
Task Scheduling and Voltage Selection for Energy
Minimization

Yumin Zhang
Synopsys, Inc.

700 East Middlefield Road
Mountain View, CA 94043

yumin@synopsys.com

Xiaobo (Sharon) Hu Danny Z. Chen
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556, USA

fshu, cheng@cse.nd.edu

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling

General Terms
Algorithms, Design

Keywords
voltage selection, task scheduling

ABSTRACT
In this paper, we present a two-phase framework that inte-
grates task assignment, ordering and voltage selection (VS)
together to minimize energy consumption of real-time de-
pendent tasks executing on a given number of variable volt-
age processors. Task assignment and ordering in the �rst
phase strive to maximize the opportunities that can be ex-
ploited for lowering voltage levels during the second phase,
i.e., voltage selection. In the second phase, we formulate the
VS problem as an Integer Programming (IP) problem and
solve the IP e�ciently. Experimental results demonstrate
that our framework is very e�ective in executing tasks at
lower voltage levels under di�erent system con�gurations.

1. INTRODUCTION
Energy consumption has become a primary concern in

today's IC systems. Energy minimization techniques ap-
plied at higher design levels tend to be more e�ective than
techniques applied at lower levels [4]. Processors that can
operate at variable supply voltages or be switched to sleep
mode while idling are becoming available [1, 11]. Two main
system level energy saving techniques are: voltage selection
(VS) (also called voltage scheduling [4]) which selects proces-
sor's supply voltage according to the performance require-
ment, and power management (PM) [2] which shuts down
a processor when it is idle. In general VS is more e�ective
than PM [10]. The switching of voltages values can be done
on the y and the incurred overhead can be ignored if such
switching does not happen very frequently [16]. In real-time
systems where tasks can take tens or hundreds of thousands

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4.02.0006 ...$5.00.

of cycles to execute, applying VS judiciously can achieve a
large amount of energy saving [17].
In this paper, we consider real-time dependent tasks with

deadlines. These tasks are to be executed on variable voltage
processors. Our challenge is to �nd a system implementation
that consumes the least amount of energy. A system imple-
mentation is determined by the task assignment (which
task runs on which processor), the task ordering (the ex-
ecution order of tasks on each processor), and the voltage

selection (which cycles of each task use which voltage level).
We refer the combination of task assignment and ordering
as task scheduling in the rest of the paper.
Most related work, e.g., [3, 10, 12, 13, 17], concentrates on

saving energy of independent tasks or on a single processor.
However, tasks in real-world applications usually have con-
trol or data dependencies and many systems have multiple
processors. Approaches in [8, 15] solve the energy minimiza-
tion problem for dependent tasks on multiple variable volt-
age processors. [8] assumes a given task assignment, while
[15] assumes a given task scheduling. However, task schedul-
ing without consideration of VS may not present the best
energy saving potential. Furthermore, the approach in [8],
which evaluates eligible tasks one by one, fails to recognize
the joint e�ect of slowing down certain tasks simultaneously.
The joint e�ect is critical in �nding global optimal voltage
settings and an example in Section 2 explains the e�ect in
much detail. The heuristics in [15] try to distribute slacks
evenly among tasks, which does not necessarily lead to best
energy saving because the slowdown of di�erent tasks has
di�erent e�ect on other tasks and contributes di�erently to
the overall energy saving. To achieve the best energy saving,
the scheduling should try to present the best potential for
VS and the VS decision should be made in a global manner.
In this paper, we present a framework that integrates task

scheduling and voltage selection together to minimize energy
consumption of dependent tasks on systems with a given
number of variable voltage processors. The integration is
important because scheduling results determine the poten-
tial energy saving that can be achieved through VS. In order
to �nd the scheduling with the best slowing down opportu-
nity in the �rst phase, we apply an earliest-deadline-�rst
(EDF) scheduling which can be proved to be optimal for a
single processor, and a scheduling with priority-based task
ordering and a best-�t processor assignment for multiple
processors. Tasks after scheduling can be modeled as a Di-
rect Acyclic Graph (DAG). In the second phase, we formu-
late the VS problem on a DAG as an Integer-Programming
(IP) problem. Each task can have cycles running at di�er-

