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Task Scheduling for Energy Harvesting-based IoT:
A Survey and Critical Analysis

Muhammad Moid Sandhu , Student Member, IEEE, Sara Khalifa , Member, IEEE,
Raja Jurdak , Senior Member, IEEE, Marius Portmann , Member, IEEE

Abstract—The Internet of Things (IoT) has important appli-
cations in our daily lives including health and fitness tracking,
environmental monitoring and transportation. However, sensor
nodes in IoT suffer from the limited lifetime of batteries resulting
from their finite energy availability. A promising solution is
to harvest energy from environmental sources, such as solar,
kinetic, thermal and Radio Frequency (RF) waves, for perpetual
and continuous operation of IoT sensor nodes. In addition to
energy generation, recently energy harvesters have been used
for context detection, eliminating the need for conventional
activity sensors (e.g., accelerometers), saving space, cost, and
energy consumption. Using energy harvesters for simultaneous
sensing and energy harvesting enables energy positive sensing
– an important and emerging class of sensors, which harvest
more energy than required for context detection and the addi-
tional energy can be used to power other components of the
system. Although simultaneous sensing and energy harvesting
is an important step forward towards autonomous self-powered
sensor nodes, the energy and information availability can be
still intermittent, unpredictable and temporally misaligned with
various computational tasks on the sensor node. This paper
provides a comprehensive survey on task scheduling algorithms
for the emerging class of energy harvesting-based sensors (i.e.,
energy positive sensors) to achieve the sustainable operation
of IoT. We discuss inherent differences between conventional
sensing and energy positive sensing and provide an extensive
critical analysis for devising revised task scheduling algorithms
incorporating this new class of sensors. Finally, we outline future
research directions towards the implementation of autonomous
and self-powered IoT.

Index Terms—IoT, Wearables, Energy Harvesting, Ubiquitous
Computing, Sensing, Task Scheduling, Energy prediction

I. INTRODUCTION

W ITH the advancements in Micro-Electro-Mechanical
Systems (MEMS), low power miniaturized sensors

in IoT are becoming popular for monitoring the physical
attributes in various applications including surveillance, smart
cities, healthcare, exploration of mines, battle field monitoring
and even deep sea exploration [1]–[11]. These miniaturized
and resource constrained sensor nodes are deployed in the
physical world that work collectively to gather the required
information and this phenomenon is often renamed and rede-
fined as ubiquitous sensing, smart dust and IoT [12]. Due to
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Fig. 1. Energy harvesters can be used as context sensors as well as source
of energy in IoT.

their popularity, smart IoT devices have an increasing share in
the global market, which is expected to reach USD 1.6 trillion
by the year 2025 [13]. However, conventional sensor nodes
employ rechargeable batteries, which have limited energy
storage capacity [14] and thus hinder their perpetual and au-
tonomous operation. Although battery technology has evolved
over time, batteries still need to be recharged or replaced
regularly to ensure the sustainable operation of IoT [15],
[16]. This impedes the pervasive use of sensors and their
wide spread deployment in IoT applications, in particular,
the ones that require a large number of sensors, such as in
smart cities and deep sea exploration. In order to solve this
problem, energy harvesters such as kinetic, solar, thermal, and
RF [17]–[19] have been used to convert the environmental
energy into electrical energy, to extend the battery lifetime of
sensor nodes [20], [21]. This mitigates the issue of limited
battery lifetime, and thus allows the autonomous operation
of sensor nodes in Energy Harvesting-based IoT (EH-IoT),
minimizing the need for human intervention.

Recently, in addition to energy scavenging, energy har-
vesting transducers have been used as a source of context
information in various applications, including transport mode
detection, gesture recognition and human activity recogni-
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TABLE I
COMPARISON OF THIS WORK WITH PREVIOUS SURVEY PAPERS RELATED

TO EH-IOT AND TASK SCHEDULING RESEARCH

Year Reference Energy harvesting Task scheduling

2006 [42] × X
2008 [43] × X
2010 [44] X ×
2013 [45] × X
2014 [46] X ×
2016 [47] × X
2016 [48] X ×
2018 [49] X ×
2020 [50] X ×
2020 Proposed X X

tion [22]–[24]. This allows saving of sensor-related energy
consumption [24] that would otherwise be used for powering
conventional activity sensors, such as accelerometers. Fig. 1
demonstrates the simultaneous sensing and energy harvesting
paradigm where energy harvesters are employed as energy
efficient activity sensors to detect the underlying activity, in
addition to being a source of energy to power the sensor
nodes. In this paradigm, the harvested energy can be used
to power various components of the system, e.g., the signal
acquisition, activity detection and data transmission leading
towards energy positive sensing [25], [26], and potentially
autonomous operation of sensor nodes in EH-IoT.

Despite the emerging importance of EH-IoT, the amount
of generated energy from the ambient environment is still
insufficient to enable the Energy Neutral Operation (ENO) [27]
of miniaturized sensor nodes [28], especially for wearable
sensing devices that have a small form factor. Various research
efforts have been made to achieve ENO of miniaturized
sensor nodes, such as maximizing the harvested energy by
implementing optimal energy harvesting mechanisms [28],
[29], minimizing the energy consumption [30] by using novel
low power sensing mechanisms such as energy harvesting-
based sensing [24], and considering multi-source energy har-
vesters [31] that harvest energy from multiple sources. How-
ever, the amount of generated energy from the ambient envi-
ronment can still be inadequate to fully power the IoT sensor
nodes. Therefore, energy management algorithms are needed
to manage the precious and limited harvested energy, ensuring
ENO of sensor nodes [32]. There are different types of
energy management algorithms, including transmission power
control [33]–[35], Medium Access Control (MAC) [36]–[38]
and task scheduling [39]–[41], to name a few.

Task scheduling algorithms are employed to schedule the
broader set of tasks (such as sampling, processing, and trans-
mission) on the sensor node, according to the available energy
budget, to prolong its operational lifetime. It is an effective
method to minimize the energy consumption on the sensor
node, due to its direct interaction with the Energy Storage
Unit (ESU) (i.e., battery/capacitor) and energy consumption
(in executing the tasks) on the processor. Task scheduling
algorithms can be more effective in minimizing the energy
consumption, compared to other communication-focused en-
ergy management schemes (i.e., transmission power control).
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Fig. 2. Research trend in the previous years depicts the growing potential of
publications containing the following keywords: Energy harvesting IoT, Task
scheduling in IoT, and Batteryless IoT.

This is due to their interaction with a broader set of tasks
including digitizing, sampling, and processing as well as
communication. The objective of task scheduling algorithms
is to run sensor nodes using the unreliable harvested en-
ergy [51], [52] to ensure ENO and achieve maximum sensing
performance in IoT applications. Therefore, in this survey,
we comprehensively analyze task scheduling algorithms for
energy harvesting-based sensing to enable the ENO of sensor
nodes in EH-IoT.

A. Motivation

In recent years, there has been a growing trend in energy
harvesting mechanisms to power IoT sensors and related task
scheduling-based energy management algorithms, as depicted
in Fig. 21. The figure portrays the number of research pub-
lications per year that contain any keyword from Energy
harvesting IoT, Task scheduling in IoT, and Batteryless IoT.
Task scheduling algorithms are incorporated in EH-IoT to
ensure ENO of sensor nodes using the limited, unreliable and
time-varying harvested energy. In addition to energy gener-
ation, energy harvesters have been recently used for activity
recognition [22], [24], [53], as depicted in Fig. 1, representing
a rich information source which can replace conventional
activity sensors that require continuous power to operate.

Using energy harvesters as a simultaneous source of energy
and context information enables the energy positive sensing
concept [25], [26], which allows the transducer to harvest suf-
ficient energy to power the sensor node. The ability to extract
information from energy harvesting signals, and in most cases
to gain energy in the process, can significantly impact the task
scheduling landscape for EH-IoT as described in Section IV.
Therefore, task scheduling algorithms need to consider the
information and energy gain (for energy positive sensing),
rather than energy loss, of different sensors to achieve their
objective. This potential warrants a comprehensive survey of
task scheduling algorithms to analyze their support for such
decisions.

1The numbers are obtained from Dimensions.
Source: https://app.dimensions.ai/discover/publication
Accessed on: March 26, 2021

https://app.dimensions.ai/discover/publication
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B. State-of-the-art

There are several works in the literature that explore task
scheduling in EH-IoT. Table I compares our paper to previous
survey papers related to IoT with energy focused research.
Some of the previous works [42], [43], [45], [47] present
extensive surveys on task scheduling algorithms to minimize
energy consumption. However, none of theses surveys consid-
ered energy harvesting mechanisms to power batteryless IoT
sensor nodes with the associated opportunities and challenges
compared to battery-powered IoT. Other survey papers [44],
[46], [48], [49] covered energy harvesting mechanisms to
power IoT sensor nodes in order to enhance their operational
lifetime and to reduce maintenance cost as given in Table I.
However, they considered conventional sensors instead of
energy harvesting-based sensing. A recent comprehensive sur-
vey [50] is the first to cover energy harvesting-based sensing
while exploring sensing, computing and communication for
EH-IoT. However, none of previous survey papers on energy
harvesting research [44], [48], [49], including this most recent
one [50], considered task scheduling as a crucial mechanism
to manage the execution of tasks under the limited and time-
varying harvested energy. Furthermore, to the best of our
knowledge, there is no previous work that explores the poten-
tial and associated challenges of implementing task scheduling
algorithms for the emerging class of energy positive sensors.

