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Abstract. We present a new scheduling algorithm for task graphs
arising from parallel multifrontal methods for sparse linear systems.
This algorithm is based on the theorem proved by Prasanna and
Musicus [1] for tree-shaped task graphs, when all tasks exhibit the
same degree of parallelism. We propose extended versions of this
algorithm to take communication between tasks and memory balanc-
ing into account. The efficiency of proposed approach is assessed by a
set of experiments on a set of large sparse matrices from several libraries.
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1 Introduction

The solution of sparse systems of linear equations is a central kernel in many
simulation applications. Because of their robustness and performance, direct
methods can be preferred to iterative methods. In direct methods, the solution
of a system of equations Ax = b is generally decomposed into three steps: (i) an
analysis step, that considers only the pattern of the matrix, and builds the nec-
essary data structures for numerical computations; (ii) a numerical factorization
step, building the sparse factors (e.g., L and U if we consider an unsymmetric
LU factorization); and (iii) a solution step, consisting of a forward elimination
(solve Ly = b for y) and a backward substitution (solve Ux = y for x).

In this paper, we will work on an existing parallel sparse direct solver, MUMPS [2]
(for MUltifrontal Massively Parallel Solver). We will study how to improve the
parallel behavior of the solver. The main idea is to use theoretically proved
techniques to improve the global behavior of the solver. Thus, Section 2 will be
devoted to the presentation of parallel multifrontal method. Then, we will focus
in Section 3 on the theoretical model and its application to MUMPS solver. We will
present the adaptation of the algorithm for scheduling parallel tasks on homoge-
neous platforms proposed by Prasanna and Musicus [3,1] in Section 3.2. Finally,
we present in Section 4 an experimental comparison between the existing MUMPS
scheduling strategies and the techniques inspired from the work of Prasanna
and Musicus. We will assess the interest and the limitations of new proposed
approaches and then draw conclusions and give some words on future work.
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2 Parallel Multifrontal Method

We present in this section the parallel multifrontal method as implemented in
the software package MUMPS [2].

2.1 Task Graphs Within MUMPS

MUMPS uses a combination of static and dynamic approaches. The tasks depen-
dency graph is indeed a tree (also called assembly tree), that must be processed
from the leaves to the root. Each node of the tree represents the partial fac-
torization of a dense matrix called frontal matrix or front. Once the partial
factorization is complete, a block of temporary data (i.e. contribution block) is
passed to the parent node. When contributions from all children are available
on the parent, they can be consumed or assembled (i.e. summed with the values
contained in the frontal matrix of the parent). Contribution blocks represent
temporary data of the algorithm whereas factors represent final data.

The shape of the tree and costs of the tasks depend on the linear system to
be solved and on the reordering of the unknowns of the problem. Furthermore,
tasks are generally computationally larger near to the root of the tree where the
parallelism of the tree is limited. Figure 1(a) summarizes the different types of
parallelism available in MUMPS:
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Fig. 1. Parallelism management in MUMPS

The first type only uses the intrinsic parallelism induced by the tree (since
branches of the tree can be processed in parallel). A type one node is a sequential
task, that can be activated when results from children nodes have been commu-
nicated. Leave subtrees are a set of tasks all assigned to the same processor.
Those are determined using a top-down algorithm [4] and a subtree-to-process
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mapping is used to balance the computational work of the subtrees onto the pro-
cessors. The second type corresponds to parallel tasks; a 1D parallelism of large
frontal matrices is applied: the front is distributed by blocks of rows. A master
processor is chosen statically during the symbolic preprocessing step and all the
others (slaves) are chosen dynamically by the master from a set of candidate pro-
cessors based on load balance considerations, which can be either the number of
floating-point operations still to be done, or the memory usage. The number and
the choice of candidate processors is guided by a relaxed proportional mapping
(see Pothen and Sun [5]) consisting of a recursive assignment of processors to
subtrees according to their associated computational work. Note that once the
partial factorization is done, the master processor eliminates the first block of
rows, while slaves perform the updates on the remaining Schur complement (see
Figure 1(b)). Finally, the task corresponding to the root of the tree uses a 2D
parallelism, and do not require dynamic decisions: ScaLAPACK [6] is applied,
with a 2D block cyclic static distribution.

The choice of the type of parallelism is done statically and depends on the
height in the tree, and on the size of frontal matrices. The mapping of the
masters of parallel tasks is static and only aims at balancing the memory of
the corresponding factors. During the execution, several slave selections can be
made independently by different master processors.

2.2 Dynamic Scheduling Strategy

A workload-based strategy under memory constraints is used to select slaves
for parallel tasks. This strategy [7] is based on the number of floating-point
operations still to be done. Each processor takes into account the cost of a task
once it can be activated. In addition, each processor has as initial load the cost
of all its subtrees.