0 2 4 6 8 10 12
0

5

10

15

20

25

Cycle time at voltage 1.0 to 5.0

E
ne

rg
y

co
ns

um
pt

io

Relation of energy and cycle time

a=2
a=1.6
a=1.2

Figure 1: Convex relation of energy and delay

ent voltages. We have implemented the framework and con-
ducted experiments on di�erent systems and tasksets. The
results show that our framework is very e�ective in reducing
energy consumption at the system level. Our IP approach
for solving the VS problem can slowdown 58% more cycles
than a baseline scaling VS approach.
Our main contributions can be summarized as:

First integrated framework: we solve the energy min-
imization problem of dependent tasks on variable voltage
processors in two phases with the �rst phase task schedul-
ing being guided by the VS approach in the second phase.
Exact algorithm for VS problem: our IP formulation
solves the VS problem exactly and we prove the continuous
voltage and special discrete voltages case are polynomial-
time solvable. The ILP for general discrete voltages is solved
with approximation in short runtime and the approximation
is tested to be within 97% of the optimal solution.
Substantial energy saving: the framework can slowdown
7-98% of cycles with very short runtime. It can be used in
design space exploration to meet energy target and �nd the
best system con�guration.

2. PRELIMINARIES AND A MOTIVATIONAL
EXAMPLE

The number of cycles, Nu, that task u needs to �nish re-
mains a constant during VS, while processor's cycle time
CT , u's delay du and the the dominant part of total energy
consumption, dynamic energy consumption, Eu, change with
the supply voltage Vdd. CT , du and Eu can be computed as

CT =
k � Vdd

(Vdd � Vth)a
(1)

du = Nu �CT = Nu �
k � Vdd

(Vdd � Vth)a
(2)

Eu = Nu �Cu � V
2

dd (3)

where k is a device related parameter, Vth is the threshold
voltage, a ranges from 2 to 1.2 and Cu is the e�ective switch-
ing capacitance per cycle. We depict the relation of Eu and
du for di�erent a in Figure 1. It is clear that Eu is a convex
function of du [12] and both are functions of Vdd. Note that
our work allows tasks to have di�erent power characteristics,
such as switching capacitance.
We use a DAG to represent a taskset. In the DAG, each

node u represents a task u, while an edge e(u; v) indicates
that v can only start after u �nishes. Deadline dlu constrains
u's �nish time and Tcon on a set restricts all tasks' �nish
time. A taskset after scheduling can still be represented
as a DAG with additional edges, if necessary, to capture
processor sharing. The DAG for a 5-task set before and
after scheduling to two processors is shown in Figure 2 (a)
and (b). Slack is the maximum amount of time that a task
can be slowed down without violating timing constraints.

OUT

p1 p2
IN

4

(a)

t3
5

t1 t26 5

(b)

t1
6

5

4
t4

Tcon = 19 Tcon = 19

t4

t3
5

t1 t26 5

4
t4

Tcon = 19

(c)

t2
5

t3

1

1
t5 1

t5

t5

Figure 2: (a) A 5-task set (b) Tasks scheduled on P1
and P2 (c) DAG with IN and OUT

p1

p2

p1

p2

p2

p1

320 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

p1

p2

(a)

(b)

(d)

(c)

t1

t2

t1

t2

t2
t1

t1

t4t3

t3 t4

t3 t4

t3 t4

t2

t5

t5

t5

t5

Figure 3: VS results by di�erent approaches. Cycles
in shade are executed at Vl.

2.1 A motivational example
We use the example in Figure 2 to show that di�erent VS

approaches on multiple processors perform quite di�erently.
This example motivated us to make VS decisions in a global
manner. In Figure 2 (b), the number inside each task is
Nu, the number of cycles needed to �nish the task. Assume
P1 and P2 can operate on Vh and Vl and Vh > Vl. For
simplicity, assume CTVh is 1 time unit, CTVl is 2, and the
average energy saving per slowdown cycle is the same for all
tasks on P1 and P2. Let Tcon be 19.
The VS results by approaches in [8, 15] are shown in Fig-

ure 3 (b) and (c). Figure 3 (a) shows the execution of tasks
on P1 and P2 when the two processors are always on Vh and
Figure 3 (d) shows an optimal solution for this problem. It is
clear that slowing down t1 and t2 simultaneously is the best
even though slowing down each will take away the potential
of slowing down t3, t4 and t5. Also the even distribution of
slack is not optimal in saving energy. The number of cycles
at Vl is 10 in Figure 3 (d) and this is an optimal solution,
which is is 67% more than the 6 Vl cycles by approach in [8]
and 43% more than the 7 Vl cycles by approach in [15]. Our
VS approach, which is to be presented in the next section,
achieves the optimal solution for this example.

