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Abstract—In this paper, we consider parallel and sequential
task offloading to multiple mobile edge computing servers. The
task consists of a set of inter-dependent sub-tasks, which are
scheduled to servers to minimize both offloading latency and
failure probability. Two algorithms are proposed to solve the
scheduling problem, which are based on genetic algorithm and
conflict graph models, respectively. Simulation results show that
these algorithms provide performance close to the optimal solu-
tion, which is obtained through exhaustive search. Furthermore,
although parallel offloading uses orthogonal channels, results
demonstrate that the sequential offloading yields a reduced
offloading failure probability when compared to the parallel
offloading. On the other hand, parallel offloading provides less
latency. However, as the dependency among sub-tasks increases,
the latency gap between parallel and sequential schemes de-
creases.

Index Terms—Conflict graphs, genetic algorithms, mobile
edge computing, parallel offloading, sequential offloading.

I. INTRODUCTION

In recent years, there has been a tremendous growth
of computationally-intensive mobile applications, such as
3D modeling, online gaming, and mobile augmented real-
ity. However, mobile devices (such as tablets and smart-
phones) are normally constrained by the limited resources,
e.g., computation capability of local central processing units
(CPUs) and capacity-limited battery, and thus, restrict the
users to fully enjoy highly computational demanding ap-
plications on their own devices. Mobile cloud computing
(MCC) has emerged as a solution to provide elastic computing
power to resource-constrained devices via offloading the
computational-intensive tasks to powerful distant centralized
servers [2], [3]. However, locating servers far away from the
end-user has limitations, such as high transmission latency,
communication bottlenecks, and security issues (e.g., some
data should not be offloaded to servers that are located outside
of national territory) [4]. Thus, MCC is not appropriate for
mobile applications that are latency or security critical [5].
This motivated the idea of moving the function of clouds
towards the network edges and gave birth to a new computing
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infrastructure, namely mobile-edge computing (MEC) [6],
[7]. MEC provides lower offloading latency and jitter when
compared to MCC. Moreover, while MCC is a centralized
computation offloading approach, MEC provides a distributed
approach which makes it a suitable solution for offloading
computational-intensive and time-sensitive mobile applica-
tions [8], [9].

In MEC, based on local CPU availability or energy con-
sumption consideration, mobile devices perform task compu-
tations locally or offload them to MEC servers. This decision
plays a critical role in determining the computation efficiency,
especially as the task offloading requires data transmission
over the wireless channel. Two main computation task of-
floading policies can be found in the literature, namely partial
offloading and binary offloading. In the former, a portion of
the computation is performed locally at the mobile device
and the other portion is offloaded to MEC servers [10]. In
the latter, however, the mobile device determines whether
a task should be computed locally or offloaded to MEC
servers [11]. From the user’s point of view, the most important
requirements of task offloading are low energy consumption,
low offloading error and low latency, mandating ultra-reliable
and low-latency task offloading [12]. In recent communication
networks, computing servers are deployed at the edge of the
network to facilitate and accelerate connection. These servers
are deployed in high numbers and have limited capabilities
when compared to conventional, backbone cloud servers
(which earned them the nickname of cloudlets) [13], [14].

Such dense deployment of the MEC servers gives the
leverage of diversity and the ability of dividing a task into
sub-tasks and offloading them to multiple MEC servers co-
operatively to further shorten the latency [15]. In this respect,
two main offloading schemes can be considered, namely
sequential offloading and parallel offloading. For the former,
the sub-tasks are offloaded in a time-sequential manner to
servers over a shared communication channel [16], [17]. For
the latter, the sub-tasks are offloaded simultaneously to servers
over orthogonal communication channels [18] or using non-
orthogonal multiple access [19]. Moreover, two important
aspects should be considered in such offloading schemes:
(1) The computational capabilities and channel qualities are
different for the MEC servers. A low computation latency
can be provided by an MEC server with high computational
capability; however, it might encounter a high communication
latency and high offloading failure probability due to a
poor communication link between the mobile device and the
MEC server; (2) Dividing the task into sub-tasks yields a



sophisticated scenario of dependency among sub-tasks. In
many applications, the inter-sub-tasks dependency cannot be
ignored, since it has a significant effect on the offloading and
computation procedure. There are three main models of de-
pendency among the sub-tasks, namely sequential dependency
in which each sub-task depends on the output of the previous
sub-task; parallel dependency in which a set of sub-tasks
depends on the output of a previous sub-task; and general
dependency in which a sub-task may depend on the output of
one or more of the previous sub-tasks [20], [21]. Therefore,
finding efficient scheduling decisions to assign a set of inter-
dependent sub-tasks to a set of MEC servers is a challenging
problem.

In the real world, the scheduling process is an approach
through which a number of tasks are assigned to resources
(servers) in order to complete the task execution process.
Scheduling problems are typically formalized in terms of
combinatorial optimization theory. Due to the high complex-
ity and exponential growth search space of the scheduling
problems, exhaustive search or random search methods are
computationally demanding, thus rendering them impractical.
In this context, the genetic algorithm (GA) was introduced
as a robust global search method that searches for better
solutions using a fitness score, which is obtained by evaluating
an objective function without other derivative or auxiliary
information [22], [23]. Other interesting scheduling meth-
ods, inherited from the graph theory, have emerged in the
literature. These methods provide near optimum solutions
with reduced computational complexity by avoiding the direct
evaluation of the objective function in each iteration [24]-
[26].