The slave selection for parallel tasks (Type 2 nodes) is done such that selected
slaves give the best workload balance. The matrix blocking for these nodes is
an irregular 1D-blocking by rows. In addition, there are granularity constraints
on the sizes of the subtasks for issues related to either performance or size of
some internal communication buffers. Furthermore, this strategy dynamically
estimates and uses information relative to the amount of memory available on
each processor to constrain the schedule.

3 Load Balancing and Minimization of Communication
Cost

3.1 Related Works

In this section, we consider the problem of finding a schedule that both bal-
ances the load throughout the computation and minimizes the overall volume of
communications induced by the algorithm. The problem of balancing memory
requirements between processors will be addressed in Section 3.2.
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Let us recall the algorithm defined in Section 2 from a scheduling point of
view. The task graph corresponding to the execution of MUMPS is a tree (see
Figure 1(a)) and communications take place along the edges of the tree. Each
node of the tree can in turn be executed on several processors, which means
that we do not consider tasks at the finest level of granularity: in the context of
MUMPS, tasks are associated to partial LU decompositions.

This approach is closely related to malleable tasks scheduling (see [8] for a
survey). A malleable task is a computational unit that can be itself processed
in parallel. For each possible number of used processor, the time to process
the malleable task is given, and communications are taken into account via a
penalty factor. In [9], the authors propose a 4(1+ε) approximation algorithm for
scheduling trees of malleable tasks, if communications between malleable tasks
are not taken into account. In the context of MUMPS, these theoretical results
can nevertheless be improved, since all malleable tasks correspond to the same
routine (partial LU factorization) on different data and for different problem
size. In this context, all malleable tasks have the same profile (i.e. the penalty
depends only on the number of processors, but not on the specific data). This
problem has been addressed by Prasanna and Musicus [3,1]. In their model, it is
assumed that the execution time of any malleable task is given by L

pα , where L is
the length of the task on one processor, p is the number of processors allocated
to this task and α is a penalty factor, that expresses the degree of parallelization
of the malleable task (α close to 1 corresponds to ideal parallel task, whereas
α close to 0 means that the task is intrinsicly sequential). It is worth noting
that α does not depend on L or p (the value of α for our specific application
will be discussed in next Section). For trees of such regular malleable tasks,
Prasanna and Musicus [1] propose an optimal algorithm (that nevertheless allots
rational number of processors to tasks), that will be described in more details
in Section 3.2.

3.2 Parallelization of Factorization in MUMPS

Fitting the model. We experimentally measured values of α using frontal
matrices having an order (ni) of 10000 and various sizes of master task (an
illustration of hi is given in Figure 1(b)). We observed that for reasonable ratios
of hi/ni, α has a constant value of 1.15 (note that if a task has a large master
part, we can split it into a chain of tasks that have reasonable size of master
tasks). This means that α is constant for all the tasks of the tree. Note that, the
α parameter may vary depending on the platform used (network characteristics,
processor speed, . . . ).

However, we also observe super-linear speedups (in the sense that α is larger
than 1). This surprising behavior is due to the fact that the processor that
handles thes master task does not take part to the processing of the slave part
of the task (a processor cannot be a master and a slave in the same partial
factorization). Thus, for example, when doubling the number of processors for
a given task from 2 to 4, the number of slaves varies from 1 to 3 (inducing a
speedup near to 3 in an ideal case). This explains the observed super-linearity.
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Fig. 2. Description of the optimal schedule

We plan to change the MUMPS management of these tasks to allow a processor to
be both a master and a slave in the same task. A more powerful implementation
would be to allow the parallelization of the master part of the task, and would
remove this super-linear speedup.

Proposed solution. In previous Section, we have shown that current im-
plementation of partial LU factorization induces a super-linear speedup, thus
preventing us to use directly optimality results derived by Prasanna and Mu-
sicus [3,1]. Nevertheless, we also observed that this super-linear speedup will
disappear with the newly version of 1D partial LU factorization. Moreover, the
optimal solution for α > 1 would lead to execute each task on the whole set of
processors, what would induce huge communication costs. Therefore, we propose
to use the mapping algorithm proposed by Prasanna and Musicus even if α > 1.
It has been proved [3] that if α < 1, the solution is as depicted in Figure 2. More
precisely, the set of processors allocated to a task does not change over time, the
set of processors allocated to a given node is the same as the set of processors
allocated to its subtree, and all the children of a given task finish their execu-
tion at the same time. Given these observations, it is possible to determine the
exact number of processors allocated to each task of the tree. For instance, if p5
denotes the number of processors allocated to task T5, the number of processors
pi allocated to tasks Ti, 1 ≤ i ≤ 3 is given by