3. VOLTAGE SELECTION
Our approach integrates task scheduling and voltage se-

lection together and strives to achieve the maximum energy
saving on variable voltage processors. The framework can
be used to optimize energy at the system level in a design

Task graph

System
 configuration

NoNo Meet energy
target?

Yes

 Framework Our

Voltage selection

System implementations
determined for each task

constraintsTask scheduling

Figure 4: Design ow with our approach

ow like the one shown in Figure 4. In this section, we
will present an IP formulation that solves the VS problem
on a given scheduling of dependent tasks on multiple pro-
cessor. A simpli�ed version of the IP formulation can be
used to solve the VS problem on a single processor. The IP
formulation solves the VS problem exactly and it provides
guidance for task scheduling to be discussed in Section 4.

3.1 Unified IP formulation for VS
We need to guarantee that after the VS technique is ap-

plied, tasks with deadlines still �nish before their deadlines
and the last task on each processor �nishes no later than
Tcon. That is the delay on each path in the DAG should still
not be greater than Tcon. However, the number of paths in a
DAG can be exponential to the number of edges and makes
it not practical to do optimization on a path base. This is
the reason that VS approaches on single processor systems
cannot be readily extended to solve the VS problem on mul-
tiple processors. Here we adopt a model proposed in [5] to
formulate timing constraints on a DAG not on paths, but on
nodes and edges. We add two nodes, IN and OUT , edges
from IN to the �rst task on each processor, and edges from
the last task on each processor to OUT to form a new DAG.
Figure 2 (c) shows the new DAG, G(V;E), for the taskset in
Figure 2 (a). Execution time of task u at the highest supply
voltage Vh is a constant Tu, and its deadline dlu remains a
constant. TOUT and TIN are set to be 0. Tcon is the timing
constraint on the DAG. Besides task's delay du, we associate
another variables Du with u. Timing constraints on G(V;E)
in Figure 2 (c) can be modeled as

DOUT �DIN � Tcon (4)

Dv �Du � du � 0 8e(u; v) 2 E (5)

Du + du � dlu 8u with deadline (6)

du � Tu; Du � 0; int; 8u 2 V (7)

Intuitively, Du represents u's start time. For a feasible
scheduling, if DIN is set to be 0, the above constraints guar-
antee that tasks with deadlines will �nish before their dead-
lines and the �nish time of all task is not greater than Tcon.
Single processor systems are a special case of systems with

multiple processors. The timing constraints in (4)-(7) on
multiple processors also constrain the timing on a single
processor. However, the scheduling on a single processor
has special features that we can utilize to simplify the con-
straints. The main feature on a single processor is that all
tasks are on one path. The constraints for single processor
can be simpli�ed as follows.X

u2V

du � Tcon (8)

X

v2Bu

dv � dlu 8u withdeadline (9)

du � Tu; int; 8u 2 V (10)

where Bu is the set that includes u and all tasks scheduled
before u, du's are variables whose values need to be deter-
mined, Tcon, dlu and Tu are constants.
The objective of VS is to minimize the sum of each task

u's energy consumption,
P

u2V
Eu. Combing the objective

and the constraints in (4)-(7) for multiple processors and
constraints in (8)-(10) for single processor, we have the IP
formulation for the VS problem. To trade the increase of
delay for energy saving, we need to establish the relation-

ship between du and Eu. If the supply voltage can change
continuously, du can also change continuously. In this case,
Eu is a convex function of du, as depicted in Figure 1, and
we have Eu = f(du), where f(�) is a convex function. Sub-
stituting Eu with f(du), we have the IP formulation for the
continuous voltage case.
In the discrete voltage case, only a certain number of volt-