C. Contributions

To address the aforementioned gaps in the literature, this
work critically surveys task scheduling algorithms to minimize
the energy consumption for perpetual operation of sensor
nodes in EH-IoT, and analyzes their potential to support
energy harvesting-based sensors. Our contributions are as
follows:

• We discuss the implementation of energy harvesters as
sensors and energy sources simultaneously, which is
advantageous in practical environments leading towards
self-powered batteryless IoT. We also explore the concept
of energy positive sensing, which uses the harvested
energy to acquire the energy harvesting signal for sensing
and activity detection, in contrast to the conventional
energy negative activity sensors which rely mainly on
external energy sources.

• We analyze task scheduling based energy management
algorithms for implementing the tasks on resource con-
strained sensor nodes under limited and varying harvested
energy due to unreliable environmental energy (i.e., ki-
netic, solar, thermal, RF waves, etc).

• Based on an extensive study of the literature, we com-
prehensively describe the key challenges and potential
solutions when integrating energy positive sensing with
conventional task scheduling algorithms.

• Finally, we present future research directions to enable
the sustainable and autonomous operation of batteryless
sensor nodes in EH-IoT.

The remainder of this paper is organized as follows: Sec-
tion II comprehensively describes energy harvesting-based
IoT covering the previous works related to energy harvesting
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Fig. 3. Energy harvesting sources can be classified into various categories
depending upon the type of energy.

to power IoT, mechanisms of energy harvesting, estimating
battery State of Charge (SoC) and sensing using energy har-
vesters. Task scheduling algorithms for EH-IoT are presented
in Section III along with energy prediction algorithms, to
ensure the perpetual operation of sensor nodes. Section IV
critically analyzes the challenges and opportunities for modi-
fying task scheduling algorithms for the new class of energy
positive sensors. Future research directions are described in
Section V and finally, Section VI concludes the paper.

II. ENERGY HARVESTING-BASED IOT

This section presents a background of EH-IoT, covering
the literature related to energy harvesting to power IoT sensor
nodes, energy harvesting mechanisms, battery SoC estimation,
as well as the emerging concept of sensing using energy
harvesters, which opens the door for revised task scheduling
algorithms incorporating this new concept.

A. Energy harvesting to power IoT

Recent advancements in technology have led researchers
and companies towards the design and development of low-
power energy harvesting circuits [55] to harvest energy from
the ambient environment for powering the miniaturized sensor
nodes. There are various energy harvesting sources, including
radiation energy, mechanical energy and thermal energy as
depicted in Fig. 3. Radiation energy is available in various
forms, including sunlight, RF waves and Electromagnetic
(EM) field. In addition, there is abundant mechanical energy in
the environment in the form of motion, water flow, blood flow
and stress that can be converted into electrical energy. Thermal
energy includes solar heat, body heat and fire heat that can
be transformed into electrical energy using a Thermoelectric
Power Generator (TEG). Due to the difference in the tem-
perature levels between the upper and lower layers of TEG,
a potential difference is developed which forces the current
to flow in the circuit. Table II summarizes the characteris-
tics of various energy harvesting sources [54]. RF Energy
Harvesting (RFEH) and Thermal Energy Harvesting (TEH)
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TABLE II
CHARACTERISTICS OF AMBIENT ENERGY SOURCES [54]

Solar energy Thermal energy RF energy Piezoelectric energy
Vibration Push button

Power density 100 mW/cm2 60 µW/cm2 0.0002 – 1 µW/cm2 200 µW/cm3 50 µJ/N
Output 0.5 – 1 V – 3 – 4 V 10 – 25 V 100 – 10000 V
Available time Day time Continuous Continuous Activity dependent Activity dependent
Weight 5 – 10 g 10 – 20 g 2 – 3 g 2 – 10 g 1 – 2 g
Pros • Large amount • Always available • Light weight and small- • Well developed • Well developed

of energy • Available as wearable sized antenna technology technology
• Easy to install • Widely available • Light weight • Light weight

Cons • Need large area • Need large area • Distance dependent • Need large area • Highly variable output
• Not continuous • Low power • Depends on power source • Highly variable output • Low conversion efficiency

Energy 
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converter
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LoadInput PMU Output PMU
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Battery/Capacitor

Sensor node

Fig. 4. General system architecture for energy harvesting to power the sensor nodes in IoT.

provide the lowest power levels; however, they can operate
almost everywhere due to the presence of ambient RF waves
and thermal energy in the environment. On the other hand,
Solar Energy Harvesting (SEH) and Kinetic Energy Harvesting
(KEH) transducers harvest greater amounts of energy [54], yet
they work only under certain environmental conditions, for
example, in daylight and under external stimulus, respectively.
We describe the state-of-the-art related to energy scavenging
from various sources including solar, kinetic, thermal and RF
waves, to power IoT sensor nodes in the following part.

1) Solar: Jokic et al. [56] design a wearable smart bracelet
that employs a tiny and flexible thin-film photovoltaic panel
for harvesting solar energy from the ambient environment.
They conduct detailed experiments and find that the flexible
photovoltaic panel can harvest 16mW of power in outdoor
and 0.21mW of power in indoor environments. This amount
of harvested power is sufficient to acquire one blood oxy-
genation measurement per minute and to transmit the output
via Bluetooth. The authors in [57] employ flexible solar
panels and exploit Maximum Power Point (MPP) tracking for
harvesting maximum energy to measure the heartbeat using
photoplethysmography sensor and monitor the human activity
using an accelerometer. Tha authors in [58] propose a regulator
circuit to harvest solar energy to power the nodes in a Wireless
Sensor Network (WSN). They find that depending on the
intensity of outdoor light, the harvested solar power ranges
from 220mW to 750mW. Bito et al. [59] design a novel 3-D
printed solar and electromagnetic energy harvesting system to
power IoT sensor nodes. Their mechanism results in reduced
capacitor charging time by 40%, which helps to ensure the
perpetual operation of the IoT sensor node.

2) Kinetic: Ambient motion is one of the main sources
of energy [60] for powering the sensor nodes in human-
centric applications. The authors in [61] study the excitation
generated by human movements/vibrations and propose an
optimal kinetic harvester geometry for wearable medical sen-
sors. They also propose an efficient KEH circuit to maximize
the harvested power. Magno et al. [62] propose an efficient
energy harvesting circuit to maximize the energy conversion
efficiency from KEH in human-centric applications. They
perform extensive experiments and find that their proposed
system can harvest on average 624 µW of power from various
human movements. Kuang et al. [63] design a kinetic energy
harvesting system to generate energy from human knee-joints.
They employ MPP to maximize the harvested energy and
power the on-body WSN.

3) Thermal: Thermal energy plays a vital role in the
design and implementation of autonomous wearable devices
for human-centric applications [64]. Proto et al. [65] design a
system to harvest thermal energy from the human body during
various activities such as sitting, walking, jogging, and riding
a bike. The authors in [66] suggest to employ a TEG to harvest
thermal energy from the human body to enhance the lifetime
of the on-body sensors. Leonov [67] attaches a thermopile
with an office shirt and uses it to harvest energy from various
subjects in a real life environment. After detailed experiments,
it is found that the proposed system can harvest power in the
range of 0.5mW to 5mW at the ambient temperature from
−27 ◦C to 15 ◦C. The authors in [68] propose innovative fiber-
based energy conversion devices for harvesting human-body
energy. As these devices can be attached with the clothes, they
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offer higher user-comfort and user-friendless, resulting in long
term energy harvesting for the perpetual operation of sensor
nodes.

4) RF waves: RF energy offers a promising solution to
power IoT sensor nodes when other sources of energy (such
as solar and kinetic) are unavailable or when it is infeasible
to harvest energy from other sources [69]. Liu et al. [70]
propose a theoretical model to harvest ambient RF energy to
power the IoT sensor nodes in a smart cities application. The
authors in [71] design an energy harvesting circuit to harvest
RF energy from various frequency bands, including 700MHz,
850MHz, and 900MHz, to power the sensor nodes. Mouapi
et al. [72] propose an RF energy harvesting technique from
Industrial, Scientific and Medical (ISM) band (i.e., 2.4GHz),
to power a sensor network for its autonomous operation. The
authors in [73] suggest an optimal number and placement of
RF energy transmitters to ensure sufficient harvested energy to
power the sensor nodes in a terrestrial WSN. However, there
are various challenges in designing a completely autonomous
RF energy harvesting-based miniaturized sensor node. These
challenges include overall conversion efficiency, bandwidth,
and form factor [69] in harvesting RF energy from the ambient
environment. The detailed mechanisms for harvesting the
ambient energy are described in the following subsection.