A. Related Work

Several research works (e.g., [18], [19], [27]-[32], and
references therein) have proposed task offloading frameworks
and algorithms to prolong the battery lifetime of the mobile
devices. In [27], experimental results show that up to 50%
of battery life can be preserved through remote processing of
tasks. In [28] and [29], a single mobile device and single
MEC server computation offloading problem was investi-
gated. Wang et al. in [28] proposed partial computation
offloading by jointly optimizing the consumed energy at the
mobile device, offloading ratio, and computational delay. The
authors in [29] investigated the optimal partial computation
offloading jointly with the selection of constellation size
and transmit power to optimize the consumed energy at
mobile devices under latency constraint. A cooperative fog
computing-based vehicular network architecture was pro-
posed in [33], for the Internet-of-vehicles big data in a
smart city. A dynamic network virtualization technique to
achieve parallel computation in satellite-terrestrial networks
was proposed in [34]. This technique integrates network
resources and provides a cooperative parallel computation
offloading model. In [35], a task scheduling approach with
stochastic time cost for computation offloading was proposed
to minimize the maximum tolerable delay by considering both
the average delay and delay jitter. In [36], a multi-layer edge

computing framework was proposed to assign tasks to each
layer optimally. A heterogeneous multilayer MEC framework
was proposed in [37], in which tasks that cannot be timely
processed at the edge are offloaded to upper layer MEC
servers and cloud center. The authors aimed at minimizing the
offloading latency by jointly coordinating the task assignment,
computing, and transmission resources in each layer.

The scenario of multiple mobile devices sharing a single
MEC server for computation offloading was investigated in
[18], [19], [30]-[32]. You et al. in [18] studied the total
energy consumption minimization problem by considering
both orthogonal frequency-division multiple access and time-
division multiple access under latency constraint. An op-
timal priority policy is provided, which gives priority to
mobile devices according to their local computing energy
consumption and channel gains. In [19], a multiuser MEC
system with one server was studied, in which users can
simultaneously offload their computation tasks to a multi-
antenna server over the same time/frequency resources based
on non-orthogonal multiple access. The authors assumed
both constant computational delay and downlink transmission
delay, and focused their study on the energy consumption
in the uplink phase. A joint optimization of computational
and radio resources, aimed at optimizing mobile devices’
energy consumption under power and latency constraints,
was proposed in [30]. A distributed game theoretic approach
for decision making to offload computation among multiple
mobile devices was proposed in [31]. The authors showed that
the game always admits a Nash equilibrium, achieves superior
computation offloading performance, and scales well as the
number of mobile devices increases. A cooperative offloading
framework in which multiple mobile devices cooperate with
each other to improve the computation capability of an MEC
system was proposed in [32]. In all these works, a mobile
device can be associated with one MEC server. However, in
dense deployment of MEC servers, as envisioned in future
networks, offloading a computational task to multiple nearby
MEC servers can potentially improve the offloading process.
In [15], a mobile device that offloads a set of independent
tasks to a set of MEC servers in parallel via orthogonal
sub-channels was studied. The authors aimed to minimize
both mobile device’s energy consumption and total tasks’
execution latency. A sequential task offloading framework
was proposed in [17]. In this framework, a mobile device
segments a task into sub-tasks and offloads them to multiple
servers in sequence. From a practical point of view, a task
cannot be segmented arbitrarily and such a framework cannot
handle the dependency among the sub-tasks.

In this paper, it is assumed that a delay-sensitive and
computationally-intensive task is offloaded to multiple MEC
servers. The motivation of this work is to jointly minimize
the latency and offloading failure probability when offloading
a set of inter-dependent sub-tasks to a set of MEC servers in
both parallel and sequential offloading schemes. Accordingly,
the main contributions of this paper are summarized as
follows:

o Parallel and sequential offloading schemes of a delay-

sensitive and computationally-intensive task to multiple



MEC servers are proposed. The task consists of a set of
sub-tasks, and the general dependency among sub-tasks
is considered.

o An optimization problem is formulated to jointly op-
timize the latency and offloading failure probability
constrained over binary scheduling decision variables for
both parallel and sequential offloading schemes.

e A solution based on GA is obtained for the formulated
optimization problems.

o A computationally-efficient solution based on conflict
graph models is additionally developed. In this solution,
a greedy algorithm based on the minimum weighted
vertex search algorithm is proposed to find the optimized
offloading decisions for both parallel and sequential
offloading schemes.

The remaining of this paper is organized as follows. Section
IT introduces the system model, along with the parallel and
sequential offloading schemes. Section III illustrates an exam-
ple to motivate the need for an optimized scheduling decision
for both parallel and sequential task offloading schemes. In
Section IV, the latency-reliability minimization problems are
formulated for both parallel and sequential task offloading
schemes. Section VI presents the proposed GA-based solution
to find the optimized scheduling decision. A heuristic solution
based on conflict graphs is introduced in Section VI. The time
complexity of the proposed solutions is discussed in Section
VII. Section VIII shows simulation results, and Section IX
concludes the paper.

II. SYSTEM MODEL AND OFFLOADING SCHEMES

In this section, the MEC system model is introduced
first, followed by the latency and reliability analysis of the
parallel and sequential offloading schemes. The notations used
throughout this paper are listed in Table I.

A. System Model

A delay-sensitive and computationally-intensive task (7°)
is offloaded by a mobile device to a set S = {s;}/_; of I
MEC servers. Each server is equipped with a CPU that helps
offloading and computing the task. A server s; is represented
by a tuple S; — {RUZ,Rdl,f“pl,qZ}, where R’U/Z and Rdz
are the uplink and downlink data rates, respectively, f; is
the computational speed of the CPU in the i-th server (in
cycles per second), and p; and q; are the packet error rate
(PER) of the uplink and downlink, respectively. The size of
the input data and output computed result of 7 are U and
D packets, respectively, each packet of IV, bits. The task
T consists of J (J < I) sub-tasks 7 = {7;}/_,. We use a
tuple 7; = {u;, ¢;, d; } to represent the j-th sub-task in which
u; is the input data size (in packets), c; is the number of
CPU cycles that is required to process the sub-task, and d; is
the output computed result (in packets). The number of CPU
cycles c; is modeled as ¢; = a; Npu;, where o5 (in cycles per
bit) depends on the computational complexity of the sub-task.
The uplink transmission delay and the computation delay of

offloading the sub-task 7; to the i-th server are du;; = uj%'f:[,p

and dc;; = %, respectively. We define the offloading decision

n = [nij}li such that:

(D

1, if 7; is assigned to s;,
Nij = .
* 0, otherwise.

Based on the offloading decision 7, the uplink transmission
delay and the computation delay of the j—th sub-task 7; can
be expressed as Du; (n) = Zle nijdu;; and Dej () =
SO mijdes, respectively.