ages are available. For example, the Athlon 4 Processor from
AMD [1] can operate at �ve voltage levels. The discreteness
of voltage levels implies that a task's delay can only take
discrete values. Let the highest voltages be Vh and other
m available voltages be V1; V2; : : : ; Vm, where Vi < Vh; 1 �
i � m. We introduce m new variables, Nu;i, to represent
the number of cycles that task u is executed at Vi. For any
given Vi, cycle time CTi and energy consumption per cycle
Eu;i are constants as computed in (1) and (3) in Section 2.
The total number of cycles u takes, Nu, remains a constant.
du and Eu are computed as linear functions of Nu;i.

du = Tu +
mX

i=1

Nu;i(CTi �CTh) (11)

Eu = Cu � (
mX

i=1

Nu;iV
2

i + (Nu �
mX

i=1

Nu;i) � V
2

h) (12)

Substituting (11)-(12) as Eu and du and adding
P

iNu;i �
Nu, we have the ILP for the discrete voltage case, where
Du's and Nu;i's are variables.

3.2 Solving the IP problem
In general, IP problems are hard to solve. But the IP

problem for the continuous voltage case on systems with a
given number of processors is polynomial time solvable. A
convex programming solver, like COPL LC from [6], can be
used to solve the problem in polynomial time.

Theorem 1. The VS problem of executing dependent tasks
on systems with one or more processors with continuous volt-
age is polynomial time solvable.

Proof: The VS problem is formulated as an IP problem
with objective

P
u f(du), constraints in (4)-(7) for multiple

processors, and constraints in (8)-(10) for a single processor.
The objective function is the sum of convex functions, while
the coe�cients of variables Du and du in (4)-(7), and vari-
able du in (8)-(10) are 1, 0 or -1. Thus the IP formulation
has a totally unimodular constraint matrix for both single
processor and multiple processors. An IP problem is poly-
nomial time solvable if the objective function is a separable
convex function and constraint matrix is totally unimodu-
lar [9]. The IP formulation for the continuous voltage case
has the same form as such a polynomial time solvable IP
problem and thus the VS problem on a given number of
processors that can operate on continuous voltage is poly-
nomial time solvable. 2

The ILP problem for some special discrete values is also
polynomial-time solvable on a single processor and multi-
ple processors. If there is only one lower voltage Vl and
CTvh � CTVl = 1, the ILP problem for one processor and
multiple processors both have a totally unimodular con-
straint matrix. Such an ILP problem is polynomial time
solvable. An LP solver, such as LP SOLVE from [7], can
be used to get the integer solutions in polynomial time. To
solve the ILP problem for general discrete voltages in short
runtime, we employ an e�cient approximation. First the in-
teger constraint on variables is relaxed and the correspond-

ing LP problem is solved. Then we use the oor integer of
the non-integer solutions for Nu;i in the LP as the integer
solutions for Nu;i in the ILP to guarantee that the approxi-
mation satis�es the timing constraints. This approximation
is tested to be very e�cient by experiments in Section 5.

4. TASK SCHEDULING
Task scheduling should provide the maximum slowing down

potentials for voltage selection to utilize for energy saving.
In this section, we present the scheduling that is guided by
our VS approach presented in the last section. For a sin-
gle processor, we apply an EDF scheduling, which can be
proved to be optimal in providing slowdown opportunities.
For multiple processors, we use a priority-based scheduling
in order to provide the best energy saving opportunity.

4.1 Scheduling on a single processor
It is clear that individual task's deadline imposes direct

constraint on the design space of delays of tasks that are
scheduled before it, as shown in constraints in (9). Energy
saving is a�ected by the design space of tasks' delays because
the delay will be traded for energy saving. To maximize the
design space of delays, tasks with earlier deadlines should be
scheduled earlier in order to avoid imposing constraints on
more tasks. We apply an EDF scheduling in the following
recursive algorithm EDF (S; t). The input to the algorithm
is the taskset S, and t is initialized to be 0. Denote PREu

as the set of u's predecessors. The output of the algorithm
is the same taskset with each task's start time su being
assigned and the order on the processor being decided.