B. Energy harvesting mechanisms
In general, there are two mechanisms for using the harvested

energy to power a sensor node: harvest-and-store and harvest-
and-use [74]. In the former case, the harvested energy is
first stored in an ESU, whereas in the latter, the harvested
energy from the transducer is directly used to power the
system load. In EH-IoT, the harvested energy is time-variant
and intermittent, and depends on the external environmental
conditions. Therefore, it may not be sufficient to fully power
a sensor node in the case of harvest-and-use, except when
the harvested energy is quite high. In general, the harvested
voltage is rectified using a full-wave bridge rectifier, if the
energy harvesting transducer produces AC voltage (like in
KEH), as depicted in Fig. 4. Then, a DC-DC boost con-
verter [75] is employed to step-up the low harvesting voltage
to charge the battery/capacitor. The rectifier and the boost
converter constitute the input Power Management Unit (PMU)
which is also called Energy Management Unit (EMU), that is
situated between the energy harvesting transducer and ESU
as shown in Fig. 4. The stored harvested energy is then
used to run a sensor/system load through the output PMU,
which uses a DC-DC buck converter to regulate and step
down the output voltage according to the specifications of
the sensor’s hardware. However, if the harvested energy from
the transducer is sufficient to run the sensor node, the node
can be directly powered to avoid the losses in the PMU [76].
The advantage of directly powering the sensor node from the
energy harvesting transducer lies in avoiding the energy losses
in rectification and charging/discharging the ESU. However,
this approach offers unreliable operation of the sensor nodes
due to time varying and dynamic characteristics of the en-
vironmental energy (i.e., solar, thermal, kinetic and RF). In
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Fig. 5. Energy harvesters can be used as activity sensors, in addition to the
energy scavenging.

order to ensure sustained operation of the sensor nodes, the
energy harvesting mechanism should be tailored to provide
stable, consistent and maximum harvested energy. In order to
manage the energy consumption of EH-IoT sensor nodes, it is
important to keep track of the harvested energy and dynamic
SoC of the battery [77]. Therefore, we explore the previous
literature related to the battery SoC estimation in EH-IoT in
the following subsection.

C. Estimating the battery SoC in EH-IoT

Estimating the in-situ SoC of the battery is crucial for
efficiently scheduling the power-intensive tasks on the EH-IoT
sensor nodes. Even microscale errors in estimating the battery
energy may result in substantial cumulative estimation errors
which significantly degrade task scheduling strategies. The
authors [78] in present an electronic circuit to continuously
monitor the battery energy in sensor nodes. This energy esti-
mation circuit consists of a sense resistor, amplifier, voltage-
to-frequency converter, and two counters. Buchli et al. [79]
propose a method to estimate the SoC using only the battery
voltage. In addition, their method offers higher accuracy with
optional current and temperature measurements. In contrast to
the previous works which employ dedicated circuits [78] or
exploit battery voltage [79], Sommer at al. [80] estimate the
SoC using both the net current flow in the battery and the
battery voltage. The authors in [81] present a simple model
to estimate the battery SoC that entails minimum resources to
run on the sensor node. Initially, their method employs various
battery parameters and environmental conditions to estimate
the SoC. Later on, the previously collected data is used to
build a mathematical model based on a linear regression and
multilayer perceptron algorithm. Quintero et al. [82] employ
a particle filtering algorithm to estimate the battery SoC and
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TABLE III
STATE-OF-THE-ART RELATED TO SENSING USING VARIOUS ENERGY

HARVESTERS

Energy har-
vester(s)

References Target application(s)

Kinetic [22], [24],
[25], [84]–[98]

Airflow speed monitoring, Hu-
man step count, Calories burnt,
Food intake detection, Hotword
detection, Transport mode detec-
tion, Ball impact on racket, Hu-
man activity recognition, Human
gait recognition, Voice demodu-
lation, Knee surgery monitoring,
Heart beat monitoring, Authentica-
tion key generation

Thermal [65], [99]–
[101]

Water flow detection, Water and
appliance metering, Chemical re-
action detection, Human activity
recognition

Solar [23], [26],
[102]

Hand gesture recognition, Human
activity recognition

RF [103]–[105] Touch detection, Hand gesture
sensing, Hand wash monitoring

Multisource
(Kinetic and
solar)

[53] Recognizing places in a built envi-
ronment

show that it can offer accurate measurement of the battery en-
ergy. Most of the battery energy estimation models encompass
inherent bias due to the simplifications and assumptions that
may results in conspicuous errors in battery SoC estimation.
The authors in [83] propose a bias characterization model so
that accuracy of the battery energy estimation algorithm can be
improved. They employ polynomial regression and Gaussian
process regression models to examine the effects of the two
methods on bias modeling and the battery SoC estimation,
using a typical battery circuit model. Among the plethora of
energy harvesting and battery SoC estimation proposals for
IoT sensor nodes, some researchers have investigated the use
of energy harvesters as a novel context/activity sensor, which
we discuss in the next subsection.

D. Sensing using energy harvesters

In addition to energy harvesting, a recent trend is to use the
output signals from energy harvesters for extracting context
information, as shown in Fig. 5(b), instead of employing
dedicated sensors (e.g., accelerometer, magnetometer, etc.), as
depicted in Fig. 5(a). Thanks to the varying nature of the
harvested energy, it contains the context information about
the environment in which the energy harvester is deployed.
We summarize the state-of-the-art related to sensing using
energy harvesting in Table III. It is evident from the table
that various types of energy harvesters, either individually
or in combination, have been used as sensors in different
applications – leading towards an emerging domain of energy
harvesting-based sensing. The harvested energy from a TEH
transducer [65], [99]–[101] contains embedded information
about the varying temperature conditions in the ambient envi-
ronment, and thus can be used to detect water flow, chemical
reactions and human activities. Similarly, RF harvested en-
ergy [103]–[105] varies according to the type of environment
and ambient RF energy availability, and thus can be used for

Energy 
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PMU
Capacitor/

battery
System load

Regression 

Model

Regression 
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Regression 

Model

Detected activity Detected activity Detected activity

AC signal Rectified signal Capacitor signal

Fig. 6. Energy harvesters have different types of signals for information
extraction, such as AC voltage, rectified voltage and capacitor voltage.

touch detection, hand gesture sensing and monitoring the hand
wash activity. Furthermore, using the harvested energy from a
wrist-worn SEH transducer, human gestures and activities in
indoor and outdoor environments can be recognized [23], [26],
[102]. Likewise, if the KEH transducer is attached with the
wrist wearable device, the output signal provides information
about the type of the underlying activity [24]. It is based
on the phenomenon that KEH experiences distinct vibration
patterns during different human activities, such as walking,
running, sitting and standing. These different types of activities
leave their distinct signatures in the output signal of KEH.
By analyzing the output signal from the energy harvester, it
is possible to find the type of activity performed. As KEH
provides output due to underlying movements/vibrations, it
can be employed as an activity sensor in a variety of ap-
plications including transport mode detection, human activity
and heartbeat monitoring, and food intake detection [22], [24],
[87], [97]. The principal advantage of employing the energy
harvester for context detection lies in its sensor-related power
saving [24], as compared to the conventional activity sensors
(such as accelerometers and magnetometers), which operate
on the supplied power from the ESU, as illustrated in Fig. 5.

There are different types of signals in the energy harvesting
circuit that can be employed for activity recognition including
AC, rectified and capacitor voltages as depicted in Fig. 6.
Moving one step further, energy harvesters can be employed as
a simultaneous source of energy and context information [25],
[106]. This results in full utilization of the energy harvesters
to sense the underlying activity and power the sensor nodes.
However, the energy harvesting circuit and the operation
of load systematically affect the harvesting signals [25], as
shown in Fig. 7. This stems from the variance of harvester’s
impedance [107] with the amount of current drawn by the load.
When the load is turned on, it consumes energy and discharges
the ESU. This allows the current flow from the transducer to
charge the ESU again up to its capacity. When the ESU is full,
it blocks the charging current using the rectification circuit
in PMU. Thus, various components in the energy harvesting

Energy harvesting 

transducer
PMU

Capacitor/

battery

Processor

Transceiver

Load effectCapacitor /battery 

effect

PMU effect

AC voltage Rectified voltage
Capacitor voltage

Load

Fig. 7. Impact of load, stored energy and PMU on the harvesting signal of
the energy harvesting transducer.
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circuit affect the harvesting signals compared to the open
circuit configuration which may impact their activity recogni-
tion performance [25]. Depending on the type of application,
this harvested energy can be higher than the energy required
for signal acquisition [25] or for implementing the activity
classification algorithm [26] – resulting in energy positive
sensing or energy positive activity recognition respectively.
This novel class of energy positive sensors can lead towards
self-powered and autonomous operation of batteryless EH-IoT
sensor nodes.

E. Summary and insights

Energy harvesters serve the dual purpose of energy gen-
eration as well as context detection, addressing the require-
ment of conventional activity sensors, such as accelerometers,
magnetometers and gyroscopes. Most of the previous works
employ KEH transducers for context detection due to their
distinct output signal during different activities. In order to
further save the energy consumption, the stored energy in
the ESU, sampled at a lower frequency, can be employed for
context detection, at the cost of higher latency. However, the
harvested energy may still not be sufficient to continuously
power a sensor node using miniaturized energy harvesters, e.g.,
when placed on the wrist in human activity monitoring and
fitness tracking applications. This opens the door for energy
management algorithms, that schedule the execution of tasks
on the node, according to the harvested energy profile, to allow
the perpetual operation of the system. In the next section we
consider the energy harvesting-based sensing mechanisms, and
we comprehensively survey various task scheduling algorithms
that manage the time-varying and limited harvested energy
on the miniaturized sensor nodes in EH-IoT to ensure their
sustained operation.