pi = p5
L

1
α

i

L
1
α
1 + L

1
α
2 + L

1
α
3

,

where Li denotes the execution time of Ti on one processor.
As already noted, the optimal solution associates each task Ti to a fractional

number of processors, given as an interval with rational bounds [li, ri] ⊂ [0, P ],
where P is the overall number of processors. Therefore, each task Ti is asso-
ciated to ki ≥ 0 processors (denoted as base processors in what follows) that
will be completely devoted to the execution of Ti, and possibly k′

i(k
′
i ≤ 2) extra

processors (denoted as candidate processors in what follows), that will be also
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partially allocated to other tasks during the execution of Ti. Candidate proces-
sors for task Ti will be dynamically allocated to the execution of Ti during the
execution, given their current load at the beginning of the execution of Ti.

Proposed solution therefore achieves perfect load balancing (all processors
work during the whole process) and good locality of communications (since the
set of processors allocated to a given task is the union of the set of processors
allocated to its children tasks). On the other hand, with the current implemen-
tation of partial LU factorization in MUMPS, the length of the schedule is not
optimal since α > 1. Note that the main difference between this approach and
the default MUMPS scheduling strategy (see Section 2), which is based on propor-
tional mapping, is that it cases the communications induced by parallelism into
account through the task performance model.

Minimization of memory requirements. In this section, we consider the
minimization of memory requirements once the tree of tasks and the set of
processors (base processors and candidate processors) allocated to each task
have been determined. More specifically, we concentrate on the minimization of
the memory needed to store L and U factors and do not consider the memory
needed to store intermediate factors that will be sent (and then removed from
memory) to the father task. Let us consider the elementary partial factorization
depicted in Figure 1(b). The processor responsible for computing the upper part
will have to store nihi elements of L and U , whereas the (p − 1) processors
responsible for the lower part will be in charge of storing hi(ni−hi)

p−1 elements
of L. In order to decide which processor will be in charge of computing the
upper part, we propose a heuristic based on the 4

3 approximation algorithm
Minimum Multiprocessor Scheduling [10] where task lengths are independent of
the processor’s choice [11]. More precisely, we sort the tree nodes by decreasing
values of hi and we consider tasks in this order, allocating the upper part of
task Ti to the less loaded processor, while updating the memory charge for all
processors participating to the computation of Ti. We present in next section
the results obtained by this simple heuristic.

4 Experimental Results

We should first mention that the algorithms presented in Sections 3.2 and 3.2
have been implemented inside the MUMPS package. In order to compare the pro-
posed algorithm with the default scheduling strategy described in Section 2,
we experiment them on several problems (see Table 1) extracted from vari-
ous sources including Tim Davis’s collection at University of Florida1 or the
PARASOL collection2. The tests have been performed on the IBM SP system of
IDRIS3 composed of several nodes of either 4 processors at 1.7 GHz or 32 pro-
cessors at 1.3 GHz. Note that all the experiments are done using unsymmetric
matrices. The extension to symmetric ones is natural.
1 http://www.cise.ufl.edu/ davis/sparse/
2 http://www.parallab.uib.no/parasol
3 Institut du Dveloppement et des Ressources en Informatique Scientifique.
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Table 1. Test problems

Matrix name Order nnz nnz(L|U) × 106 Description
CONV3D64 836550 12548250 2693.9 provided by CEA-CESTA;

generated using AQUILON
(http://www.enscpb.fr/master/aquilon)

GRID 729000 7905960 1430.5 Regular 90-90-90 grid
MHD1 485597 24233141 1250.3 unsymmetric magneto-hydrodynamic 3D prob-

lem, provided by Pierre Ramet
ULTRASOUND80 531441 33076161 981.4 Propagation of 3D ultrasound waves, provided by

M. Sosonkina

We have tested the algorithms presented in previous Sections on 32 and 64
processors of the above-described platform. By default, we used the METIS
package [12] to reorder the variables of the matrices. In the following experimen-
tal study we will use default to denote the default scheduling strategy of the
solver, P&M to denote the experiments where we used the Algorithm presented in
Section 3.2, and P&M* to denote the variant described in Section 3.2. In addition,
for each set of experiments, we forced the same tree topology (same amount of
splitting etc . . . ). Finally, in the case of P&M approaches, we strictly follow the
static schedule, produced during the analysis phase, during factorization.

We report in Table 2 factorization times on the IBM platform using 32 and 64
processors. The factorization time is reduced when using the P&M approaches on
both 32 and 64 processors. The gains can reach more than 30% (for the conv3d64
on 64 processors) and variants of the Prasanna & Musicus do not strongly differ
in terms of factorization time. Note that on 32 processors, the P&M* seems to
be less efficient than the P&M approach. This is principally due to our round-off
management when assigning tasks to processors. Indeed, as mentioned in Sec-
tion 3.2, if a processor is not fully assigned to a task, we choose dynamically if
it will take part to the processing of the task or not. These dynamic decisions
explain the difference in terms of performances between the two variants. Pre-
sented results illustrate the good behavior of both variants and show that they
produce a better balanced schedule than the default strategy.

We will now focus on the volume of data exchanged during the factorization.
We give in table 3 the volume of communication measured during the factor-
ization. We can see that both P&M and P&M* give a very reduced amount of
communication (up to a factor of 2.5). This reduction is explained by the fact
that the algorithms based on Prasanna and Musicus approach have a natural
locality in the distribution of tasks over processors (see Section 3.2). In addition,

Table 2. Factorization time (in seconds) on 32 and 64 processors. Not enough memory
was available to run the conv3d64 matrix on 32 processors.

Time for facto. (32 procs.) Time for facto. (64 procs.)
Matrix name default P&M P&M* default P&M P&M*
CONV3D64 - - - 390 280 274
GRID 237 199 208 169 117 115
MHD1 186 168 175 116 102 99
ULTRASOUND80 89 88 95 82 63 62
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Table 3. Volume of communication (in GigaBytes) on 32 and 64 processors. Not
enough memory was available to run the conv3d64 matrix on 32 processors.

Vol. of comm. (32 procs.) Vol. of comm. (64 procs.)
Matrix name default P&M P&M* default P&M P&M*
CONV3D64 - - - 618 234 229
GRID 184 74 73 308 131 120
MHD1 138 66 61 219 110 103
ULTRASOUND80 79 34 34 167 77 69

Table 4. Peak of memory (in the left) and size of Factors per processors (in the right)
(in millions of entries) on 32 and 64 processors. Not enough memory was available to
run the conv3d64 matrix on 32 processors.

Mem. peak (32 procs.) Mem. peak. (64 procs.)
/ /

Size of factors (32 procs.) Size of factors (64 procs.)
Matrix name default P&M P&M* default P&M P&M*
CONV3D64 - - - 86 / 53 109 / 87 102 / 57
GRID 89 / 55 122 / 77 112 / 68 52 / 27 61 / 36 59 / 35
MHD1 79 / 48 108 / 56 121 / 56 41 / 21 56 / 33 53 / 32
ULTRASOUND80 59 / 37 82 / 49 82 / 49 30 / 19 45 / 25 46 / 25

the number of sequential subtrees assigned to a single processor is smaller in the
case of Prasanna and Musicus variants (which means that more work is done
without communications).

Finally, we will focus on the memory behavior of the different approaches. We
report in Table 4 both the memory peak over the set of processors for performing
the factorization and the final size of factors (we give the maximum size of
factors over all processors). A first observation is that the memory behavior
of the algorithms based on Prasanna & Musicus approach is worst than the
default one. This is mainly due to the fact that in the default strategy, memory
constraints are injected in both static and dynamic decisions. This leads to
better memory behavior (especially for the management of temporary data (i.e.
contribution blocks).

From the factor (terminal data) size point of view, we can see as expected
that the P&M* approach has a slightly better behavior than the P&M one, what
illustrates the benefits of the mechanism described in Section 3.2. However, we
can also see that default strategy gives a more balanced distribution of the
size of factors. This is due to the fact that in this approach the layer of sequen-
tial subtrees is determined by a combination of workload and memory criteria
whereas in the P&M and P&M* strategies it is built based on workload information
only. Thus, the size of sequential subtrees (which are considered as a single task)
is bigger in the P&M and P&M* approaches, what makes the distribution of factors
over processors more difficult.

5 Conclusion and Future Work

We presented in this paper a study of scheduling strategies for the parallel mul-
tifrontal method implemented in the MUMPS software package. We showed that
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the model of the application fits a state of the art model and how to adapt
the scheduling algorithm implemented in the solver. Finally, we presented an
experimental study showing the potential of the approach. We observe that
new schedules improve the performances of the solver by achieving better load-
balancing and a reduce volume of communication. However, we also observe
that these techniques induce an increase of memory requirements. This last is-
sue is critical, especially in the area of sparse direct solvers (where memory is
often the bottleneck). Thus, we have to work on approaches that will slightly
degrade performance to improve the memory behavior, either by injecting mem-
ory information during the static allocation or by dynamically relaxing proposed
allocation. Another approach could be to study bi-criteria techniques aiming at
finding the best tradeoff between these two criteria. Finally, we plan to study
how this work can be extended to the context of parallel out-of-core sparse direct
solvers (in this new context, I/Os have to be taken into account).
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