EDF(S, t)
Begin

If S 6= �
If 9 u with dlu

Find u with dlu = min (dlvj8v 2 S);
Else Find a u 2 S;
Endif
S1 = PREu; S2 = S � S1 � fug;
EDF(S1, t);
su = t; t = t+ Tu;
EDF(S2, t);

Endif
End

We have proved that the EDF scheduling provides the
biggest solution space for the single processor VS problem.

Theorem 2. The EDF scheduling is optimal for the VS
process to save energy on a single processor

Due to space limit, the proof is omitted. The EDF schedul-
ing is feasible if a feasible scheduling exists [14]. Combining
the EDF scheduling which is optimal and our IP formulation
that solves the VS problem exactly, our framework solves the
general energy minimization problem of dependent tasks on
a single variable voltage processor exactly.

4.2 Scheduling on multiple processors
The EDF scheduling is optimal on a single processor, but

not on multiple processors because tasks will be on mul-
tiple paths and a�ect tasks on these paths di�erently. In
the following example, the scheduling that does not follow
the EDF ordering presents more slowdown opportunities.
Consider the taskset in Figure 5 (a), an EDF scheduling in
Figure 5 (b), and another scheduling that does not follow

t1
3

t2

t3

t4 t5

t6

4

2

3 5

4

t2

t4

t6

4

2

3

4 3
t3

t5
5

t1

P1 P2

(b) (c)

t2

t4

t6

4

2

3

4

5

t1

P1 P2

3t3

t5

dlt3 = 14

(a)

dlt5 = 11

dlt6 = 13

Figure 5: Scheduling by di�erent approaches

the deadline order in Figure 5 (c). Using our IP formulation
on the same system used in the example in Figure 3, the
optimal number of cycles at Vl is 0 and 3 for the schedul-
ing in Figure 5 (b) and (c), respectively. This example tells
us that other information needs to be combined with dead-
line to �nd a scheduling that provides the best slowdown
opportunity in multiprocessor systems.
To provide more energy saving opportunities in the schedul-

ing for VS to utilize, we should try to avoid putting tasks
on unnecessary paths which might pose tighter constraints,
making unnecessary long paths and putting unrelated tasks
on the same path, and try to let less tasks constrained by
smaller deadlines. To achieve these goals, we use a prior-
ity to select one task at each scheduling step, �nd a best-�t
processor for the selected task, and repeats the process until
all tasks are scheduled.
The priority relates to a task's deadline, dependencies and

the usage of processors in the system. Tasks are assigned
a latest �nish time that they must meet for them or their
successors to meet deadlines. Task u's latest �nish time lftu
is de�ned as

lftu = min(dlu; lftv � Tvj8v; e(u; v) 2 E) (13)

Leaf task's latest �nish time is its deadline or Tcon if it does
not have a deadline. Start from leaf tasks and traverse the
taskset DAG backward, we can assign each task a latest
�nish time. Denote task u's ready time when all u's prede-
cessors �nish as ru, its earliest start time when it is ready
and there is a processor available as esu, the number of pro-
cessors in the system as N , and processor Pi's available time
as aPi . ru, esu and aPi are updated during the scheduling.
We build the scheduling step by step. At each scheduling

step, eligible tasks's priorities, PRIu, are evaluated.

PRIu = lftu + esu (14)

esu = max(ru; min (aPi j 8i � N)) (15)

Task u with the smallest PRIu is assigned to a best-�t pro-
cessor, which is selected according to the following three
steps. su, and aPi are set accordingly:

1. select Pi if aPi = ru. That is to select the proces-
sor that is available the same time when u is ready. In this
case, su = ru = aPi and aPi = su+Tu. If there is no such Pi,

2. select Pi if aPi < ru, aPi > aPj j8j 6= i, aPj < ru.
That is to select the processor that becomes available the
latest among all processors available before u is ready. In
this case, su = ru and aPi = su+ Tu. If there is no such Pi,

3. select Pi if aPi � aPj ; 8j 6= i. That is to select the
processor that is available the earliest. In this case, su = aPi
and aPi = su + Tu.

After the selection and assignment of one task, a new set of
eligible tasks are evaluated and another task is selected and
assigned to its best-�t processor. The step repeats until all

tasks are scheduled. If the priority-based scheduling is not
feasible, we can increase the weight of the latest �nish time
in the priority function and try to get a feasible scheduling.