III. TASK SCHEDULING IN EH-IOT

The harvested energy from miniaturized transducers in
EH-IoT may not be sufficient to power the sensors nodes con-
tinuously without any interruption. Therefore, task scheduling-
based energy management algorithms are required in EH-IoT
to ensure efficient utilization of the harvested energy. These
algorithms ensure optimal utilization of the harvested energy
to extend the system lifetime as well as to provide the high-
est activity detection/monitoring performance. This section
describes fundamentals of task scheduling, surveys existing
task scheduling algorithms, explores the applicability of task
scheduling algorithms for energy harvesting-based sensors and
finally discusses energy prediction schemes to ensure energy
neutral operation of EH-IoT.

A. Task scheduling fundamentals

Task scheduling is basically used to manage the execution
of tasks on the node to maximize the performance in terms of
activity monitoring within the limited available energy budget.
The most common types of tasks running on a sensor node
include sampling of information/signal, digitizing, processing,
data storing, transmission and reception, as displayed in Fig. 8.

Transmission

Storing Processsing

Digitizing

SamplingReception

Task 

scheduler

Fig. 8. The task scheduler governs the execution of various tasks on the
sensor node in EH-IoT.

According to the type of application, the tasks are scheduled
on the node at different frequencies. The task scheduler
takes various parameters into account, while scheduling the
execution of upcoming tasks, as depicted in Fig. 9. It shows
that the task scheduler considers the energy budget, deadline
of task, predicted energy and type of task, while scheduling
the execution of tasks on the sensor node.

In the literature, most of the task scheduling algorithms
consider one or more of the following key principles for
scheduling. The tasks are queued according to their priority
and order of their deadlines. As long as sufficient energy is
available, a high priority task is executed without any delay.
If the harvested energy is not sufficient to run a high priority
task, the next task in the queue is executed. If energy is not
available, the tasks are delayed until their deadlines, to allow
sufficient time for the transducer to harvest energy. If a high
priority task arrives during the execution of a low priority task,
the low priority task is pre-empted (according to the type of
application), to execute the high priority task first. Tasks are
scheduled according to the energy budget, predicted harvested
energy, and deadlines of tasks. Finally, the larger tasks can
be broken down into smaller subtasks, which consume small
amount of energy and take lower time during their execution.
Later, these subtasks can be combined, according to their
similarity, to reduce the energy consumption in frequently
switching the hardware from idle mode to the active state.
We discuss the previous literature related to task scheduling
in the following subsection in detail.

B. Task scheduling algorithms

Fig. 10 displays an overview of three major task scheduling
algorithms in EH-IoT: (1) Dynamic Voltage and Frequency
Scaling (DVFS), (2) Decomposing and combining of tasks,
and (3) Duty cycling. We explain these task scheduling algo-
rithms in the following part in detail.

1) Dynamic voltage and frequency scaling: The power
consumption of the sensor nodes depends on the supplied
voltage (as well as the current flow) and the operating fre-
quency (i.e., the clock frequency). Therefore, both of these
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Hardware modules

Harvested 
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Energy 

prediction
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Task -1 Task -2

Task Scheduler
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Deadline

Tasks

Priority

Fig. 9. The task scheduler schedules the tasks based on different parameters including task’s energy consumption, deadline and energy budget.

parameters can be adjusted in real-time to optimize the power
consumption of the sensor node. The objective of DVFS is
to maximize the performance given the limited energy budget
or to minimize the energy consumption under a performance
bound. The authors in [108] present a task scheduling tech-
nique using DVFS for rechargeable sensor nodes. The tasks
are grouped according to their deadlines and are executed
if the available energy is higher than a certain minimum
threshold. Liu et al. [109] propose a scheduling mechanism
which slows the processing of tasks according to the available
as well as the predicted harvested energy in the future in SEH-
based systems. Thus a task is executed at increasing speed
as it approaches its deadline. The authors in [110] decouple
the energy and timing constraints to simplify the scheduling
problem. As a significant amount of harvested energy is wasted
in battery leakage, the authors in [111] suggest to switch
between the stored energy and direct use of the harvested
energy in running the sensor node. This saves the energy
that would otherwise be lost due to leakage in a non-ideal
ESU. A DVFS based task scheduling algorithm for structural
health monitoring is presented in [112]. In this algorithm,
both periodic as well as sporadic tasks are scheduled using
a linear regression-based algorithm. Liu et al. [113] combine
the static and adaptive scheduling techniques with DVFS to
attain higher performance with energy and timing constraints.
Their algorithm adaptively schedules the tasks when there
is a prediction of energy overflow, to achieve the maximum
benefit from the harvested energy. Another DVFS based task
scheduling framework is proposed in [114]. It employs MPP
tracking to harvest maximum energy from the solar cell. This
algorithm schedules various tasks on the node according to the
predicted energy, available energy budget and the deadlines of
tasks, in order to minimize the task drop ratio. Tan et al. [115]
model the energy harvesting system as an energy model, a task
model and a resource model and present a task scheduling
algorithm based on DVFS. Their method combines the free
dispersed time slots together, which results in the execution
of a higher number of tasks within the limited energy budget.

DVFS algorithms may not be suitable for scheduling tasks
on energy harvesting-based batteryless sensors due to the

resource-constrained hardware. As the energy harvesting cir-
cuits are intentionally kept simple (to avoid energy losses),
they may not offer various voltage levels to execute tasks
on the sensor node. Therefore, alternate task scheduling al-
gorithms can be employed that work seamlessly without addi-
tional overhead in terms of energy and resources, to minimize
the energy consumption of resource constrained sensor nodes.

2) Decomposing and combining of tasks: This algorithm
decomposes the energy-intensive tasks into multiple subtasks
which demand lower energy during their operation. In general,
this decomposing and combining technique consists of the
following four phases:
Decomposition: This phase decomposes the energy-intensive
tasks into multiple subtasks depending upon their ability to
combine with other subtasks to conserve energy. When the
harvested energy is not sufficient to run the high-powered tasks
continuously, the subtasks can be executed with the limited
available energy budget.
Combining: This phase combines multiple subtasks that can
be executed on the same processor to minimize the energy
consumption. In addition, some tasks can be executed concur-
rently to reduce the idle time of the processor. For example,
the tasks of sensing and fetching stored data from memory can
be executed simultaneously depending on the harvested energy
as they utilize different resources of the node. The advantage
of the concurrent execution is the reduced delay and smaller
latency in task execution. However, it also demands higher
energy which is available only once in a while in EH-IoT
sensor nodes.
Admission control: In this phase, the tasks are filtered accord-
ing to their priority and energy consumption during their exe-
cution. Although tasks are combined to save energy, generally,
the harvested energy from miniaturized sensors is insufficient
to run all ready-to-execute tasks. Therefore, an admission
controller further filters the tasks based on the priority of tasks,
available harvested energy and energy consumption of tasks.
Task priority is important in all applications and, in particular,
for time-critical real-world scenarios. Depending upon the
application, the task’s deadline is further categorized into two
types, i.e. soft deadline and hard deadline. In general, soft
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Fig. 10. Different mechanisms for scheduling the tasks on the EH-IoT sensor node.

deadlines are less critical as compared to hard deadlines and
their violation does not harm the functioning of the system.
On the contrary, hard deadlines are essential to be respected
in all circumstances, which create major loss if ignored or
violated [116]. Therefore, the admission controller arranges
the tasks according to their priorities and deadlines.
Optimization: This phase optimizes the execution of tasks
on the basis of additional available energy (available after
executing the current task(s)), required number of executions
of tasks and the energy consumption of each task. The
optimization phase further filters the tasks in order to use the
harvested energy efficiently. The additional available energy is
important to decide about the execution of future time-critical
tasks. In order to avoid deadline violations in the future, a
certain minimum amount of energy must be available in the
ESU during all time slots, to serve the future tasks that have
hard deadlines.

Zhu et al. [117] propose an algorithm of task decomposition
and combining to save the energy consumption of sensor
nodes. For example, the task of transmitting the sensed data
can be decomposed into two separate subtasks of sensing and
data transmission. Similarly, the transmission of stored data (in
the processor’s memory) can be decomposed into the separate
subtasks of reading the attribute from memory and data
transmission. In order to minimize the energy consumption,
the two transmission subtasks can be combined together by
grouping the data from these subtasks and transmitting it
in one data packet, as shown in Fig. 11 [117]. The authors
in [117] evaluate their task scheduling algorithm using SEH
as a source of energy. The results show that their technique
executes more tasks with fewer missed deadlines as com-
pared to the previous algorithms which do not employ the
decomposing/combining algorithm for energy-intensive tasks.
In addition to decomposing and combining of tasks, a Markov
Decision Process (MDP) model is proposed in [118] to sched-

ule the tasks on the node. It proposes a dynamic optimization
model based on MDP to schedule the tasks taking into account
their deadlines, energy consumption, and available harvested
energy. The decomposed subtasks can be combined together
for concurrent execution. It also proposes a less complex
greedy scheduling policy which can be implemented on the
resource constrained sensor nodes, and which and consumes
less energy than the original model. The simulation results
indicate that the proposed algorithm [118] executes higher
number of tasks within the same energy budget compared to
the previous task scheduling algorithms.

As the harvested energy in EH-IoT sensors nodes is limited,
they can essentially perform only one atomic task at a time.
In the particular case of batteryless sensors, the available tiny
energy burst (in the ESU) may not be employed to execute
multiple tasks simultaneously [119]. Therefore, combining the
tasks to reduce energy consumption may not be appropriate
solution for energy harvesting-based sensors. As a result,
there is a potential of alternate task scheduling algorithms
such as duty cycling to minimize the energy consumption,
as elaborated in the following part.

3) Duty cycling: One of the most familiar and common
methods for minimizing the energy consumption in EH-IoT
is to use duty cycling or sleep/awake mechanism. When a
node does not perform any useful operation, it is switched
to sleep mode, which reduces its energy consumption [120].
In traditional IoT, most of the algorithms devise a duty
cycling mechanism based on the number of tasks, their energy
consumption and remaining energy of the node. However,
these methods are not suitable for EH-IoT, due to the variable
nature of incoming harvested energy. In EH-IoT, the harvested
energy varies significantly due to the change in environmental
conditions which effect the ambient energy availability [121].
Therefore, duty cycle of a node must vary depending on the
incoming harvested energy as well to efficiently utilize the
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future harvested energy in executing upcoming tasks on the
node. The sleep duration of a node can be adjusted according
to the amount of energy to be harvested in the future to
proactively plan the consumption of incoming energy for task
execution. Therefore, we divide the duty cycling mechanisms
into the aforementioned two categories i.e., depending on (1)
the current energy budget and (2) the predicted harvested
energy, and extensively explore the relevant literature in the
following part.
Energy budget-based duty cycling: In a sensor network,
duty cycling mechanism depends on the harvested energy,
consumed energy, and distance between nodes and data ag-
gregator/receiver. In a traditional IoT, nodes near the sink
exhaust quickly due to the additional burden of relaying the
data of far-away nodes in multi-hop communication. On the
other hand, in EH-IoT, nodes remain alive as long as they
are receiving replenishable energy from the environment using
energy harvesters. Kansal et al. [122] present duty cycling
mechanisms for a single node, as well as for a sensor network,
to achieve sustainable performance in EH-IoT. They describe
a model for calculating the minimum size of the ESU/battery
for sustainable operation of the embedded device. The duty
cycle of a sensor node depends upon the average harvested as
well as consumed energy in active and sleep modes. This duty
cycle can be adjusted such that the overall energy consumption
does not exceed the overall harvested energy. Similarly, if the
harvested energy is increased, the duty cycle can also be raised
to improve the performance within the given energy budget.
The authors in [122] implement a duty cycling mechanism
on the embedded device and demonstrate that the node has
adjusted its duty cycle in accordance with the harvested energy
to achieve sustainable operation in EH-IoT.

A mathematical model for duty cycling the sensor nodes
according to the harvested energy is described in [123]. It
achieves the ENO and maximizes the system performance by
adapting the dynamics of the replenishable energy source at
run-time. It employs Exponentially Weighted Moving Average
(EWMA) scheme to predict the future harvested energy, which
is used to compute the duty cycle of a node. Bouachir
et al. [124] propose a MAC protocol for efficient energy
utilization in cooperative Wireless Sensor Networks (WSNs).
Their algorithm incorporates the nodes’ residual energy and
data requirements to schedule the active as well as sleep time
periods of sensor nodes. Therefore, it minimizes the problem
of early depletion of nodes near the data aggregator, which
reduces the coverage hole dilemma [125]. Yang et al. [126]
propose a sensing scheduling algorithm which dynamically
adapts the sensing rate according to the available energy in
the ESU. They also propose a mathematical model for optimal
sensing scheduling in energy harvesting sensors. In contrast to
the previous works [77], [127] that focus on energy allocation
to the sensors, the sensing scheduling algorithm [128] opti-
mizes the sensing epoch depending on the energy budget. The
authors in [128] present the finite and infinite battery case
and suggest an online scheduling policy that approaches the
theoretical offline optimal scheduling mechanism. An event-
driven duty cycling mechanism is proposed in [129] for power
management of a road side monitoring unit. It harvests energy
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Transmission

Data reading

Transmission
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Data reading
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Original tasks
Decomposing the 
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tasks

Fig. 11. Illustration of decomposition and combining of tasks to reduce the
energy consumption.

from the SEH and transmits data packets according to the
events of the traffic flow on the road using an Earliest Deadline
First (EDF) algorithm. This implementation [129] achieves
lower energy consumption and thus results in longer lifetime
of the road side monitoring unit.
Predicted harvested energy-based duty cycling: In certain
circumstances, the available harvested energy may not be
sufficient to run an energy-intensive task on the EH-IoT sensor
node. Therefore, knowledge of the future incoming energy is
important to delay the tasks during energy scarcity periods
until sufficient energy is available, without missing any dead-
line, as illustrated in Fig. 12. It shows that task 1 is executed
as soon as it arrives at the node due to the higher energy
availability than required for the execution of task. However,
task 2 arrives when the available energy is lower than required
for the execution of task. As there is a prediction of future
harvested energy, the task is delayed until sufficient energy is
available for its execution. In this way, the predicted harvested
energy improves the energy utilization and minimizes the
number of missed deadlines of tasks. Moser et al. [130]
present an algorithm for task scheduling in environmentally
powered IoT. To the best of our knowledge, this is the first
detailed work that addresses the task scheduling problem in
EH-IoT. The algorithm in [130] hesitates to execute the tasks
until their deadlines and thus performs well by conserving
energy for time-critical tasks that may have shorter deadlines.
It computes the optimal start time of a task according to the
available and predicted harvested energy. The authors in [130]
evaluate their algorithm using the harvested energy from SEH
and results show that it offers fewer deadline violations as
compared to the previous algorithm [131]. The authors in [132]
extend the work of [130] with a detailed mathematical model
and consider the practical considerations in implementing the
algorithm on a real embedded device. They also propose an
optimal start time for the execution of tasks depending upon
their deadlines, energy consumption, stored energy and future
harvested energy.

Sommer et al. [133] propose a scheduling framework for
various sensors (such as Global Positioning System (GPS),
accelerometer, magnetometer, etc.) for perpetual tracking of
flying foxes that travel long distances from their foraging
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Fig. 12. Predicted harvested energy allows to delay the execution of tasks
during energy scarcity periods.

camps in the search of food. The sampling rate of sensors
is based on the available and the future harvested energy.
The algorithm in [133] also takes into account the mobility
and activity of flying foxes to trigger the next sensor sample.
This technique ensures that maximum tracking accuracy is
achieved within the given dynamic energy budget. Györke
et al. [134] exploit the knowledge about the environment
to schedule non-equidistant samples, both in time as well
as in space. The predicted harvested energy is taken into
account to devise a conservative sampling approach when
the predicted harvested energy is low. This algorithm [134]
also uses the neighbour’s information in devising the duty
cycle. It increases the duty cycle of nodes in the vicinity
of a place where an event has occurred. The other nodes
operate at their usual duty cycle to conserve energy. In the next
subsection, we explore the applicability of tasks scheduling
algorithms for energy harvesting-based sensors and discuss
the most suitable algorithms that can be implemented on the
batteryless embedded devices.

C. Task scheduling for energy harvesting-based sensing

In this subsection, we explore the applicability of previously
discussed task scheduling algorithms for energy harvesting-
based sensors. Table IV provides an overview of different
studies in the literature which use one or more of task
scheduling algorithms. The goal of the scheduling algorithms
is to run the sensor node within the limited available energy
budget to meet the deadlines of tasks, enhance the perfor-
mance in terms of activity detection and to achieve ENO.
Table IV comprehensively describes the state-of-the-art related
to task scheduling algorithms, their performance metrics and
their evaluation methods (i.e., simulation or hardware imple-
mentation). Some of the previous works employ DVFS to
manage the harvested energy and schedule the tasks on the
node by dynamically adjusting the voltage and frequency in
EH-IoT, as discussed in detail in Section III-B1. The nodes
are equipped with energy harvesters that generate energy to
run the tasks, and the node switching is controlled using
DVFS. Furthermore, the voltage level can be adjusted to power

the active hardware module only, instead of all components
of the node, to minimize the energy consumption. Secondly,
larger tasks can be decomposed into smaller subtasks that
consume lower energy during their operation, as described
in Section III-B2. Identical tasks can be grouped together to
save energy that would otherwise be consumed in repeated
switching of the node’s hardware. For example, instead of
transmitting two data packets separately, they can be merged
to save the energy required to initialize the radio transceiver.
Duty cycling is another task scheduling mechanism that allows
to control the consumed energy when nodes do not perform
any useful operation, as discussed in Section III-B3. The nodes
in EH-IoT are turned on to execute the tasks according to the
harvested energy, type of the task and energy demand. This
results in reduced energy consumption as nodes are switched
to low energy modes during their idle time slots.

The predicted harvested energy plays an important role
in scheduling the tasks on the node during energy scarcity
periods. Table IV shows that there are two main approaches
for considering the predicted harvested energy in the litera-
ture: devising a model for energy computation (C) or using
previous available algorithms (P). Most of the previous works
devise an energy prediction model, which computes the future
harvested energy using the previous harvested energy samples
and environmental parameters, as discussed in Section III-D
in detail. Low priority tasks that require higher energy can be
delayed if there is a prediction of higher harvested energy
in the future. This allows to utilize the available limited
harvested energy for running the high priority and low energy
tasks without violating their deadlines. Another objective of
scheduling algorithms is to meet tasks deadline. High priority
tasks are executed ahead of low priority tasks to meet the
Quality-of-Service (QoS) requirements. Depending on the ap-
plication, the low priority tasks can be pre-empted during their
execution, when high priority tasks arrive at the task scheduler.
Finally, tasks are executed within the available energy budget
to achieve ENO on the sensor node. Tasks are scheduled
according to the available energy and required energy to run
the tasks, as shown in Table IV. If the available energy is
lower compared to the requirement of a high energy task, a
low energy task is executed, even though it has lower priority,
to utilize the valuable harvested energy for useful operation.
As illustrated in Table IV, the task scheduling algorithms can
be evaluated using two approaches: performing simulations or
implementing in a real-world scenario.

Table IV portrays that most of the previous works validate
their algorithms using simulations instead of real hardware im-
plementation. The last column of Table IV shows the required
difficulty level in implementing the given task scheduling
algorithms on the energy harvesting-based sensing device.
DVFS based algorithms are highly difficult to implement on
the tiny and miniaturized sensor nodes, due to the stringent
requirement of complex circuitry that provides various voltage
levels for different components of the node. Similarly, the
algorithms that are validated in simulations need significant
effort to be implemented on the real energy harvesting-based
sensor, due to different hardware design for this new class of
sensors that run intermittently without conventional batteries.
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Furthermore, the algorithms that decompose and recombine
tasks may not be suitable due to limited amount of harvested
energy that can be used to run, at most, one atomic task at a
time. On the other hand, duty cycling based scheduling mech-
anisms can be implemented on the energy harvesting sensors.
It is due to their ease of implementation and compatibility
with intermittently powered sensor nodes. However, it needs
significant modifications as the energy harvester acts as a sen-
sor and source of energy simultaneously without conventional
ESU; therefore, we place them in medium difficulty level, as
displayed in Table IV.

Most interestingly, none of the previous task scheduling
algorithms employ energy harvesters as activity/motion sen-
sors. All existing task scheduling algorithms employ energy
harvesters as a source of power only and use conventional sen-
sor modules for the target application, consuming significant
energy during their operation. This puts further pressure on
the limited available harvested energy, due to the requirement
to power both the sensor as well as the processor, which
reduces the overall system lifetime. Therefore, there is a
potential to devise revised task scheduling algorithms that
employ energy harvesters as sensors and source of energy
simultaneously [25]. The objective of these task scheduling
algorithms is to maximize the lifetime of sensor nodes as well
as to achieve the highest performance level, using the intermit-
tent and limited harvested energy. Interestingly, this harvested
energy exhibits synchronization with the underlying activity
and thus energy is harvested when an activity is performed.
Later, this harvested energy can be employed as a trigger signal
to sample the harvesting signal when an activity is performed,
to track the change in activity. This leads towards the possi-
bility of autonomous and self-powered EH-IoT systems, due
to the elimination of sensor-related energy consumption by
exploiting the embedded information in the energy harvesting
signals for context detection applications.

Most of the previous task scheduling algorithms consider
the predicted harvested energy, while scheduling the tasks on
the sensor node. This results in maximum utilization of current
and future harvested energy without missing the deadlines
of tasks. In order to fully understand the functioning of the
task scheduling algorithms, it is important to comprehend the
energy prediction schemes as well. Most of the harvested
energy prediction schemes take into account the previous
harvested energy recordings to estimate the future harvested
energy profile. We explore some of the harvested energy
prediction schemes in the following subsection.

D. Energy prediction schemes in EH-IoT

In order to ensure ENO, the sensor node needs to consume
the harvested energy in such a way that the current node
operation is not affected, and the future tasks do not run out
of energy. Therefore, information about the future harvested
energy is important to schedule the energy consumption proac-
tively for sustainable operation of the system. In the literature,
there are various harvested energy prediction models that
employ previous harvested energy samples, weather conditions
and seasonal trends to compute the future harvested energy

TABLE V
PREVIOUS SCHEMES IN THE LITERATURE FOR PREDICTING THE

HARVESTED ENERGY IN SOLAR POWERED IOT SENSOR NODE

Year Reference Input parameters Method

2007 [163] Previous samples EWMA
2008 [164] Previous minimum energy Worst-case energy

prediction
2009 [165] Weather conditions from Weather-conditioned

recent past samples moving average
2010 [166] Weather forecast Quadratic solar

power model
2011 [167] Multiple energy harvesters Markov model
2012 [168] Previous energy profiles Profile energy

prediction
2016 [169] Past observations, Q-learning

Current weather
2016 [170] Previous energy profiles Profile energy

prediction
2016 [171] Previous samples Curve fitting
2019 [172] Global horizontal Austronomical

irradiance model

in EH-IoT. Table V comprehensively presents some of the
harvested energy prediction schemes that employ statistical,
probabilistic and machine learning models to predict the future
harvested energy. On a normal sunny day, the harvested energy
from a solar powered node is highest at noon, and decreases
towards dawn and dusk, finally reaching zero at night [165],
due to the non-availability of sunlight. Keeping in mind this
overall pattern of SEH, the future solar harvested energy can
be predicted using the previous energy pattern. Kansal et
al. [163] present a harvested energy prediction model based
on EWMA for solar powered IoT. Their model relies on the
intuition that the harvested energy in a particular day at a
given time slot is similar to that of the energy harvested in
the previous days at the corresponding time slots. Therefore,
the harvested energy in a particular time slot is calculated by
accumulating the weighted average of harvested energy in the
previous days in the same time.

The EWMA scheme awards a higher weight to the most
recent energy sample and exponentially decreases the weight
for the previous energy samples, in order to calculate the
future harvested energy in solar powered IoT. The weight is
calculated dynamically using the real previous energy traces,
which provides the lowest value of prediction error. However,
the model in [163] gives significant prediction error when there
is a sudden change in the weather. It is due to the reason that
the EWMA scheme does not take the seasonal weather trends
and diurnal cycles into account. Hassan et al. [173] propose
an energy prediction model for solar powered IoT, which
takes into account the sudden changes in the environment. It
also takes into account the seasonal and diurnal cycles of the
solar energy. However, this scheme is more computationally
complex as it takes multiple parameters into account and costs
more energy as well as processing time, incurring delay in
the system. Another scheme that considers weather conditions
for predicting the harvested energy in solar powered IoT is
presented in [166]. It describes a model to predict solar as well
as wind harvested energy. This scheme takes the data from the
weather forecast stations to predict the energy to be harvested
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in future time slots. However, this model is computationally
complex and depends on another information source, which in-
creases the cost of the system. Additionally, receiving weather
data and processing it on an energy-constrained miniaturized
sensor node hinders the execution of other time-critical tasks.
Piorno et al. [165] present an energy prediction scheme for
SEH which depends on EWMA and takes into account the
sudden and abrupt changes in the weather conditions. They
propose to use the weighting factor depending on the solar
conditions of the current day relative to the previous days.
Cui [162] proposes a SEH prediction scheme for sensor nodes
in EH-IoT. It employs a recurrent long short term memory
neural network to forecast the harvested energy. However, this
is a complex method that has higher cost in terms of energy,
time, memory requirement and computational resources.

Most of the previous harvested energy prediction
schemes [163], [166], [173], forecast the future solar
harvested energy for the next single time slot. However,
occasionally, it is also important to estimate the harvested
energy for future N (where N > 1) time slots. Moser et
al. [164] present a harvested energy prediction scheme that
calculates the harvested energy for future N time slots. Their
scheme considers the harvested energy in previous time slots
of length N . Then, the worst case harvested energy in the
previous time slots is considered as the predicted energy for
the future slots. However, the algorithm in [164] does not
take the fast changing weather into account which results in
higher prediction errors in environments with swift weather
changes. It is also a pessimistic approach, as it considers the
worst case harvested energy only. Cammarano et al. [168],
[170] propose a prediction model using harvested energy
profiles of previous days. They store different types of energy
profiles (like sunny, partially sunny, cloudy, etc.) and compare
the initial values of currently harvested energy with the stored
energy profiles. The stored energy profile having highest
correlation with the current harvested energy is considered as
the predicted energy profile for the rest of the day. However,
this scheme also burdens the miniaturized IoT nodes with
complex computation and data storage requirements.

Ventura et al. [167] present an energy harvesting and
consumption scheme for body sensor networks using a Markov
model. Their scheme considers multiple types of energy har-
vesters and predicts the future states of nodes in terms of
energy level depending on the probabilistic model based on
previous energy samples. The authors in [169] propose a Q-
learning based solar harvested energy prediction model using
previous energy samples and current weather conditions. This
results in lower prediction error than conventional EWMA.
As the harvested energy from SEH depends on luminous
intensity, Zou et al. [171] employ the location of sun during
next time interval to predict the future harvested energy.
They use piecewise least squares curve fitting with extended
Kalman filter to estimate the future harvested energy using
previous energy samples. Geissdoerfer et al. [172] predict the
future solar harvested energy using global horizontal irradiance
and solar cell’s characteristics. In order to compensate for
deviations from the actual values, their scheme compares the
predicted harvested energy values with the previous actual

harvested energy.
As we discussed, there are various energy prediction

schemes for solar powered IoT, which take into account the
previous harvested energy values, weather forecasts and pre-
vious energy profiles, to correctly predict the future harvested
energy, as shown in Table V. However, these schemes, when
implemented on the node, consume a significant amount of
energy during their execution. Therefore, in addition to pre-
diction accuracy, the cost in terms of energy and computational
complexity must also be analyzed. This kind of thorough anal-
ysis can provide the real picture and will identify the scheme
that provides best energy prediction results, while executing
within the limited energy and computational resources.

E. Summary and insights

We comprehensively survey and analyze previous task
scheduling algorithms in EH-IoT to enhance the operational
lifetime of sensor nodes. These task scheduling algorithms
can be broadly divided into three main categories: DVFS,
decomposition and combining of tasks, and duty cycling. Most
of the previous task scheduling algorithms employ predicted
harvested energy to schedule their upcoming tasks. However,
none of the previous algorithms employ energy harvesting-
based sensing; instead they exploit conventional sensors for
monitoring the desired physical parameter. It results in sig-
nificant energy consumption compared to energy harvesting-
based sensors as discussed in Section II. Therefore, keeping in
view this new class of sensors (i.e., energy harvesting-based
sensing), the previous task scheduling algorithms need to be
revised to allow the sustainable operation and achieve the max-
imized context detection accuracy using energy harvesting-
based sensing. We critically analyze the previous task schedul-
ing algorithms and explore their applicability for energy
harvesting-based sensors in the following section. In addition,
we rigorously discuss the opportunities for transforming the
conventional task scheduling algorithms for the emerging class
of energy harvesting-based sensors.

IV. CRITICAL ANALYSIS OF TASK SCHEDULING
ALGORITHMS FOR ENERGY HARVESTING-BASED SENSING

As discussed in Section III, task scheduling algorithms
manage the execution of tasks to extend the lifetime of sensor
nodes in a conventional EH-IoT. However, considering energy
harvesting-based sensing (i.e., energy harvesters as sensors),
we explore the applicability of task scheduling algorithms for
this new class of sensors. Fig. 13 portrays the interaction
of a task scheduler with conventional context sensors as
well as energy harvesting-based sensors (single source and
multi-source). There is a fundamental difference between
conventional energy negative sensors and emerging energy
harvesting-based sensors which are also termed as energy
positive sensors [25], [26], in terms of their operation and
energy consumption. Conventional sensors consume a signifi-
cant amount of energy [24] while in operation (see Fig. 13(a)),
whereas energy harvesting-based sensors generate energy, in
addition to providing a signal that can be used for detecting
the underlying activities, as depicted in Figs. 13(b) and 13(c).
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(a) Task scheduling for sensing using a conventional context sensors
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Fig. 13. Interaction of task scheduler with (a) conventional context sensors, (b)
energy harvester as sensor, and (c) multi-source energy harvesters as sensors.

As energy and context information from the energy harvester
are strongly correlated, sampling frequency of the harvesting
signal may be reduced during stable energy/activity periods
without loss of context detection accuracy. This opens new
directions for designing revised task scheduling algorithms to
accommodate such fundamental differences. In the following
subsections, we discuss the challenges of current task schedul-
ing algorithms and the possible solutions to formulate revised
algorithms to accommodate the emerging class of energy
positive sensors.

A. Challenges of existing task scheduling algorithms

Most of the existing task scheduling algorithms are com-
plex and require a significant amount of energy during their
operation on miniaturized and resource-constrained IoT sensor
nodes. Decomposing and combining the tasks [117] may not
be suitable for batteryless energy harvesting-based sensors due
to their limited energy budget that can, at most, run one atomic
task at a time. On the other hand, DVFS algorithms [108],
[109] need complex hardware circuits to provide multiple
voltage levels to individual hardware components of the sensor
node. They may require multiple ESUs in the batteryless
sensor nodes to provide various voltage levels which leads
towards significant increase in energy losses, cost and form
factor, and decrease in the usable energy.

Moreover, as elaborated in Section III, most of the previous
task scheduling algorithms focus on enhancing the lifetime
of the system at the expense of the performance in terms of
context detection accuracy. In contrast, in EH-IoT the focus
should be on maximizing the context detection accuracy within
the available energy budget [133], as the energy is being
continuously replenished. Previous task scheduling algorithms
ignore the correlation between energy and context information

from energy harvesters, which may help in decreasing the
sampling rate of energy harvesting-based sensing, resulting in
lower energy consumption compared to conventional activity
sensors. In addition, current mechanisms rely on sequential
functioning of program in the processor for battery-based IoT
sensors, which may not be applicable for intermittent operation
in batteryless sensors that experience frequent energy black-
outs. Timing failure is another issue with batteryless devices
that occurs when the system clock is turned off due to frequent
power failures during energy scarcity periods, in contrast to
conventional battery-operated IoT sensors [50] which enjoy a
stable supply of power.

Devising task scheduling algorithms for multi-source energy
harvesters is more challenging due to the time-varying nature
of the harvested energy and the unique amount of context
information from each harvesting unit. Moreover, the predicted
harvested energy plays an important role in devising task
scheduling algorithms, as discussed in Section III-D. However,
to the best of our knowledge, there is no energy prediction
algorithm for kinetic, thermal and RF harvested energy for
IoT, in particular for applications which involve mobility
of the transducer. There is also no existing mechanism to
manage the additional harvested energy in energy positive
sensors [25], [26]. Finally, most of the current task schedul-
ing algorithms are validated through computer simulations
without implementation on real hardware testbeds. Based
on the comprehensive discussion of existing task scheduling
algorithms in Section III and aforementioned challenges, we
describe possible scheduling solutions for incorporating energy
harvesting-based sensors in the following subsection.

B. Possible solutions

As discussed in Section III, the algorithms for task schedul-
ing can be formulated to focus on both ensuring the perpetual
operation of sensor nodes as well as enhancing the system’s
performance in terms of context detection accuracy. Among
the available options, duty cycling seems to be the most
appropriate choice for scheduling the tasks on miniaturized
and resource-constrained IoT sensor nodes due to its inherent
lower complexity and ease of implementation. However, this
approach needs to be modified to adapt to the transient
and intermittent operation of batteryless sensors. In addition,
devising the harvested energy prediction algorithms for various
energy harvesting sources including solar, kinetic, thermal and
RF, can allow scheduling of tasks according to the future
energy arrivals which may allow perpetual operation of sensor
nodes. Moreover, it is also essential to analyze the complexity
and overhead in terms of energy for running various task
scheduling algorithms before implementation on real resource-
constrained IoT sensor nodes.

Depending upon the type of application and nature of the
environment in which energy harvesters are employed, task
scheduling algorithms can be adapted in real-time. In energy
harvesting-based sensing, the harvested energy may serve as
a trigger signal to schedule the next sensing epoch depending
on the variation in the activity and type of the application. The
variation in the energy harvesting signal may be translated as a



17

shift in the ongoing activity, using the embedded information
from a couple of initial samples of the energy harvesting
signal. For multi-source energy harvesters, it is important to
switch between the most suitable energy harvesters depending
upon the amount of context information and the harvested
energy from individual transducers in real-time. This is due
to the availability of distinct amounts of energy and context
information from each harvester unit. According to the type of
application and the underlying physical conditions, one energy
harvester may offer higher context information compared to
others, which needs to be tracked and scheduled in real-time.
This results in enhanced context detection accuracy without
consuming a significant amount of energy, e.g., via acquiring
the harvesting signal at a substantially higher sampling rate
or in sampling all energy harvesting signals simultaneously.
In addition, a multi-source energy harvester unit can act
as a reliable power source as various individual harvesters
may complement each other in terms of scavenged power
depending upon the environmental conditions and the physical
properties of the transducers. The harvested energy from
various transducers may be combined using DC-DC converters
to power IoT sensor nodes. Alternatively, individual energy
harvesters can be directly selected, according to the amount
of generated energy, to avoid energy conversion losses [174]
and enhance the usable energy.

In energy harvesting-based sensing, context information and
the amount of harvested energy are correlated. Therefore,
energy can be saved by reducing the sampling rate of the
sensing signal during the steady state, without reducing the
context detection accuracy. Moreover, the additional harvested
energy can be employed to power other sensor nodes, or to
opportunistically run power-intensive hardware modules on
the node, such as Global Positioning System (GPS) tracker
and transceiver, which leads towards the potential of fully
autonomous EH-IoT. In addition, new operating systems and
programming frameworks are needed for operating energy
harvesting-based sensors, in order to take into account the
intermittent operation of batteryless sensors, to resolve the
checkpointing and timing failure issues [50], which are not
present in conventional battery-based devices. Finally, there is
a potential for revised and updated task scheduling algorithms
for energy harvesting-based sensors, to meet the application-
specific objectives, such as maximizing the sensing perfor-
mance and ensuring the perpetual operation of sensor nodes
in EH-IoT.

V. FUTURE RESEARCH DIRECTIONS

We discussed that energy harvesters can be employed as a
simultaneous source of energy as well as context information.
Since this emerging class of sensors has inherent differences
compared to conventional sensors, it brings opportunities
for revised energy management algorithms for the perpetual
operation of EH-IoT sensor nodes. As the harvested energy
is limited, task scheduling algorithms are required to execute
tasks on the node according to harvested energy profile, for
achieving ENO of sensor nodes in EH-IoT. There are various
challenges in devising efficient task scheduling algorithms

for energy harvesting-based sensors due to the varying and
intermittent harvested energy that puts further constraints in
case of batteryless sensors. In most of the applications, the
goal of task scheduling algorithms is to enhance the activity
detection performance as well to ensure the perpetual op-
eration of sensor nodes in EH-IoT. Based on the previous
discussion, future research directions for ensuring enhanced
activity recognition accuracy as well as achieving ENO of
sensor nodes are described in the following subsections in
detail.

A. Maximum Power Point (MPP) tracking

As the output voltage and current signals of the energy
harvesting transducer change due to the environmental con-
ditions, its MPP also varies swiftly under the external stimuli.
MPP tracking of KEH transducer is more challenging than
solar cells, due to rapid output voltage/current fluctuations in
the former compared to the relatively slow variations in the
latter. Therefore, sophisticated hardware modules are required
which can dynamically track its MPP at a high frequency in
real-time [28]. However, it may also consume more energy in
sampling the harvesting signal at a higher frequency to track
its MPP voltage. Therefore, there is a potential to study the
optimal MPP tracking frequency, amount of energy consumed
in dynamic MPP tracking [28] and additional harvested energy,
to estimate the overall gain.

B. Employing multi-source energy harvesters as a simultane-
ous source of energy and context information

In order to ensure the sustainable operation of sensor nodes
in EH-IoT, the harvested energy should be sufficient to power
the sensor hardware without the need of any external energy
source (i.e., a battery). Occasionally, the harvested energy from
a single energy harvester is not sufficient to continuously
power each module of the sensor node. For example, SEH
can not provide sufficient energy during night and darkness.
On the other hand, the harvested energy from KEH is lim-
ited during lower vibrations/movements, such as sitting and
standing in human activity recognition applications. Therefore,
multi-source energy harvesters (e.g., SEH, KEH, TEH and
RFEH) can be employed to continuously harvest higher energy
as well as to extract rich activity information. The energy
from these harvesters can be accumulated to power a sensor
node to achieve ENO. In addition, the signals from multi-
source energy harvesters can be fused to extract rich context
information. For example, while KEH provides information
about the movement/activity, SEH can be used to identify the
indoor and outdoor environments, depending upon the amount
of harvested energy, which can be employed in the localization
applications. However, if a signal does not possess information
about the underlying activity, its fusion with other signals
may increase the cost, complexity and energy consumption
of the system. In summary, there is a potential to study the
amount of harvested energy and context detection accuracy
using multi-source energy harvesters in various applications,
such as human activity recognition, food intake detection, gait
recognition and transport mode detection.
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TABLE VI
COMPARISON BETWEEN HARVESTED ENERGY IN SEH AND KEH IN THE

CONTEXT OF ENERGY PREDICTION

Solar energy harvesting Kinetic energy harvesting

Periodic Aperiodic
Relatively stable Relatively unstable
Easily predictable Difficult to predict
Higher energy density Lower energy density
Easy to design the power Difficult to design the power
conditioning circuit conditioning circuit
Power is generated in the Power is generated in the
presence of light presence of vibrations
Relatively low noise in the Relatively more noise in the
signal signal
Generates DC voltage Generates AC voltage

C. Predicting the harvested energy in EH-IoT

In contrast to SEH, the harvested energy in KEH is highly
dynamic, which varies quickly according to the underlying
stress/vibrations. This unstable output signal poses more chal-
lenges to devise a prediction model for the harvested energy.
There is a significant difference between the energy pattern in
SEH and KEH, as listed in Table VI. The harvested energy
in SEH is predictable due to its overall known pattern as
described in Section III-D. However, in contrast to SEH, the
harvested energy in KEH can not be predicted by merely
accumulating the previous weighted energy samples, as in
EWMA [163], especially for long term energy predictions.
The harvested energy pattern in KEH based IoT depends upon
the type of application which demands dedicated models for
harvested energy prediction for each use case. If the target
application is human activity recognition, the KEH energy
is non-identical in various types of activities [24], including
walking, standing, running, going upstairs/downstairs, etc.
Similarly, if the target application is transport mode detec-
tion [22], the harvested energy depends on the mode of trans-
portation. Furthermore, in contrast to static SEH applications
(except [133]), KEH is typically deployed in mobile scenarios,
and has various states in most of the context detection applica-
tions, including human activity recognition and transport mode
detection. Therefore, in order to predict the harvested energy
in KEH, the mobility of the energy harvester must be taken
into account to achieve higher prediction accuracy. Similarly,
dedicated energy prediction algorithms are required for other
energy harvesters, such as TEH and RFEH to estimate the
harvested energy for efficient execution of tasks on the node.

The predicted harvested energy plays an important role in
scheduling the tasks in EH-IoT. As the capacity of ESU is
limited (due to small-sized capacitors/batteries), the harvested
energy can overflow if the stored energy is not consumed in
executing the tasks beforehand, which results in the wastage
of resources. For example, when the battery is fully charged,
there is no room to store the incoming harvested energy,
which results in energy wastage, if it is not properly utilized.
The solution is to utilize maximum energy, when the ESU is
charged to its capacity as well as there is a prediction of future
harvested energy. It results in the efficient employment of
resources and maximum utilization of energy in executing the

tasks within their deadlines. Similarly, if the ESU is depleted,
the tasks can be delayed, according to the predicted energy,
to atleast achieve a required minimum performance level.

D. Batteryless EH-IoT

Conventional EH-IoT sensor nodes employ batteries to
store the harvested energy from the ambient environment
and to power the embedded device. However, batteries are
costly, bulky, offer a limited lifetime and are hazardous for
the environment due to chemical leakage [12]. A promising
solution is to employ capacitors to store the harvested energy
which reduces the form factor, cost and weight of the minia-
turized IoT sensor nodes. As capacitors generally have higher
current leakage and lower energy storage capacity compared to
batteries [175], task scheduling with a capacitor-based ESU is
more challenging than for its battery-based counterpart. Inter-
mittently charged capacitors restrict the continuous utilization
of energy, which further limits the frequent execution of tasks
on the node. Furthermore, the stored energy in a tiny capacitor
can only be used to execute one atomic task at a given time
instant [119]. While task scheduling for battery-based EH-IoT
is well explored in the literature (as elaborated in Section III),
there are only few works that explore and implement task
scheduling algorithms for intermittently-powered batteryless
IoT sensor nodes [176]. Therefore, there is a potential for
new research into task scheduling algorithms that take into
account the intermittent operation of nodes due to varying
levels of ambient energy available in the environment, e.g.,
solar, thermal, kinetic and RF, to enable the autonomous
operation of batteryless sensor nodes in EH-IoT. Furthermore,
the use of energy harvesters as a simultaneous source of energy
and context information also needs to be explored, as it re-
duces the energy consumption, which may offer perpetual and
autonomous operation of batteryless EH-IoT without human
intervention.

E. Embedded machine learning

There are several previous works [177]–[181] that imple-
ment machine learning algorithms on the IoT devices to
recognize a physical phenomenon or an underlying activity.
This mechanism of embedded machine learning not only
reduces the transmission power consumption compared to raw
data transmission [182], but also improves application latency
and user privacy [26]. However, the current trend is to design
and implement batteryless IoT sensor nodes [12] to minimize
the environmental issues due to chemical leakage of batteries
and reduce the maintenance cost of the devices. As a result,
it is challenging to implement machine learning algorithms
on these resource constrained sensor nodes, with unreliable
and intermittently available harvested energy. This dilemma
becomes more arduous with the use of a capacitor [183]
(instead of a battery) which stores a minuscule amount of
energy that may not warrant the execution of more than one
atomic task at any particular time interval. To the best of our
knowledge, there are only few works [182], [183] that imple-
ment machine learning algorithms on intermittently-powered
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EH-IoT sensor nodes due to the underlying challenges re-
lated to lower energy budget, unreliable harvested energy and
frequent energy blackout periods. Furthermore, as illustrated
in Section IV, there are inherent differences in conventional
energy negative sensing and emerging energy positive sensing.
Therefore, implementing machine learning algorithms on the
IoT device using energy harvesters as simultaneous source of
energy and context information is another open question for
the research community that needs to be addressed to ensure
the perpetual and autonomous operation of EH-IoT sensor
nodes.

VI. CONCLUSION

Energy harvesters are employed to power conventional
sensor nodes in EH-IoT, eliminating the need for manual
replacement and recharging of batteries that hinder their
widespread adaptability and pervasive deployment. In addition
to energy generation, recently energy harvesters have been
used as sensors for context detection. This saves significant
energy that would otherwise be used to power conventional
activity sensors. Using energy harvester as a simultaneous
source of energy and context information enables energy
positive sensing, which harvest higher energy than required for
signal acquisition in context detection applications. However,
the generated energy from miniaturized energy harvesters is
still insufficient to allow the perpetual operation of sensor
nodes in EH-IoT. In order to ensure the sustainable operation
of sensor nodes, the precious harvested energy needs to be con-
sumed very efficiently for running the operational tasks on the
nodes. In this survey paper, we comprehensively analyze the
previous task scheduling based energy management algorithms
for EH-IoT sensors. We critically analyze the challenges in
incorporating the emerging class of energy harvesting-based
sensors in the conventional task scheduling algorithms. Based
on the extensive study of the literature, we rigorously review
the need for revised task scheduling algorithms for batteryless
energy positive sensors and provide potential solutions using
multi-source energy harvesters. Finally, we present future
research directions such as MPP tracking, employing multi-
source energy harvesters, predicting the harvested energy and
exploiting batteryless sensors, towards the goal of enabling
the sustainable and autonomous operation of self-powered
batteryless sensor nodes in EH-IoT.
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