The dependency among the sub-tasks cannot be ignored in
many applications, as it has significant effect on the offloading
and computation procedure. We consider the general depen-
dency model, in which the computation of a sub-task 7; may
depend on the output computed result of one or more of the
previous sub-tasks [20], [21]. To address the inter-dependency
among the sub-tasks, we introduce the sub-task dependency
matrix x = [x;;] ;. such that:

1, if 7; depends on the result of 7 (I < j) )
otherwise.

The backhaul links among the servers are considered iden-
tical, reliable, and very high speed links. Accordingly, the
transmission delay and failure probability of exchanging the
intermediate results among servers is negligible.

B. Parallel Offloading Scheme

In the parallel offloading scheme, the mobile device of-
floads the sub-tasks to servers simultaneously via orthogonal
sub-channels. The scheduling problem of this offloading
scheme consists of assigning sub-tasks to servers under the
following constraints:

o Each sub-task can be offloaded to only one server.

o Each server can handle only one sub-task.

e If 2;; = 1, then the sub-task 7; can be offloaded to a
server; however, the server holds the computing of 7;
until the computation of 7; is finished.

A sub-task 7; (j > 1) may depend on one or more of the
previous (5 — 1) sub-tasks; as such, the server holds the
computing of 7; until the computation of all sub-tasks with
x1; = 1 in x is finished. The holding delay of the j-th sub-
task can be expressed as:

Dhp; (n) =

max {xzj [(Dw (n) + Dhpi (n) + Dei (n)) — Du; (n)} ’ }
3)

where [v]" £ max{v,0}. The downlink transmission delay
of offloading the sub-task 7; to the i—th server is dd;; =
dj’%ﬁ". Based on the scheduler decision 7, the downlink
transmission delay of the j—th sub-task 7; can be expressed as
Dd; (n) = 25:1 n;jdd; ;. The delay of the parallel offloading

and computing the j-th sub-task can be expressed as

Dp; (n) = Du; (n) + De;j (n) + Dhp; (n) +Dd; (). (4)



Notation

Description

1 Number of servers in the servers set S
J Number of sub-tasks
U Input of the task T (packets)
D Output of the task 7 (packets)
Rut (Rd;) Uplink (Downlink) data rate of server ¢ (bits/s)
fi Computational speed of server ¢ (in cycles per second)
pi (qi) Uplink (Downlink) packet error rate of server %
U Input data size of sub-task j (packets)
Cj CPU cycles required to process sub-task j (cycles)
d; Output data size of sub-task j (packets)
Q;j Sub-task j computational complexity (cycles per bits)
Np Packet size (bits)
du;j (dd;;) Uplink (Downlink) delay of offloading 7; to s;
dc;; Computation delay of offloading 7; to s;
n Offloading decision
Du; (n) Uplink transmission delay of sub-task j
Dc; (n) Computation delay of sub-task j
Dd; (n) Downlink transmission delay of sub-task j, parallel offloading
Dp, Downlink transmission delay of the task, sequential offloading
X Sub-tasks dependency matrix
Dhp; (n) (Dhs; (n)) | Holding time of sub-task j, parallel (sequential) offloading
Dp; (n) Offloading and computation delay of sub-task j

Lp (n) (Ls(n))

Latency of completing the task, parallel (sequential) offloading

P (n) (P (n))

Uplink (Downlink) failure probability of the sub-task j, parallel offloading

P (n) (P%(n))

Uplink (Downlink) failure probability of the task, sequential offloading

Py (m) (Ps (n))

Failure probability of offloading the task, parallel (sequential) offloading

Uy (n) (s (1)

Latency-reliability objective function, parallel (sequential) offloading

gL Chromosome k
= Initial population size
M Maximum number of offspring chromosomes
Cpp (Csg) Chromosome g, feasibility indicator, parallel (sequential) offloading
Opy (Osk) Chromosome g, raw fitness, parallel (sequential) offloading
Op Osp) Chromosome gy, fitness value, parallel (sequential) offloading
vij Vertex representing offloading of 7; to s;
Gp (Gs) Conflict graph, parallel (sequential) offloading

wp;; (Wsij)

Vertex weight, parallel (sequential) offloading

Selected independent set

Table I: Main symbols used in the paper.

The total latency of completing the task with parallel offload-
ing is given by

Lp(n) = max{Dp; (n)} )

The uplink transmission failure probability and downlink

transmission failure probability of offloading the j-th sub-task

under the offloading decision 17 can be written as
I

Pim=1-Tla-p)™. ©
i=1
and S
Pl =1-][ (-, )
=1

respectively. The failure probability of offloading the j-th sub-
task can be written as

P;(n) = Pi+ [1- P!| P, @®)

Consequently, the failure probability of offloading task 7 with
the parallel offloading scheme can be expressed as
J
Pm)=1-J][0-Pm). )

j=1

An illustration example is provided in section III for ease of
understanding.

C. Sequential Offloading Scheme

In the sequential offloading scheme, the mobile device
offloads the sub-tasks to the servers in a time-sequential
manner via a shared channel. The scheduling problem of this
offloading scheme consists of assigning sub-tasks to servers
under the following constraints:

o Each sub-task can be offloaded to only one server.

« Each server can handle (receive or compute) only one

sub-task at any time instant.

o If 2;; = 1, then the sub-task 7; can be offloaded to a
server; however, the server holds the computing of 7;
until the computation of 7; is finished.

In the sequential task offloading, the uplink transmission of
the j-th sub-task will not start until uplink offloading of
all previous (j — 1) sub-tasks is finished. In other words,
the waiting time of the j-th sub-task before transmission is
Wi (m) = X7 Dui(n), 2 < j < J, and Wi (n) = 0.

!An illustration example is shown in Fig. 2.



A sub-task 7; (j > 1) may depend on one or more of
the previous (5 — 1) sub-tasks. Since the server holds the
computing of 7; until the computation of all sub-tasks with
zy; = 1 in x is finished, the additional holding delay of the
j-th sub-task with sequential offloading can be expressed as:

Dhs; (n) =
+

J
max {zy; | Dhsi (m) + De <n>f§+1®ur<n> 3

(10)

The delay for offloading and computing the j-th sub-task can
be expressed as

Dsj(n) = Wj (n) + Duj (n) + Dc; () + Dhs; (n). (11)

One server sy, is selected as a sink server to collect and send
back the results to the mobile device. The total latency for
completing the task is given by

Ls(n) = Tjnea7>,<{DSj (m)} + Doy, (12)
where Dpy, = %g: is the downlink transmission delay of the
resulted data D by the sink server sy.
The failure probability of the uplink transmission of task 7~
can be written as

J
P =1-TT (1= Py ). (13)
j=1
The failure probability of the downlink transmission of task
T can be written as

Pl=1-(1-q)", (14)

where the k—th server is selected as the sink server. Conse-
quently, the task offloading failure probability with sequential
offloading scheme can be expressed as

P, (n) = P*(n)+ [1— P“(n)] P". (15)

An illustration example is provided in the next section for
ease of understanding.

III. MOTIVATING EXAMPLE

In this section, we discuss a numerical example to em-
phasize on the need for a good scheduling decision for
both parallel and sequential task offloading schemes. Let us
investigate a simple example in which the mobile device has
a task 7T, the input data and output computed result of 7 are
U = 1000 and D = 200 packets, respectively. 7 consists of
four sub-tasks, which can be represented as follows:

71 = {112,0.85 x 107,23}; 7 = {162,2.48 x 107,33};

73 = {589,7.05 x 107,116}; 74 = {137,1.13 x 107, 28}.
The sub-task dependency matrix associated with these sub-
tasks is given as:

T T2 T3 T4
0 1 0 0\n
<=0 0 1 0]m (16)
0 0 0 1] 73
0 0 0 0/ 7y

The server set consists of four servers S = {s1, $2, 83,54},
represented as follows:

51 = {4.3x10°,5.2x106,7.1x10%,0.16x 1076, 1.0x 10~ 7};
59 = {3.9%10%,4.8x10°%,2.0x10%,7.18x107%,1.2x10~"};
s3 = {5.5x10%,6.5x10%,3.6x10?,0.10x1075,0.3x 1077 };
54 =1{6.4x105,6.4x10°%,7.2x10,0.07x107¢,0.4x1077}.

o For the parallel offloading scheme, let us assume that
the offloading decision 7 is selected such that:

1 T2 T3 T4
1 0 0 0\ s
o 1 0 0s 7
T™lo o0 1 0]s° 17
0 0 0 1/ s

The total latency and offloading failure probability of
the parallel offloading of the task with this offloading
decision are 41.5 (ms) and 1.24 x 1073, respectively.
This result leads the question of whether a better parallel
offloading decision can be found to reduce both latency
and offloading error. By examining all possible offload-
ing decisions, the task can be offloaded in only 28.3 (ms)
with an offloading failure probability of 8 x 10~* with
the following offloading decision:

T1 T2 T3 T4
0 1 0 0\ s
(1 0 0 o])s 8
=0 0 0 1] s (18)
0 0 1 0/ s,

The offloading scheme of this preferable task offloading
decision is shown in Fig. 1.

——Lp () =283 (msy—>

U]]“[ll{ Transmission |:| Sub-task Cul'llpllmli(‘lﬂ

Downlink Transmissior Holding

Figure 1: Parallel offloading scheme with offloading decision 7,,.

o For the sequential offloading scheme, let us assume
that the offloading decision in (17) is adopted and s4
is selected as the sink server. The total latency and
offloading failure probability of the sequential offloading
of the task with this offloading decision are 54.1 (ms)



and 1.25 x 1073, respectively. By examining all possible
offloading decisions, the task can be offloaded in only
40.1 (ms) with the offloading failure probability of
8.2 x 1075 with the following offloading decision:

7T T2 T3 T4
0 0 0 0\ s

Ms 001 0 1]s° 19)
1 0 1 0/ s4

and s3 as the sink server. The offloading scheme of this
preferable task offloading decision is shown in Fig. 2.

[l Wilng)

Wiylns)

—— Ls(m) =40.1 (ms) —s!

Uplink Transmission |:| Sub-task Computation
b

Downlink Transmission &2

Holding

Figure 2: Sequential offloading scheme with offloading decision 0.

The question is how to find such preferable offloading
decisions for both parallel and sequential offloading schemes
in a systematic way for an arbitrary number of servers and
sub-tasks. This motivates the problem formulations in the next
section.

IV. PROBLEM FORMULATIONS

A. Problem Formulation for Parallel Offloading Scheme

Our objective is to minimize both the total latency for
completing a task and the offloading failure probability si-
multaneously. To tackle the trade-off between latency and
reliability and to give them a similar significance, we consider
the weighted product method [38], in which the latency-
reliability cost function of the parallel offloading scheme can
be formulated as®

Uy (n) =Ly (n) By (n). (20)
Consequently, the optimization problem is formulated as

2For error-free environment, the cost function is ¥, (1) = L, (7).

P1 min ¥, (n), (21a)
n
I
st > mi=1,VjeT, (21b)
=1
J
ij <1, Vies, )
j=1
ni; € {0,1}, Vie Sand j € T. (21d)

Constraints (21b) and (21c) guarantee that each sub-task
is offloaded to only one server, and no two sub-tasks are
offloaded to the same server, respectively. In other words, at
most one sub-task is offloaded to each server.

B. Problem Formulation for Sequential Offloading Scheme

The latency-reliability cost function of the sequential of-
floading scheme can be formulated as®

v, (77) =Ls (W)Ps (77) (22)

The optimization problem is formulated as

P2 min ¥, (n), (23a)
n
I
st > =1, VjieT, (23b)
i=1
Nig-1) +miy <1, VieS, 2<5< (230)

-1
nignit | Y, Dur(m) = (Dej () + Dhs; (n)) | >0,

r=j+1
(23d)
VieS, 1<j<J—2j+2<1<,
ni; €{0,1}, VieSand j € T. (23¢)

Constraint (23b) guarantees that each sub-task is offloaded
to only one server. Furthermore, constraints (23c) and (23d)
guarantee that no two successive sub-tasks are offloaded to
the same server and no sub-task is offloaded to a server that
still handles another sub-task, respectively.

For the sequential offloading scheme, the sink server s; can
be selected such that

s = argmin{Dp; (1- (1-a)” )}, 24)

and for error free environment, s; = arg migl{DDi}.
i€

It is worth noting that the size of the search space for the
optimization problems in P1 and P2 is 277, Consequently, the
complexity of finding the optimum solution using exhaustive
search is prohibitive for a reasonable number of servers
and sub-tasks. The next two sections present more efficient
methods to solve the problems using GA and conflict graph
models, respectively.

3For error-free environment, the cost function is ¥, (1) = Ls (n).



V. PROPOSED SOLUTION USING GENETIC ALGORITHM

A genetic algorithm (GA) is a metaheuristic search tech-
nique, which evaluates a set of potential solutions called the
initial population, each potential solution being referred to
us chromosome. The GA generates new solutions through
integrating the good features of existing solutions [39], [40].

In the proposed GA, a potential offloading decision is
represented as a set of J parameters known as genes g¢;,
each gene representing an association of a sub-task and a
server. These genes are joined together to form a string of
integers known as a chromosome g. A chromosome (J-
dimensional vector of integer numbers) identifies the servers,
as assigned to the vector elements represented by the sub-
tasks. For example, the offloading decisions in (18) and (19)
are represented by the following chromosomes

T T2 T3 T4

g,=[2 1 4 3], (25)
and
T T2 T3 T4
gs=1[4 3 4 3], (26)
respectively.

A. Feasibility and Fitness for the Parallel Offloading Scheme

The chromosome representation described above ensures
that constraints (21b) and (21d) are automatically satisfied
since each sub-task is associated with exactly one server.
However, this representation does not guarantee that con-
straint (21c) is fulfilled. A given chromosome is feasible
for the parallel offloading scheme if its genes (servers) are
distinct. In other words, if the number of the contributing
servers is J. The feasibility indicator of a given chromosome
for parallel offloading gy, is defined as

J
Loif [Ugl=J
i=1

0, otherwise.

Cpk = 27

It is clear that (,, = 0 if and only if the chromosome
gy, violates constraint (21c). We define the raw fitness of a
chromosome g, with parallel offloading scheme as

0, = 28
Pk vy (7716)7 @8

where m is the offloading decision associated with the
chromosome gj. The fitness of a chromosome g is then
defined as

Oy = Corpy- (29)

Hence, the chromosome with the highest ©,, > 0 is feasible
and minimizes the objective function in (21).

B. Feasibility and Fitness for the Sequential Offloading
Scheme

The chromosome representation ensures that constraints
(23b) and (23e) are automatically satisfied since each sub-
task is associated with exactly one server. However, this
representation does not guarantee that constraints (23c) and
(23d) are fulfilled. Algorithm 1 returns the feasibility indicator
for a given chromosome g; in the sequential offloading
scheme. In this algorithm, if £’ = 0 then g violates (23c).
A given chromosome is feasible for the sequential offloading
scheme if Algorithm 1 returns (s;, = 1. We define the raw

Algorithm 1 Chromosome Feasibility for Sequential Offload-
ing Scheme

input gy, du,;, dc;;, and x
Cop =1
& =112 195 — gjsn |
if ¢ =0 then
Csp <0
Return ¢,
else
Obtain 7, associates with g
n < M-
if (23d) violated then
CSk <0
Return (;,
end if
: end if
: Return (;,

D e A AE -

—_ = m =
DA S

fitness of a chromosome g, with sequential offloading scheme

as
1

s ()’
where 7, is the offloading decision associated with the

chromosome gj. The fitness of a chromosome g, is defined
as

Os. = (30)

esk = Cskesk- (31)

Hence, the chromosome with the highest ©,;, > 0 is feasible
and minimizes the objective function in (23).

C. Genetic Algorithm
The adopted GA consists of the following steps:

1) Generate an initial population of = randomly con-
structed chromosomes. Each chromosome in the ini-
tial population is generated by randomly associating a
server with each sub-task.

2) Evaluate the fitness and the feasibility indicators of
each chromosome. Two values are associated with each
chromosome, namely the raw fitness value and the
feasibility indicator [23].

3) Select two chromosomes as parents for reproduction.
We adopt the binary tournament selection, in which two
chromosomes are chosen from the population randomly
and the one with the highest raw fitness value is selected



as a parent [23]. The same procedure is applied to select
the other parent.

4) Generate a child chromosome from the parents by first
applying a crossover operation. One-point crossover
operation is adopted, in which a crossover point 1 <
7 < J is randomly selected. The child is structured
from the first j genes which are taken from one of the
parents, and from the remaining J — j genes which are
taken from the other parent. The crossover operation
is followed by a mutation operation, in which two
randomly selected genes in the child are exchanged (i.e.,
exchanging assigned servers between two randomly se-
lected sub-tasks). After generating the child, the fitness
and the feasibility indicator of the child chromosome
are evaluated.

5) Replace a chromosome in the population by the child
chromosome. The adopted replacement procedure is as
follows. The chromosome with zero feasibility indicator
and lowest raw fitness value is replaced by the child.
If all the chromosomes in the population are feasible,
the chromosome with the lowest raw fitness value is
replaced by the child.

6) Repeat steps 3 and 4 until N offspring chromosomes
have been generated without enhancing the best chro-
mosome found so far or a maximum number of off-
spring chromosomes M has been generated.

It is worth mentioning that applying the GA described
above to the motivating example in Section III leads to the
offloading decisions in (18) and (19). However, it is known
that GA suffers from the well-known curse of evaluating the
fitness for each chromosome [40]. To avoid corresponding re-
peated expensive evaluations, next section introduces heuristic
solutions based on conflict graph models.

VI. PROPOSED SOLUTION USING CONFLICT GRAPHS

In this section, we propose heuristic solutions to the formu-
lated optimization problems using techniques inherited from
graph theory. To find an optimized offloading decision, we
should first design a representation of all feasible offloading
schedules. We propose offloading conflict graph models
that represent the offloading conflicts. The offloading conflict
graph is an undirected graph in which each vertex has two
indices representing an association of a server and a sub-task.
Each undirected edge between two vertices is an offloading
conflict between the two corresponding associations.

A. Conflict Graphs of the Parallel Offloading Scheme

The proposed conflict graph of the parallel offloading
scheme G, is constructed as follows:
Vertex Set: The vertex set consists of I.J vertices in which
each vertex v;; represents the offloading of sub-task 7; to
server s;.
Scheduling Conflict Edges: Any two vertices v;; and vy in
G, are set adjacent by a scheduling conflict edge if one of
the following cases occurs:

1) j =1 = A sub-task cannot be handled by more than

one server.

2) ¢ = k = A server cannot handle more than one sub-
task.

Note that for the parallel offloading scheme, the holding time
of a sub-task does not affect the feasibility of a solution. Given
this configuration of the parallel offloading conflict graph, any
independent set* of size .J in G, will represent a candidate
feasible decision for the parallel offloading scheme. To select
the offloading decision that provides minimum latency and
guarantees minimum failure probability, we assign a weight
wp;; to each vertex in G,. This weight reflects both the
latency and failure probability, being defined as

wpij = (duij + dey; + ddis) (1 —(1—p)" (1- qi)dj).
(32)

For error-free environment, the weight simply becomes

wp;; = (duij +dcgj + ddij) . (33)

B. Conflict Graphs of the Sequential Offloading Scheme

The proposed conflict graph of the sequential offloading
scheme G, is constructed as follows:
Vertex Set: The vertex set consists of IJ vertices in which
each vertex v;; represents the offloading of sub-task 7; to
server s;.
Scheduling Conflict Edges: Any two vertices v;; and vy in
Gs are set adjacent by a scheduling conflict edge if one of
the three cases below occurs:

1) j =1 = A sub-task or the feedback cannot be handled
by more than one server.

2) i=kand | j—1|=1 = Two successive sub-tasks
cannot be offloaded to the same server.

3) i:k:andl>j+llland
degj + dhij > W,

N ees\{i}

where dh;; is an approximation of the holding time of

sub-task 7; in server s;, which can be expressed as

dh” = max

Yo<j
+
j—1
> Npu,
— : Nyu;
oj dhia D 10 r=otl P
{x J e max {Ru,} + Ru;
VoeS\{i}

(34)

= A server cannot handle a new sub-task if it still
computes another sub-task.

Given this configuration of the offloading conflicts, any
independent set of size J in Gy will represent a candidate
offloading decision. To select the offloading decision that
provides minimum latency and guarantees minimum failure
probability, we assign a weight ws;; to each vertex in Gs.

4An independent set in a graph is a set of vertices such as no edge exists
between any pair of vertices in the set [41].



This weight reflects both the latency and failure probability,
being defined as

wsij = (duq;j + dcij) (1 — (1 —pi)uj) . (35)

For error-free environment, ws;; = (du;; + dc;j). The al-
gorithm in the following section is designed to select the
independent set that represents the offloading decision which
provides minimum latency and guarantees minimum offload-
ing failure probability.

C. Minimum Weighted Vertex Search Algorithm

In case of parallel or sequential offloading scheme, we
perform the following substitutions G = G, and ng
wpij Yvi; € Gy or G = G, and ng = ws;; Yvi; € G,
respectively. For a given sub-task 7;, the vertex with the
minimum weight wi] Vi € S represents the association
between 7; and the server that provides low latency and
offloading failure error for offloading 7;. Since each server
has different channel state and computation speed and the
association of an arbitrarily chosen sub-task with the best
available server may prevent other highly demanding sub-
tasks to be offloaded to the best available server, a given
sub-task 7; prioritizes to be associated with the best available
server if:

o The sub-task 7; is highly demanding (i.e., it consists of
large number of packets and it requires a high number
of CPU cycles). To sort the sub-tasks based on their
demand, a raw prioritization weight is assigned to each
sub-task such that A; = w;; Vj € T and i is fixed. Note
that sorting the sub-tasks based on a weight calculated
with respect to any ¢ € S leads to the same prioritized set
of sub-tasks. This is because in each case, all sub-tasks
will experience the same communication conditions and
undergo the same computation capabilities. The sub-task
with the highest A; Vj € T is the most demanding sub-
task.

o« A high number of sub-tasks depend on the output
computed results of 7; (i.e., 7; has the largest x; =
22121 leAl VjeT).

Using this sub-task prioritization and the definition of the
vertices weights, Algorithm 2 executes iteratively a greedy
minimum weighted vertex search approach to select J-
vertices independent set I, which represents the best of-
floading decision. We sort the sub-tasks in a descending
order according to a prioritization weight of A; + ;. The
index of the sorted sub-tasks is j'(1),5'(2),5'(3),...,4'(J)
and the sub-task with j'(1) has the higher priority to be
associated with the best available server. Each iteration is
implemented as follows: the vertex with the minimum weight
in the vertices set v}, , with/ = 1l and V1 < i < T
will be picked and added to I'. The selected vertex vl’.*j, W
and all the vertices that are adjacent to it (symbolized in
the algorithm by Ng (U: o (l)>) are eliminated from the graph
G. This elimination is performed to guarantee that the next
picked vertex in the next iteration is not in scheduling conflict
with the already selected ones in I'. The algorithm continues
by increasing ! by one until [ = J.

Algorithm 2 Minimum Weighted Vertex Search Algorithm.

1: Input: G, and wp;; Yv;; € G, OR G, and ws;; Vv;; €
Gs. The sub-task dependency matrix x.
2: Initialization:
i g — gp OR gs
. w;j < Wpyj OR WSij
o Calculate A; = wy; and r; = Zlle cal VieT
« Sort the sub-tasks in a descending order according to
a prioritization weight of A; +
e The index of the sorted
3'(1),5'(2),5'(3) ..., 5'(J)
o Set the selected independent set I' = )
3: forl=1to J do
'U;kj/(l) — Igélél{w”/(l)}
5: '=TUuU vij’(l)
GG\ () UNG ()
end for
8: Return I'.

sub-tasks  is

e

~N

Figure 3: Offloading conflict graph of parallel offloading scheme of
the example in Section III.

Figure 3 shows the offloading conflict graph of the parallel
offloading scheme for the motivating example in Section
III. For this graph, Algorithm 2 returns the independent set
I' = {v91, v12, V43, V34 } (represented by darker colour in Fig.
3). It is clear that the resulting offloading decision from this
independent set is equivalent to that in (18).

Figure 4 shows the offloading conflict graph of the se-
quential offloading scheme of the example in Section III
For this graph, Algorithm 2 returns the independent set
I' = {v41,v32,v43,v34} (represented by darker colour in
Fig. 4). Obviously, the resulting offloading decision from this
independent set is identical to that in (19).

VII. COMPLEXITY ANALYSIS

This section introduces the computational complexity of
the GA and the conflict-graph algorithms. The basic oper-
ations performed in the GA algorithm are selection opera-
tion, crossover operation, mutation operation, chromosome



Figure 4: Offloading conflict graph of sequential offloading scheme
of the example in Section III.

replacement, and fitness evaluation. The basic operations
performed in the conflict-graph algorithm are generating the
vertices set, building the adjacency edges, and finding the
independent set.

A. Parallel Offloading

In the GA algorithm, generating a child chromosome
requires the following operations. The crossover process
has a complexity of O (J), the mutation process has also
a complexity of O (J) [42], and chromosome replacement
requires O (E) operations. Consequently, generating the off-
spring chromosomes requires O ([J +ZEM ) operations. To
evaluate the fitness of a chromosome, the following operations
are required. Calculating the holding time of each sub-task
requires O (J) operations. Consequently, calculating the total
latency requires O (J 2) operations. Calculating the offload-
ing failure probability requires O (I.J) operations. The time
complexity of finding the feasibility indicator (,, is O (J).
Since J < I, evaluating the fitness of a given chromosome
has a time complexity of O (J?>+1J+J) = O(1J). As
we need to evaluate the fitness of each chromosome in
the initial population and the offspring, the computational
complexity of the GA with the parallel offloading scheme
is O(IJ[E+M]+[J+E}M) :O(IJ[E—&-MH—EM).

The vertex set size of the conflict-graph is O(IJ). To
build the adjacency edges of the conflict-graph for the parallel
offloading, all the vertices representing a given sub-task are
connected to each other and all the vertices representing a
given server are connected to each other. This means that
we need a total of O(IJ + IJ) = O(IJ) operations to
build the adjacency edges. On the other hand, the complexity
of the minimum weighted vertex search algorithm can be
computed as follows. Computing the weights of the vertices
requires O(IJ) operations. Sorting the sub-tasks has a time
complexity of O(JlogJ). The time complexity of selecting
the minimum weighted vertex for each sub-task is O(T). Con-
sequently, the complexity of the minimum weighted vertex
search algorithm is O(IJ + JlogJ 4+ IJ) = O(IJ) and the
computational complexity of the conflict-graph algorithm is

O(IJ+1J)= O(IJ). It is worth mentioning that represent-
ing the offloading decisions using (25)-(26) reduces the search
space to O (I”). Consequently, the computational complexity
of finding the optimal solution using the exhaustive search is

O (1J17) = 0 (JI7+1).

B. Sequential Offloading

Similar to the parallel offloading case, calculating the
total latency and offloading failure probability for the se-
quential offloading scheme require O(.J?) and O(I.J) op-
erations, respectively. The time complexity of finding the
feasibility indicator (s, is O (1J?). Consequently, evaluating
the fitness of a given chromosome has a time complexity
of O (J2+1J+1J%) = O(IJ?) and the computational
complexity of the GA with the parallel offloading scheme is
O(IJ2 [E+ M)+ [J+E]M) = (’)(IJ2[E+M]+EM).

The vertex set size of the conflict-graph is O(I.J). To
build the adjacency edges of the conflict-graph for sequen-
tial offloading, we set all the vertices representing a given
sub-task connected to each other, which requires a total
of O(IJ) operations. For all vertices representing a server
we perform the following: (1) Connect any two vertices
representing two successive sub-tasks, which requires O(J)
operations; (2) Calculate dh;; for each two vertices, which
requires O(I.J) operations. This means that we need a total
of O(IJ + [J + IJ|I) = O(I%J) operations to build the
adjacency edges. Consequently, the computational complexity
of the conflict-graph algorithm is O(I%J + I.J) = O(I2J).
It is worth mentioning that the computational complexity of
finding the optimal solution using the exhaustive search is
o (IJ2IJ) =0 (J21J+1).

Table II summarizes the time complexity of the algorithms.
To introduce a quantitative measure of the complexity of the
algorithms, Table II shows the average execution time of each
algorithm on a personal computer equipped with an Intel(R)
Core(TM) i5-4570 CPU, working at a clock frequency of 3.2
GHz, and 8 GB of RAM. The algorithms have been imple-
mented in MATLAB. The system model consists of I = 10
servers, J = 10 sub-tasks, = = 10/J chromosomes [43], and
N = 1000 chromosomes, and M = 10° chromosomes. It
is clear that the conflict graph solution is more complexity-
efficient than that of the GA algorithm for both parallel and
sequential offloading schemes.

Algorithm Complexity Av. Execution Time
GA-parallel offloading O (IJ[E+ M]+EM) 4.4 ms
Graph-parallel offloading O(1J) 1.3 ms
GA-sequential offloading O (IJ2[E+ M]+EM) 6.5 ms
Graph-sequential offloading O(I%)) 1.8 ms

Table II: Algorithms complexity.

VIII. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the performance of the proposed algorithms and to study the
effect of the main parameters on the latency and offloading
failure probability. In obtaining these results, the servers are
uniformly distributed with distances from the mobile device



as 200 m ~ 400 m. We set the channel gain as h; = 0, °,
where §; is the distance between the mobile device and the
i-th server and ¢ = 4 is the path loss exponent [31]. The
channel bandwidth is 1 MHz and the spectral density of
the additive noise is Ny = —173 dBm/Hz. The transmit
power of the mobile device and the servers is 100 mW [44].
For the parallel offloading scheme, orthogonal sub-channels
are established each with 1 MHz bandwidth. The remaining
parameters are as follows. The computation speed of the MEC
server is generated randomly from a uniform distribution
ranging from 2 x 10° to 8 x 10? cycles per second [15], the
packet size is N, = 20 bytes [45], task input and output data
are U = 1000 packets [17], [46] and D = 200 packets [44],
respectively, and the computational complexity of a sub-task
o in cycles per bit follows a Gamma distribution with shape
and scale parameter of 4 and 200, respectively [47], [48]. To
represent the dependency among the sub-tasks, a given sub-
task depends on any of the previous sub-tasks with probability
m. The initial population size is 10IJ chromosomes [43],
and N and M equal 103 and 105, respectively. The default
simulation parameters, which are summarized in Table III,
are considered in the results, unless otherwise stated.

Parameter Value
Channel bandwidth 1 MHz
Noise spectral density No —173 dBm/Hz
Server transmit power 100 mW
Mobile device transmit power 100 mW
Packet size 20 bytes

[2; 8] x 107 cycles/s
1000 packets

Computing speed of the servers
Total task input data size U
Total task output data size D 200 packets

Computational complexity parameter a; ~ Gamma (4, 200) cycles/bit
Sub-tasks dependency probability 7 0.3
Initial population size = 10/J chromosomes
N 103 chromosomes
M 105 chromosomes

Table III: Simulation parameters.

Figure Sa illustrates the performance of the GA, con-
flict graph, and optimum solution (obtained using exhaus-
tive search) versus the task data size U. It is seen that
the proposed algorithms achieve near-optimum performance,
and the latency-reliability cost function of the sequential
offloading is less than that of the parallel offloading scheme.
To gain deep insight into this result, Figs. 5b and 5c show
the corresponding latency and offloading failure probability,
respectively. It is clear that the parallel offloading provides
less latency; however, sequential offloading provides less of-
floading failure probability. For parallel offloading, all servers
contribute to offloading simultaneously, which leads to less
latency; however, not all of them have good channel quality,
which yields higher failure probability. On the other hand, in
sequential offloading, the scheduler explores the best available
servers and less servers are contributing.

Figure 6a illustrates the effect of the inter-sub-tasks depen-
dency on the latency-reliability cost function. It is noticed
that the cost function and number of contributing servers
in the sequential offloading are not affected considerably
by the inter-sub-tasks dependency. Also, it is clear that as
the probability of inter-sub-tasks dependency increases, the
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Figure 5: The effect of the task data size U with I = 6 servers and
J = 6 sub-tasks.

cost function of the parallel offloading increases. To gain
better insight into this behavior, Figs. 6b and 6c portray
the corresponding latency and offloading failure probability,
respectively. It is clear that there is no noticeable change in
the offloading failure probability. However, as the probability
of inter-sub-tasks dependency increases, the latency of the
parallel offloading increases rapidly and the latency response
gap between sequential and parallel schemes decreases. The
reason is that while all sub-tasks are offloaded simultaneously
in the parallel scheme, the sub-task that depends on another



sub-task will be held, and the simultaneous offloading loses its
main advantage. On the other hand, in sequential offloading,
the sub-task waits until all the previous sub-tasks are offloaded
and their computing has already begun. Consequently, the
waiting time due to the inter-sub-tasks dependency is less in
comparison with the parallel offloading.
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Figure 6: The effect of the inter-sub-task dependency probability 7
with I = 10 servers and J = 10 sub-tasks.

Figure 7 shows the effect of the number of sub-tasks J

with a total of I = 10 available servers. It is noticed that
as the number of sub-tasks increases, the latency reduces
for both parallel and sequential offloading schemes. The
offloading failure probability increases remarkably for the
parallel offloading. This can be attributed to the fact that as
the number of sub-tasks increases, each sub-task is offloaded
to a server and not all servers have the same quality of
connections.
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In Fig. 8, all servers are located at the same distance from
the mobile device (i.e., 9; = d Vs; € S). Such scenario
is suitable for the case where servers are located in close
proximity to each other or they are placed at the arc of a
circle whose center is the mobile device. It is noticed that
as the distance between the servers and the mobile device
increases (i.e., the SNR decreases), the latency increases in
both parallel and sequential offloading schemes. However, for
the sequential offloading, the latency grows more rapidly.
This can be attributed to the fact that reducing the SNR
will increase the uplink transmission delay, and consequently,
the waiting time of the sub-tasks’ also increases. It is also
noticed that as the distance between the servers and the mobile
device increases (i.e., uplink transmission delay increases),
the number of contributed servers in sequential offloading
decreases. This is because during the long time duration of
uplink transmission of a sub-task, more servers will complete
the computation of their sub-task and get ready to contribute.
Such availability of servers gives the scheduler the ability to
offload more sub-tasks to less number of servers (because it
selects the best available servers).
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Figure 8: Latency versus distance with / = 10 servers and J = 10
sub-tasks.

IX. CONCLUSION

We proposed task scheduling for parallel and sequential
offloading of a delay-sensitive and computationally-intensive
task to multiple MEC servers. The problem was formulated
as the joint optimization of latency and offloading failure
probability. Heuristic solutions based on genetic algorithm
and conflict graph models were developed. Simulation results
revealed that the proposed solutions provide performance
close to the optimal one, with reduced complexity. Also,
findings showed that sequential offloading provides less of-
floading failure probability and requires a lower number
of servers. On the other hand, parallel offloading provides
less latency. However, as the dependency among sub-tasks
increases, the latency response gap between sequential and
parallel schemes decreases.

5The waiting time of a sub-task is an accumulation of the uplink delay of
all previous sub-tasks, i.e., W; (1) = Zf;ll Duy (n).
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