5. EXPERIMENTAL RESULTS
To evaluate the e�ectiveness of our framework in saving

energy, we implemented it and conducted experiments on
various tasksets and systems. 9 tasksets are generated with
TGFF [18] where each set consists 10 to 500 tasks. Since
single processor systems are a special case of multiprocessor
systems and we have proved that the EDF scheduling on a
single processor is optimal, we concentrate the experiments
on multiprocessor systems. We tested systems consisting of
2 to 8 processors that can operate at 2 and 4 di�erent volt-
ages. (Most commercially available variable voltage proces-
sors have 2 to 5 voltage levels.) First, we investigate the
e�ectiveness of our IP approach for solving the VS problem
by comparing the number of slowdown cycles with a scaling
VS approach on the same scheduling. Then we test how our
scheduling helps saving energy by comparing the VS results
on di�erent scheduling. The energy saving by our framework
on di�erent system con�gurations are also investigated.
The �rst experimental system consists of 5 processors that

can operate at two di�erent voltages, Vh and Vl. For sim-
plicity, we assume that CTVl = 4, CTVh = 1, the energy
saving per cycle at Vl is the same for all tasks. (Note there
is no such requirement in our IP formulations.) Thus the to-
tal number of slowed down cycle SN represents the energy
saving that is proportional to SN(V 2

h � V 2

l).
We use our scheduling in the �rst phase and alternate dif-

ferent VS approaches in the second phase to test how much
improvement our IP approach provides. Since the approach
in [8] also deals with task ordering and the approach in [15]
has other objectives during their VS process, we feel it is
not an apple-to-apple comparison to compare our IP ap-
proach with the two directly. We compare the number of
cycles at Vl by our IP approach with a scaling VS approach
that is also discussed in [8]. It scales down the delay of
all tasks by the ratio of timing constraint over critical path
length on a given scheduling. The approach in [15] which
distributes slack evenly shares the same spirit with the scal-
ing approach. Table 1 summarizes the performance of our
IP approach and the scaling approach. Column NT, NC,
Tcon and Tcri show the number of tasks, number of task
cycles, timing constraints and critical path delay at Vh, re-
spectively. Timing constraint Tcon is set to be 1.5 times of
Tcri. Column SC and IP show the number of cycles at Vl
by the scaling approach and our IP approach, and Column
IMP shows the improvement of number of cycles at Vl by
our IP approach (IP) over the scaling (SC), which is com-
puted as ((IP) � (SC))=(SC). It is clear that on average
our approach can execute 58% more cycles at Vl and save
more energy than the scaling approach.
The approximation we use to get the integer solutions for

the ILP problem is very e�ective. The objective of the ILP,
total number of slowdown cycles, after the approximation
of integer solutions is within 97% of the objective achieved
with non-integer solutions from solving the LP. The objec-
tive of the LP is the upper limit of the objective that the
corresponding ILP can achieve. This means that solutions
by the approximation is within at least 97% to the optimal
solution of the ILP problem. The whole process including
scheduling, solving LP and approximation �nishes within
seconds for all tasksets.

Table 1: Performance by scaling and our approach
set NT NC Tcri Tcon SC IP IMP

%
s1 9 81 49 74 11 37 236
s2 50 422 111 167 51 104 104
s3 101 922 243 365 116 225 94
s4 151 1501 464 696 188 413 120
s5 213 2988 722 1083 413 644 56
s6 245 2871 652 978 376 557 48
s7 305 2643 572 858 314 495 58
s8 463 4310 910 1365 541 755 40
s9 514 4633 949 1424 556 808 45
ave. 228 2263 519 779 285 449 58

Table 2: Performance on di�erent scheduling
set NT NC Tcon EDF PEDF IMP

%
s2 50 422 167 89 104 17
s3 101 922 365 200 225 13
s7 305 2643 858 432 495 15
ave. 152 1329 463 240 275 14

