1, tm = λ2, and tp = λ3, Eq. 13 becomes,

λ1þ λ2þ λ3ð Þ C1 ¼ λ1 λ1þ λ2þ λ3ð ÞV � 1f gð Þ

− λ1 λ1þ λ2þ λ3ð Þ V
�

ð16Þ

λ1þ λ2þ λ3ð Þ C1 ¼ λ1 ð1þ λ1 V
� 1f g þ λ2 V

� 1; 2f g

þλ3 V
� 1; 3f gÞ

–λ1 ð1þ λ1 V
� 1f g

þλ2 V
� 2f g þ λ3 V

� 3f gÞ

ð17Þ

ðλ1þ λ2þ λ3Þ C1 ¼ λ1 ðλ3V � 1; 3f g − λ3V � 3f g

þλ2 λ1V �ð 1; 2f gÞ

–λ1V � 2f g þ λ3 A1

ð18Þ

Thus, Eq. 18 gives the value of the respective λ.

λ1þ λ2þ λ3ð Þ C1 ¼ λ1 ðλ3V � 1; 3f g � λ3V � 3f g

þλ2 λ1V �ð 1; 2f gÞ � λ1V � 2f g þ λ3 A1

ð19Þ

Alternatively,

λ1þ λ2ð Þ C1 ¼ λ1C3 1ð Þ þ λ2C1 2ð Þ

λ1þ λ2ð Þ C2 ¼ λ1C2 1ð Þ þ λ2C3 2ð Þ

λ1þ λ2ð Þ Ct ¼ λ1Ct 1ð Þ þ λ2Ct 2ð Þ

For,

T = 1, 2——n.

Thus,

D12 = Ct1- Ct2 if

D12 ¼
λt1

λt1 þ λt2

D32 1ð Þ þ
λt2

λt1 þ λt2

D13 2ð Þ

Fig. 8 Response time for cybershake tasks

Fig. 9 Response time for epigenomics tasks

Table 17 Comparison of proposed heuristic approach with the

BATS and IDEA frameworks in terms of RT in ms

Tasks BATS with
20 VMs

IDEA with
20 VMs

Heuristic approach
with 20 VMs

Task 3 5.1 5.3 2.83

Task 5 5.1 5.3 2.91

Task 7 5.1 5.3 2.9

Task 9 5.1 5.3 2.91

Task 11 5.1 5.3 2.90

Task 14 5.1 5.3 2.77

Task 16 5.1 5.3 2.85

Task 18 5.1 5.3 2.85

Task 20 5.1 5.3 2.83

Task 22 5.1 5.3 2.83

Task 24 5.1 5.3 2.84

Task 26 5.1 5.3 2.83

Task 28 5.1 5.3 2.83

Table 18 Comparison of the proposed heuristic approach with

the BATS and IDEA frameworks in term of RT in ms

BATS with 20 VMs IDEA with 20 VMs Heuristic approach with 20 VMs

4.8 5.2 3.7
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D2t ¼
λt1

λt1 þ λt2

D2t 1ð Þ þ
λt2

λt1 þ λt2

D3t 2ð Þ

We now assume as a hypothesis that

⋋tn < ⋋tnand λ1…… ≤λn;

In that case,

Dn,m ≤ 0

and,

dD12

d⋋t1
≥0

In the second part of the proof, two in equalities

are shown by induction on ‘n’, when n = 2

Dtn;m ¼
⋋tn−⋋tm

⋋tn þ ⋋tm
ð20Þ

The two inequalities can be easily produced.

Assume that the two inequalities of the induction hy-

pothesis hold when there are fewer than ‘n’ tasks

remaining to be processed. The induction hypothesis

then implies that Dt13 (2) and Dt23 (1) are non-positive

when there are ‘n’ tasks remaining to be completed. It

also requires

dDt13 2f g

d⋋t1
≥0 ð21Þ

The inequality presented in Eq. 21 has the follow-

ing implications.

If increases, then dDt13(2) increases. The moment

λt1 reaches the value of λt2 tasks 1 and 2 are inter-

changeable. Here, instead of changing task 2 and

task 1 we break the respective tasks and migrate

them onto other virtual machine.

Divide-and-conquer methodology

After, the tasks have been preempted, we apply the

divide-and-conquer methodology by following the

steps shown below.

Evaluation of the proposed heuristic approach
Experimental setup

The proposed heuristic approach is simulated on a cloud

computing environment [25] that provides a real-time

cloud computing scenario. The configuration details of

the data center used in the customized simulation setup

are given in Table 10 and consist of general information

on the data centers, such as the number of data centers,

the number of hosts, the number of processing units,
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and capacity. Every data center component generates a

set of strategy for allocating bandwidth, memory and

storage devices for hosts and virtual machines. Table 11

shows the configuration for the data center, including its

allocation policy, architecture, OS, hypervisor, schedul-

ing and monitoring interval, and threshold value, among

other properties. The host in the data center is built with

the configuration such as RAM, bandwidth, storage cap-

acity, power, processing elements etc. of the given task,

the processing of which by a data center is listed in

Table 12. Table 13 provides the details of the customer

configuration. Table 14 provides a detailed description of

the virtual machines.

Results and discussion
This section briefly describes the performance of the

proposed heuristic approach.

Evaluation of turnaround time

To check the performance of our proposed heuristic ap-

proach, we first apply the algorithm to Cybershake seis-

mogram synthesis and Epigenomics scientific tasks,

which are described in the input data section. The per-

formance of the proposed heuristic approach is evalu-

ated, in terms of the turnaround time, which is the span

of time from the submission of the task to the

completion of the task. In Fig. 6 the Cybershake tasks

are shown on the X axix, whereas time shown on the Y

axis. When we compare our proposed heuristic ap-

proach with the existing BATS [7] and IDEA [4] frame-

works, we find that our approach displays reduced

turnaround time. Fig. 7 illustrates the results for the Epi-

gonomics tasks, for which the turnaround time is also

comparatively small. Table 15 and Table 16 show the re-

sults in tabular form.

Evaluation of response time

As a second performance metric, we consider the

response time of the algorithm to incoming tasks.

The response time is essentially the time during

which the request is actually considered. In other

words, we can say that the response time is directly

dependent on the availability of resources. The avail-

ability of resources is dependent up on the scheduling

of tasks. If the scheduling of tasks is performed prop-

erly, then the resources will naturally be free early or

in advance of deadlines, the response times will be

less in such cases.

By, comparing the response times obtained for our

proposed heuristic approach with those obtained

using the existing BATS and IDEA frameworks, we can

see that our system’s response time is almost 50% less.

The response time comparisons for Cybershake and

Epigenomics are presented in Figs. 8 and 9 respectively.

The comparison is also shown in tabular form in Tables 17

and 18. We consider two parameters the response time

and turnaround time compare the proposed heuristic

approach with the existing BATS and IDEA

Fig. 10 CPU utilization by Cybershake tasks

Fig. 11 CPU utilization by Epigenomics tasks

Fig. 12 Memory utilization for Cybershake task
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frameworks. Because we are evaluating these frame-

works in a cloud computing environment, the re-

sponse time is generally less effective.

On the other hand, we also evaluated our proposed

heuristic approach to determine its resource per-

formance compare it to those of the existing BATS and

IDEA frameworks.

Evaluation of CPU utilization

Figures 10 and 11 show key comparison of resource

utilization between the proposed heuristic approach

and existing BATS and IDEA frameworks. The proper

utilization of resources produces profits for cloud

computing service providers. The experimental results

shows that the proposed heuristic approach utilized

the CPU resource more efficiently than the existing

BATS framework.

Evaluation of memory utilization

Figures 12 and 13 show the second key comparison

of resource utilization between the proposed heu-

ristic approach and the existing BATS and IDEA

frameworks. The experimental results shows that the

proposed heuristic approach utilizes memory re-

sources more efficiently than the existing BATS and

IDEA frameworks.

Evaluation of bandwidth utilization

Bandwidth, an important resource, is not considered in

most existing frameworks. We take bandwidth into ac-

count as a third important aspect of cloud computing

data centers. We also compare our proposed heuristic

approach with the existing BATS and IDEA frameworks.

Figures 14 and 15 shows that our proposed heuristic

approach utilizes bandwidth more efficiently than the

existing BATS and IDEA frameworks.

Conclusion
In this study, we proposed heuristic algorithm that

performs task scheduling and allocates resources effi-

ciently in cloud computing environments. We use real

Cybershake and Epigenomics scientific workflows as

input tasks for the system. When we compare our

proposed heuristic approach with the existing BATS and

IDEA frameworks with respect to turnaround time and

response time, we find that our approach gives improved

results. On the other hand, from the viewpoint of re-

source utilization, the proposed heuristic approach effi-

ciently allocates resources with high utility. We obtained

the maximum utilization result for computing resources

such as CPU, memory and bandwidth. Most existing sys-

tems consider only two resources, CPU and memory, in

evaluating their performance the proposed system adds

Fig. 13 Memory utilization for Epigenomics task

Fig. 14 Bandwidth comparisons for Cybershake tasks
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bandwidth as a resource. Future work will focus on

more effective scheduling algorithms in which turn-

around time and response time will be improved.
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