To test how our scheduling helps providing more slow-
down opportunities, we alternate two scheduling approaches
in the �rst phase, one is our priority-based ordering and
best-�t processor selection approach (PEDF), and another
is a baseline approach that uses an EDF ordering and selects
the processor that becomes available the earliest (EDF). Our
IP formulation is applied in the second phase to minimize
energy. The number of cycles at Vl for several representative
tasksets on the same 5-processor experimental system used
in the VS comparison are summarized in Table 2. In the
table, Column EDF and PEDF show the number of cycles
at Vl on the baseline scheduling and on our priority-based
scheduling, respectively, and Column IMP shows the im-
provement of cycles at Vl on our scheduling (PEDF) over
the baseline scheduling (EDF). The results show that our
scheduling can provide 14% more slowing down opportuni-
ties than a baseline scheduling.
It is clear that our �rst-phase priority-based scheduling

and second-phase IP approaches all outperform other re-
spective approaches. Here we want to explore how the frame-
work performs on di�erent system con�gurations. We �rst
investigate how the number of processors a�ects the energy
saving. With �xed timing constraints, systems with more
processors should have shorter critical path length and more
tasks with more slacks. The slack can be traded for energy
saving. Table 3 shows the number of cycles at Vl on systems
with di�erent number of processors. Processors can oper-
ate at two values and the cycle time changes from 1 unit
to 4 unit when voltage is switched from Vh to Vl, which is
the same as in the �rst two experiments. The energy sav-
ing increases dramatically when the number of processors
increases from 2 to 5, but not so much when the number
increases from 5 to 8. This is because the limited paral-
lelism among tasks has been exploited by the increases of
number of processors from 2 to 5. Additional processors do
not provide much bene�t if there are not many tasks can
run in parallel. If tasks are independent, every task can run
in parallel and we should expect the increase of number of
processors lead to energy saving increase more evenly.
The number of voltages and voltage values also a�ect the

energy saving. With more voltages available, the search
space for VS problem is bigger and energy savings should

Table 3: Savings on di�erent number of CPUs
set NC Tcon 2 cpus 5 cpus 8 cpus
s1 81 66 9 31 31
s2 422 266 29 268 397
s3 922 581 67 588 803
s4 1501 989 118 905 1318
s5 2988 1861 208 1939 2910
s6 2871 1760 197 1862 2840
s7 2643 1601 177 1728 2640
s8 4310 2616 287 2832 4310
s9 4633 2789 310 3076 4633
ave. 2263 1392 156 1470 2209
per. 100% 7% 65% 98%

1 2 3 4 5 6 7 8 9
0

1000

2000

3000
Slowed down cycles with different voltages

S
lo

w
do

w
n

cy
cl

es vl1=vh/2
vl2=vh/3
vl3=vh/4
vl=vh/4
vl=vh/5

0 1 2 3 4 5 6 7 8 9 10
0

50

100
Energy saving with different voltages

Tasksets

E
ne

rg
y

sa
vi

ng
 (

%
)

3 vl
vl=vh/4
vl=vh/5

Figure 6: Energy saving of di�erent voltages

be higher. For di�erent voltage values, a lower value in-
creases the cycle time more and may prevent other cycles
from slowing down if there is not enough slack. However,
the energy saving per cycles is more for the lower voltage
value. It is not immediately clear how voltage values a�ect
the overall energy saving. We did experiments on the same
9 tasksets on three 5-processor systems. The con�gurations
for the three systems are Sys1: Vl1 = Vh=2, Vl2 = Vh=3, and
Vl3 = Vh=4, Sys2: Vl = Vh=4, and Sys3: Vl = Vh=5. Assume
that cycle time increases from 1 to 2, 3, 4 and 5 when voltage
changes from Vh to Vh=2, Vh=3, Vh=4, and Vh=5. This is a
rough estimation but it should not make any conclusion we
draw invalid. The number of slowdown cycles and the energy
saving in the three systems are shown in the upper and lower
part in Figure 6. In the �gure, the �rst bar corresponds to
data for Sys1, the second for Sys2, and the third for Sys3.
The results show that our approach is capable of utilizing
the bigger design space provided in Sys1 and achieves more
energy savings when more voltages are available. In Sys1,
where processors can operate at three di�erent levels, most
cycles are slowed down to operate at Vl1, which is closest to
Vh. The number of cycles operating at the other two lower
voltages are so few that they are invisible in Figure 6. Sys2
with Vl = Vh=4 has more cycles slowed down and saves more
energy than Sys3 with Vl = Vh=5. This is because that the
closer a Vl is to Vh, the more cycles can be slowed down and
results in more energy saving even though the saving per
cycle is smaller for a Vl that is closer to Vh. Of course, if
timing constraint is so loose that every cycle can be executed
at the lowest voltage, then the lower voltage, the more en-
ergy saving. Continuous voltage is the ideal case and should
give the best energy saving.

6. CONCLUSION
In this paper, we present a two-phase framework that in-

tegrates task scheduling and voltage selection together to

achieve the maximum energy saving of executing dependent
tasks on one or multiple variable voltage processors. In the
�rst phase, the EDF scheduling for a single processor is op-
timal in providing slowdown opportunities and the priority-
based scheduling for multiple processors provide more slow-
ing down opportunities than a baseline scheduling. Our IP
formulation in the second phase is the �rst exact algorithm
for the VS problem. The IP can be solved optimally in
polynomial-time for the continuous voltage and some special
discrete voltage cases, or solved e�ciently by our approxi-
mation for general discrete voltages. Experimental results
show that our framework can slow down 7-98% cycles in
very short time. Due to its high quality solutions and low
computational cost, our framework can be used for design
space exploration.

7. ACKNOWLEDGMENTS
This research was supported in part by the National Sci-

ence Foundation under Grant CCR-9988468 and MIP-9701416.

8. REFERENCES
[1] AMD Athlon 4 Processor, Data Sheet Reference

#24319, Advanced Micro Devices, Inc., 2001.
[2] L. Benini, A. Bogliolo, and G. De Micheli, \A survey

of design techniques for system-level dynamic power
management," IEEE Transactions on VLSI systems,
June 2000, pp. 299-316.

[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen,
\A dynamic voltage scaled microprocessor system,"
IEEE Journal of Solid-State Circuits, vol. 35, 2000,
pp. 1571-1580.

[4] A. Chandrakasan and R. Brodersen, Low Power
Digital CMOS Design, Kluwer Academic Publishers,
1995.

[5] W. Chuang, S. Sapatnekar, and I. Hajj, \Delay and
area optimization for discrete gate sizes under
double-sided timing constraints," CICC'93,
pp. 9.4.1-9.4.4.

[6] http://dollar.biz.uiowa.edu/col.
[7] ftp://ftp.es.ele.tue.nl/pub/lp solve.
[8] F. Gruian, K. Kuchcinski, \LEneS: task scheduling for

low-energy systems using variable supply voltage
processors," ASP-DAC'01, pp. 449-455.

[9] D. Hochbaum and J. Shanthikumar, \Convex
separable optimization is not much harder than linear
optimization," Journal of ACM, vol. 37, No. 4, 1990,
pp. 843-862.

[10] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.
Srivastava, \Power optimization of variable voltage
core-based systems," DAC'98, pp. 176-181.

[11] http://www.chips.ibm.com:80/products/powerpc/chips.

[12] T. Ishihara and H. Yasuura, \Voltage scheduling
problem for dynamically variable voltage processors,"
ISLPED'98, pp. 197-202.

[13] Y. Lin, C. Hwang and A. Wu, \Scheduling techniques
for variable voltage low power designs," ACM
Transaction on Design Automation of Electronic
Systems, vol. 2, no. 2, 1997, pp. 81-97.

[14] C. Liu and J. Layland, \Scheduling algorithms for
multiprogramming in a hard-real-time environment,"
Journal of the ACM, vol. 20, no. 1, 1973, pp. 46-61.

[15] J. Luo and N. Jha, \Power-conscious joint scheduling
of periodic task graphs and a periodic tasks in
distributed real-time embedded systems," ICCAD'00,
pp. 357-364.

[16] N. Namgoong, M. Yu, and T. Meng, \A
high-e�ciency variable-voltage CMOS dynamic
DC-DC switching regulator," ISSCC'97, pp. 380-381.

[17] G. Quan and X. Hu, \Energy e�cient �xed-priority
scheduling for real-time systems on voltage variable
processors," DAC'01, pp. 828-833.

[18] http://helsinki.ee.Princeton.EDU/ dickrp/tg�

