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Abstract: Cloud computing seems to be the result of advancements in distributed computing, paral-
lel computing, and network computing. The management and allocation of cloud resources have
emerged as a central research direction. An intelligent resource allocation system can significantly
minimize the costs and wasting of resources. In this paper, we present a task scheduling technique
based on the advanced Phasmatodea Population Evolution (APPE) algorithm in a heterogeneous
cloud environment. The algorithm accelerates up the time taken for finding solutions by improving
the convergent evolution of the nearest optimal solutions. It then adds a restart strategy to prevent
the algorithm from entering local optimization and balance its exploration and development ca-
pabilities. Furthermore, the evaluation function is meant to find the best solutions by considering
the makespan, resource cost, and load balancing degree. The results of the APPE algorithm being
tested on 30 benchmark functions show that it outperforms similar algorithms. Simultaneously, the
algorithm solves the task scheduling problem in the cloud computing environment. This method has
a faster convergence time and greater resource usage when compared to other algorithms.

Keywords: cloud computing; Phasmatodea Population Evolution algorithm; task scheduling;
heterogeneous

1. Introduction

Cloud computing has received attention as an innovative model due to the fast
growth of Internet technology [1]. In the cloud computing system, distributed computing
technology and various open service interfaces are used to obtain benefits by selling
its redundant computing and storage capabilities to users [2], i.e., the cloud computing
concept is based on a pay-per-use paradigm that consists of a general populace set of the
on-demand assignment of programmable computer resources, and users can easily access
the network [3]. Service providers can make profits by providing essential services during
a short period of time through the advantages of their hardware resources, while users
and certain companies that do not want to increase the cost of their internal data center
construction can lease virtualized resources provided by service providers to save costs [4].

The goal of cloud computing is to offer consumers cloud services using virtualized
resources [5]. Generally speaking, each service provided by cloud service providers can rep-
resent a task, and the process of service providers leasing services to different cloud users is
the process of task allocation and execution [6]. Due to the significantly increased demand
for cloud services, cloud service providers are extending the range and quantity of services
that they offer [7]. In recent years, the emphasis has switched to how to correctly and
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appropriately plan these operations in order to enhance resource usage. For these schedul-
ing problems, it is actually a kind of NP-hard problem [8]. Researchers have put forth
much effort on this subject. For example, Panda et al. [9] devised the assessment criteria
while keeping time and resource usage in mind and provided the scheduling method. In a
diverse context, Hussain et al. [10] suggested an energy-saving and effective job scheduling
technique. In addition, due to the simple operation, scalability, and robustness, heuristic
algorithms are effective at addressing issues such as task scheduling, load balancing, and
virtual machine placement, and have gained a lot of attention from researchers.

The Phasmatodea Population Evolution (PPE) algorithm is a heuristic population evo-
lution algorithm based on stick insect population development features [11]. The algorithm
treats the problem’s solutions as a population, and each population has two properties:
the population size and pace of expansion [12]. The movement of the solution of the
problem in the solution space is regarded as the evolutionary trend of the population [13].
In addition, the technique substitutes K-nearest optimal solutions for optimal global solu-
tions. This broadens the range of population evolution patterns and the speed at which
the best solutions are found is increased, whilst the population competition influences the
evolutionary direction of the population [14]. In the context of this research, we present an
APPE algorithm that optimizes and balances the algorithm’s development and exploration
skills to improve the algorithm’s optimization speed and general search capacity [15]. The
contributions of this paper are as follows:

• It proposes an advanced Phasmatodea Population Evolution (APPE) algorithm. It com-
bines the restart mechanism with a new evolutionary trend of stick insect populations
to balance the algorithm’s exploration and development capabilities.

• It builds an evaluation function using the makespan, cost, and load balancing degree
as indicators.

• Extensive simulation and comparison of the proposed approach with comparable
algorithms utilizing CEC2014 benchmark suites for testing.

• To assess the performance of the algorithm, it is compared to five similar algorithms
in two heterogeneous environments.

The following is the architecture of this essay, the second part introduces the related
work on cloud computing task scheduling, the third part introduces the proposed algorithm,
the fourth section introduces the simulation strategy and the result analysis, and finally,
the fifth section introduces the summary and analyses.

2. Related Work

Cloud computing has grown in popularity as a distributed system based on the Inter-
net in recent years. It has attracted much attention because it can configure a shareable re-
source pool according to the request and can be immediately provided and unloaded [16].
As the number of cloud users continues to grow, the amount of requests to be processed in
the cloud is also increasing. If the job scheduling is unreasonable, its performance will be
reduced [17]. The scheduling algorithm is responsible for distributing the work requested
by cloud users to cloud resources in order to minimize the make span, improve resource
utilization, reduce use cost, and balance the cloud infrastructure and resource load [18–20].
The scheduling question in the cloud environment can be separated into different fields,
which are illustrated as follows.

Task scheduling algorithms can be divided into task scheduling based on the Quality
of Service (Qos), task scheduling based on the Ant Colony Optimization (ACO) algorithm,
Particle Swarm Optimization (PSO) algorithm-based task scheduling, Genetic Algorithm
(GA) based on the task scheduling, and fuzzy-based task scheduling [21].

Initially, individuals researched task scheduling focused on QoS. He et al. [22] was a
pioneer in the field of QoS-based scheduling algorithm research, taking QoS parameters as
evaluation criteria to analyze and execute the next schedule. The suggested approach is a
generic adjustable heuristic task scheduling algorithm based on QoS advice that signifi-
cantly improves performance by incorporating QoS into the Min-Min heuristic algorithm.
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Following that, Wu et al. [23] devised a cloud-based QoS-driven job scheduling algorithm
which prioritizes the tasks according to the particularity of the tasks, allocates resources ac-
cording to the sorting queue, and allocates resources according to the sorting queue. It was
tested and found to achieve good load balancing and performance. Through the suggested
optimization model and distributed queue based on dynamic load, the S et al. [24] enhances
resource usage efficiency, minimizes cost, and delays. HGEDH et al. [25] categorized the
tasks based on their attributes and assigned them to the available servers. However, the
algorithm can only categorize tasks based on the supplied attributes, and tasks must be
queued for categorization. Hanini et al. [26] utilized the workload to determine the number
of virtual machines to be used, combined with the control of incoming requests to virtual
machines to control energy consumption.

ACO also plays an important role in addressing scheduling problems. Ants release
pheromones in the process of searching for food, and share their travel experience through
the trail of pheromones to connect with each other. ACO is effective for solving NP-
complete problems, especially for dynamic task scheduling problems [27]. Liu et al. [28]
applies the ACO algorithm to solve the problem of virtual machine placement in the
cloud while also decreasing energy consumption by reducing the number of physical hosts.
Xin et al. [29] introduced the network and offered an ACO-based resource scheduling strat-
egy for reducing the running time and energy consumption by improving the scheduling
system. Delavar et al. [30] studied the task scheduling problem of grid computing in
terms of QoS. Researchers used a sub-heuristic ACO strategy in terms of make span and
money. However, the task scheduling problem in a heterogeneous environment is not
considered. Wu et al. researched the assessment model under multi-objective in order to
monitor the change of energy consumption at all times, which considerably decreased the
resource waste [31]. Recently, Kumar et al. [32] utilized the scheduler to arrange work and
resources in a reasonable manner, coupled the ACO and GA algorithms, and devised a
multi-objective scheduling system. Nevertheless, the load and security of virtual machines
were not taken into account in the scheduling procedure in this study. To make it more
efficient and balance the load in the cloud, Ragmani et al. [33] considered the allocation of
the execution time and resources, and optimized the efficiency of the algorithm by altering
parameters. Sun et al. [34] found the optimal solutions earlier by optimizing the updating
method of the ant colony pheromone, and proposed a Period Ant Colony Optimization
(PACO) algorithm.

Because of its simple principle and less parameters to be adjusted, using the PSO
algorithm to address scheduling problems has garnered a lot of interest. In the scheduling
process, Pandey et al. [35] incorporated the transport and execution costs into the evaluation
function and solved the scheduling issue using the PSO algorithm. The algorithm was then
compared to the Best Resource Selection (BRS) algorithm, which saves a significant amount
of money. Juan et al. [36] improved the PSO algorithm which defined the cost vector to
restrict the initial solutions and the search space of the solutions. Alsaidy et al. [37] stood
for an advanced optimization algorithm that utilized heuristics to initialize particle swarms
in order to maximize cost-effectiveness and resource consumption. Wen et al. [38] mixed
the ACO and PSO algorithms to accelerate the exit from local optimization and enhanced
the convergence speed. Kumar et al. [39] offered a task selection strategy for improving the
algorithm’s performance by picking the optimal VM.

Several methods for dealing with redundant task scheduling problems have been
proposed based on studies of improved GA. Kumar et al. [40] integrated the GA algorithm
with the techniques typically used in work scheduling, proposed a new algorithm, and com-
pared it with the standard genetic algorithm. Nevertheless, the research only considered
the makespan under different resource quantities when evaluating. Nagar et al. [41] used
a previous workflow scheduling model that predicted the earliest completion time, and
reduced the execution time by proposing a new Predict Earliest Finish Time (PEFT) genetic
algorithm. However, the technique is best suited for workflows with a small number of
tasks and does not consider the execution cost, the number of virtual machines, or the
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data center’s energy usage. Velliangiri et al. [42] combined the hybrid electric search with
the genetic algorithm while considering the execution time, maximum completion time,
and load balancing. Similarly, the article did not consider the load of virtual machines.
Manasrah et al. [43] introduced the GA-PSO algorithm to handle the resource allocation
problem in the cloud, substantially shortening the make span and cost. Farhadian et al. [44]
optimized the virtual machine allocation problem by using a hybrid algorithm based on IC
and GA, thereby reducing the energy consumption of the data center, and the simulation
experiments on CloudSim software obtained good results.

Fahmy [45] explained the use of fuzzy algorithms to schedule aperiodic work in
real-time systems for fuzzy-based scheduling. On a soft real-time single processor system,
Fahmy developed a fuzzy method for aperiodic work scheduling. The total throughput
time of the task is lowered by assessing the priority of the work that is now running
and altering the priority of the job in the queue, and the technique is utilized in a multi-
objective algorithm [46]. Zhou et al. [47] proposed a heterogeneous earliest completion
time algorithm based on fuzzy dominance sorting in the Infrastructure as a Service (IaaS)
workflow, which greatly improved the running speed. Revathi et al. [48] combined the
scheduling optimization with virtual allocation methods to design a VM based on security
requirements, and proposed a scheduling heuristic optimization algorithm based on the
Cost Prediction Matrix (CPM). Rezaeipanah et al. [49] devised a mechanism for managing
virtual machines in the cloud center.

Based on the meta heuristic algorithm and cloud computing task scheduling, com-
bined with the above research results and problems, this research focused on using the
APPE algorithm to solve the task scheduling problem in the cloud. The simulation re-
sults on MATLAB show that the APPE algorithm can get a better allocation scheme in a
heterogeneous cloud environment.

3. Task Scheduling Based on the Advanced Phasmatodea Population
Evolution Algorithms

In cloud computing, scheduling can be divided into task scheduling and job scheduling.
Among them, Hadoop is the most often used scheduling method in task scheduling [50,51],
which is mainly used to improve the system performance. Task scheduling is used to allocate
resources to task applications by mapping tasks and resources, and now the critical issue in
task scheduling is determining how to assign jobs to processors to achieve low cost, high
efficiency, and minimize the makespan [52]. A new method is proposed here to address
the shortcomings of the current research on cloud computing task scheduling algorithms.
First, a task scheduling system and evaluation model are designed to evaluate the pros and
cons of task allocation based on the load level, cost, and makespan [53]. The APPE-based
task scheduling method is then implemented to the task scheduling model. Based on the
evaluation framework, the optimal work scheduling method is obtained.

3.1. System Design

When a cloud user submits a job, the task is placed to the task queue via the task
manager, and the task scheduling method assigns the task to the virtual machine. Each task
is independent and non-preemptive. Figure 1 depicts the cloud computing system’s task
scheduling paradigm.

Tasks are serially processed on the virtual machine in this article via the task queue.
The task has two attributes: m and len, m represents the amount of tasks. len represents the
length of the task, and the unit is millions of machine language instructions (MI). A virtual
machine has four properties: n, MIPS, RAM, bandwidth. n represents the amount of VMs,
and MIPS represents the average processing rate of single-word fixed-point instructions.
RAM stands for memory, bandwidth stands for bandwidth.
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Figure 1. Cloud computing task scheduling model.

3.2. Evaluation Model

The indicators for evaluating cloud computing task scheduling performance mainly
include makespan, Profit, Completion time, Cost, and Waiting time. This paper comprehen-
sively considers the task scheduling performance from the perspectives of makespan, cost
and degree of imbalance [54]. These performance indicators are described in detail below.

Let Task = {T1, T2, . . . , Tm}, (50 ≤ m ≤ 500). Task represents the task queue submitted
by cloud users, and m stands for the number of tasks. Let T_length = {len1, len2, . . . , lenm}.
leni stands for the length of the i-th task. VM = {VM1, VM2, . . . , VMn}. VMj represents
the j-th VM. n stands for the amount of VM. ESC = {ESCij}m∗n, ESCij = 1 represents the
fact that the task i is executed on the VM j, otherwise ESCij = 0. ETC = {ETCij}m∗n stands
for the expected completion time, that is, the processing time of the task i on the VM j,
which is computed by the following formula:

ETCij =
leni

MIPSj
(1)

MIPSj represents the executing speed of the VM j.

• Makespan:
Makespan is a critical metric for assessing the effectiveness of task scheduling in
the cloud. The makespan is the completion time of the task, which reflects the total
operating duration of all VMs, and is computed using the following formula:

Makespan = max
j

(
m

∑
i=1

ETCij ∗ ESCij) (2)

• Cost:
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The cost calculated according to the specification of VM is as follows; USD0.12,
USD0.13, USD0.17, USD0.48, USD0.52, and USD0.96 per hour [55]. Calculate the
cost of the virtual machine through the following formula.

Cost =
n

∑
j=1

(costj ∗ (
m

∑
i=1

ETCij ∗ ESCij)) (3)

costj represents the hourly cost of the jth virtual machine, and in a heterogeneous
environment, its resource cost is related to MIPS, RAM, and bandwidth, RAM stands
for virtual machine memory, bandwidth represents the bandwidth of VM.

• Load:

Load =

√
ϕ ∗

∑n
j=1 loadj ∗VLj

n ∗Makespan
(4)

ϕ represents the degree of imbalance of the system. n represents the number of VM,
loadj represents the degree of impact of each MIPS, RAM and bandwidth on the virtual
machine, as shown by the following formula:

ϕ =

√
∑n

j=1(VLj −VLj)2

n
(5)

loadj = ζ ∗MIPS + δ ∗ RAM + η ∗ bandwidth (6)

VLj =
m

∑
i=1

ETCij ∗ ESCij (7)

VLj =
∑n

j=1 VLj

n
(8)

Here, VLj stands for the running time of the VM i, VLj represents the average running
time of the VM, loadj is related to MIPS, RAM and bandwidth, ζ, δ, η are three weight
values, respectively. Through the above performance indicators, the objective function
formula is obtained as follows:

f itness = Makespan ∗ Cost ∗ Load (9)

3.3. Scheduling Model Based on the APPE
3.3.1. Advanced PPE Algorithm

In the development process of Phasmatodea populations, the PPE algorithm guaran-
teed the development of continuous populations by mimicking the qualities of route depen-
dency, convergence evolution, population expansion, and competitiveness. The evolution
process can be thought of as an optimization process of populations in d-dimensional space;
hence, we can think of the solution as a population of stick insects in d-dimensional space.

As a new heuristic algorithm, PPE has good optimization and exploration ability. The
algorithm considers the top K solutions with the highest fitness value to be the closest to
optimum solutions. It improves its global exploration ability through the K-nearest optimal
solutions and perturbation. Through path dependence, convergent evolution, population
growth, and competition, the solutions other than the nearest optimal solutions can reach
the region with a better fitness value faster and improve their optimization ability.

In our work, the advanced PPE algorithm is divided into two aspects. On the one hand,
the speed searching for the ideal solution is increased by refining the population evolution
trend calculation formula. As we are all aware, the calculation of the population’s evolution
trend ev is the basis of the original PPE method, which affects the exploration ability of the
population. The updating technique is divided into three sections. The first component is
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the closest ideal population, while the second component represents the continuation of
the prior evolution trend, and the third part is mutation [56]. The calculation formula of
the evolution trend is as follows:

evk+1 = (1− pk+1) ∗ A + pk+1 ∗ (evk + m) (10)

In the formula, ev stands for the evolutionary trend of the population, p represents the
population quantity, A denotes the level of similarity to the nearest optimum, m stands for
mutation, and k is the amount of iterations.

Through the formula, it was found that the first part of the convergent evolution has
no effect on the update of the evolution trend of the nearest optimal population, so we
propose a new evolution trend update formula, as shown below.

evk+1 = (1− pk+1) ∗ A + pk+1 ∗ (evk + m) + rand ∗ B ∗ f lag (11)

In the improved formula, f lag is used to judge whether it is the nearest optimal
solution, and B denotes the degree to which it resembles the global optimum.

Another aspect of improving the PPE algorithm is to add a restart mechanism to the
algorithm, restarting the solutions with poor fitness values and the worst solutions among
the nearest optimal solutions and avoiding the area centered on the initial position of the
restart solutions during the restart process [57]. Algorithm 1 depicts the pseudo-code for
the advanced PPE algorithm.

Algorithm 1 Advanced PPE Algorithm

Initialize N populations, T;
Initialize ev, P, K;
Calculate f (T), set nbest and gbest;
while t < Iter do

Update T to newT;
Calculate f (newT), update nbest and gbest;
Restart ordinary solutions;
Restart nearest optimal solutions;
while i = 1 < N do

if f (newT) ≥ f (T) then
if Rand<Pi then

T=newT;
Update f (T), Pi;

end if
Update evi use Equation (11);

else
T=newT;
Update f (T), Pi;
Update evi use Equation (11);

end if
Solution for random choice Tj, (j 6=i);
if dist(xj, xi)<G then

Update evi, Pi;
end if

end while
end while

In Algorithm 1, N is the number of Phasmatodea populations, T stands for the set
of Phasmatodea populations in the APPE algorithm, and each population represents a
solutions. Furthermore, gbest denotes the global optimum solutions, whereas nbest denotes
the nearest optimal solutions.
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After the calculation of the fitness values of all solutions in each iteration process is
completed, a restart mechanism is introduced to restart the ordinary solutions and the
nearest optimal solutions, and the population evolution trend after restart is updated.
The restart process of the two types of solutions is the same as in Algorithm 2, which is
as follows.

Algorithm 2 Restart Strategy

Initialize G, Gmax, t, K, iter;//the value of iter is related to restart count
if G>Gmax || rem(t, iter)==0 then

Restart k solutions with poor fitness;
Avoid the position where the solutions start;
Modify population evolution trends;
Calculate fitness after restarting the solutions update;

end if

3.3.2. Task Scheduling Algorithm Based on the Advanced PPE

Since task scheduling seeks to assign n independent non-preemptive tasks to cloud
resources (VMs). In this work, we map each solution to a population; each stick insect
population symbolizes a task scheduling technique; the dimension reflects the amount
of tasks; and the value of the dimension i of the solutions is j, which means that task i is
allocated to the VM j. Taking the proposed evaluation function as the standard, we obtain
the optimal resource allocation scheme based on the APPE algorithm [58,59]. The execution
procedure is depicted in Algorithm 3 below.

Algorithm 3 APPE based task scheduling

Step1: Initialize the parameter, generate initial population Nt;
Step2: According to the proposed evaluation function, calculate fitness F(Nt);
Step3: The initial global optimal and nearest optimal solutions are obtained;
Step4: The evolutionary trend of the population is calculated through path dependence,
convergent evolution, population growth and competition;
Step5: Update newNt and calculate new fitness F(newNt);
Step6: Update Nt, global optimal and nearest optimal solutions;
Step7: Repeat steps 4, 5, and 6 until the iteration is complete;
Step8: The global optimal solution is the optimal scheduling scheme;

In Algorithm 3, Nt represents the position of solutions population and each solution
represents the location of a stick insect population, that is, a task-scheduling scheme. newNt
represents the position of the updated solutions population.

4. Experiments

In this section, the simulation experiments and result analysis are mainly introduced,
consisting of two parts. First, extensive simulation experiments are performed on the
APPE algorithm using the CEC2014 [60] benchmark suites. The algorithm has several
test functions, however, the CEC competition contains the generally used standard test
suite. To tackle the scheduling problem, we employed the APPE algorithm. The Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), Gravitational Search Algorithm
(GSA), Butterfly Optimization Algorithm (BOA), and PPE algorithms are introduced in the
simulation experiments to compare with the APPE algorithm to more explicitly demonstrate
the algorithm’s effectiveness.

4.1. CEC 2014 Benchmark Function Test

The CEC2014 benchmark suites contain 30 benchmark functions, including unimodal,
multimodal, mixed and composite functions. To promote equality in the comparison, all
methods in this study are assessed 30,000 times, the number of populations is 30, and the
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dimension is 30. Run each algorithm 30 times on various benchmark functions to determine
the mean value and compare the results [61]. This is shown in Table 1.

Table 1. Comparison with the average fitness functions of PSO, BOA, GA, GSA, and PPE.

F(x) PSO BOA GSA GA PPE APPE

F1 1.9144 × 107 (<) 2.0540 × 109 (<) 3.7244 × 107 (<) 1.3810 × 109 (<) 1.5112 × 108 (<) 9.1968× 106

F2 1.2384 × 104 (>) 8.6593 × 1010 (<) 1.0383 × 104 (>) 7.0194 × 1010 (<) 1.0129 × 109 (<) 1.8361× 105

F3 8.7023 × 103 (<) 2.5869 × 105 (<) 7.1666 × 104 (<) 1.5172 × 106 (<) 4.5206 × 104 (<) 1.7352× 103

F4 6.0384 × 102 (<) 2.1446 × 104 (<) 8.3904 × 102 (<) 1.0381 × 104 (<) 8.1387 × 102 (<) 5.2926× 102

F5 5.2092 × 102 (<) 5.2136 × 102 (<) 5.2000 × 102 (>) 5.2080 × 102 (<) 5.2102 × 102 (<) 5.2004× 102

F6 6.1649 × 102 (>) 6.4896 × 102 (<) 6.3146 × 102 (<) 6.4134 × 102 (<) 6.3256 × 102 (<) 6.2694× 102

F7 7.0099 × 102 (>) 1.5987 × 103 (<) 9.7041 × 102 (<) 1.3437 × 103 (<) 7.5837 × 102 (<) 7.0101× 102

F8 8.5619 × 102 (>) 1.2821 × 103 (<) 9.4964 × 102 (<) 1.2125 × 103 (<) 1.0379 × 103 (<) 9.1413× 102

F9 9.6858 × 102 (>) 1.5070 × 103 (<) 1.0612 × 103 (<) 1.2635 × 103 (<) 1.1685 × 103 (<) 1.0477× 103

F10 1.9757 × 103 (>) 1.0350 × 104 (<) 4.7221 × 103 (<) 8.9101 × 103 (<) 6.3289 × 103 (<) 2.6770× 103

F11 4.8385 × 103 (<) 1.0541 × 104 (<) 5.3969 × 103 (<) 9.3226 × 103 (<) 6.9845 × 103 (<) 4.7614× 103

F12 1.2023 × 103 (<) 1.2059 × 103 (<) 1.2000 × 103 (>) 1.2031 × 103 (<) 1.2025 × 103 (<) 1.2004× 103

F13 1.3005 × 103 (<) 1.3099 × 103 (<) 1.3004 × 103 (<) 1.3073 × 103 (<) 1.3006 × 103 (<) 1.3004× 103

F14 1.4003 × 103 (<) 1.7676 × 103 (<) 1.4003 × 103 (<) 1.6209 × 103 (<) 1.4009 × 103 (<) 1.4003× 103

F15 1.5138 × 103 (>) 8.1727 × 105 (<) 1.5131 × 103 (<) 2.9158 × 105 (<) 2.3954 × 103 (<) 1.5207× 103

F16 1.6127 × 103 (<) 1.6143 × 103 (<) 1.6137 × 103 (<) 1.6136 × 103 (<) 1.6128 × 103 (<) 1.6124× 103

F17 1.5357 × 106 (<) 3.0978 × 108 (<) 1.3658 × 106 (<) 1.3668 × 108 (<) 5.2233 × 106 (<) 6.7243× 105

F18 4.2728 × 105 (<) 7.6174 × 109 (<) 2.4175 × 103 (>) 4.0280 × 109 (<) 4.9473 × 106 (<) 3.7621× 103

F19 1.9119 × 103 (>) 2.6985 × 103 (<) 2.0044 × 103 (<) 2.3272 × 103 (<) 1.9734 × 103 (<) 1.9118× 103

F20 7.5211 × 103 (<) 1.7481 × 106 (<) 7.9748 × 104 (<) 1.0676 × 106 (<) 4.1029 × 104 (<) 4.2456× 103

F21 4.5395 × 105 (<) 1.4404 × 108 (<) 2.8147 × 105 (<) 6.3294 × 107 (<) 1.3997 × 106 (<) 2.2188× 105

F22 2.5628 × 103 (>) 8.3690 × 104 (<) 3.2168 × 103 (<) 8.5066 × 103 (<) 2.9189 × 103 (<) 2.7239× 103

F23 2.6165 × 103 (<) 3.7753 × 103 (<) 2.6164 × 103 (<) 2.5350 × 103 (<) 2.6561 × 103 (<) 2.5019× 103

F24 2.6388 × 103 (<) 2.7454 × 103 (<) 2.6081 × 103 (<) 2.6032 × 103 (<) 2.6563 × 103 (<) 2.6019× 103

F25 2.7117 × 103 (<) 2.7847 × 103 (<) 2.7050 × 103 (<) 2.7006 × 103 (<) 2.7248 × 103 (<) 2.7000× 103

F26 2.7138 × 103 (<) 2.8593 × 103 (<) 2.8001 × 103 (<) 2.7975 × 103 (<) 2.7881 × 103 (<) 2.7004× 103

F27 3.3299 × 103 (<) 4.9037 × 103 (<) 4.8355 × 103 (<) 2.9759 × 103 (<) 3.4583 × 103 (<) 2.9220× 103

F28 4.0983 × 103 (<) 1.1954 × 104 (<) 6.3250 × 103 (<) 3.0835 × 103 (<) 7.9688 × 103 (<) 3.0019× 103

F29 8.0862 × 106 (<) 9.2385 × 108 (<) 2.0767 × 104 (<) 4.1516 × 107 (<) 1.2057 × 106 (>) 4.5678× 106

F30 1.0400 × 104 (<) 1.6330 × 107 (<) 1.0514 × 105 (<) 2.7623 × 106 (<) 9.8454 × 104 (<) 9.2265× 103

< / = / > 21 / 0 / 9 30 / 0 / 0 26 / 0 / 4 30 / 0 / 0 29 / 0 / 1

For Table 1, the symbol (<) indicates that the approach which outperforms the current
benchmark function which is inferior to that of the APPE algorithm, and the symbol (>)
signifies that the technique outperforms the APPE algorithm on the present benchmark
function. Finally, the symbol (=) stands for the effectiveness of the method on the current
benchmark function, which is similar to that of PPE. The comparison results on each
function are shown at the end of Table 1. The APPE algorithm outperforms the PSO, BOA,
GA, GSA, and PPE algorithms in terms of total performance among the 30 benchmark
functions, among which APPE outperforms BOA and GA on all test functions, only one
benchmark function is worse than the PPE algorithm, and 26 results are better than GSA.
Compared with PSO, only 21 benchmark functions are better than PSO, and among the
remaining 9 benchmark functions, 2 benchmark functions are unimodal functions while
the remaining seven are mixing functions. This demonstrates that the optimization ability
of the PSO algorithm is better in specific functions, but the exploration ability is generally
worse than that of APPE. On the whole, because of the randomization of the algorithm
assessment, the APPE algorithm performs better [62].

When the relevance threshold is set to 0.05, the Wilcoxon’s sign rank test results for
PSO, BOA, GA, GSA, and PPE algorithm and the APPE algorithm are shown in Table 2.
Among them, the indication (+) means that the APPE algorithm performance is superior



Electronics 2022, 11, 1451 10 of 16

when the significance level is 0.05 under the current function, and the indication (−)
denotes that the APPE algorithm performance is worse than that of the algorithm.

Table 2. Comparison with the results of PSO, BOA, GA, GSA and PPE at a significant level α = 0.05
under the Wilcoxon’s signed rank test.

F(x) PSO BOA GSA GA PPE

F1 4.5153 × 10−4 (+) 1.5099 × 10−11 (+) 2.3080 × 10−10 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F2 1.0000 × 100 (−) 1.5099 × 10−11 (+) 1.0000 × 100 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F3 7.7904 × 10−9 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F4 1.0141 × 10−7 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F5 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.0000 × 100 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F6 1.0000 × 100 (−) 1.5099 × 10−11 (+) 5.7833 × 10−8 (+) 1.5099 × 10−11 (+) 4.4455 × 10−10 (+)
F7 1.0000 × 100 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F8 1.0000 × 100 (−) 1.5099 × 10−11 (+) 3.2591 × 10−9 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F9 1.0000 × 100 (−) 1.5099 × 10−11 (+) 4.6670 × 10−2 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F10 1.0000 × 100 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F11 7.8118 × 10−1 (≈) 1.5099 × 10−11 (+) 2.0420 × 10−5 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F12 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.0000 × 100 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F13 3.8693 × 10−6 (+) 1.5099 × 10−11 (+) 1.1129 × 10−1 (≈) 1.5099 × 10−11 (+) 1.9101 × 10−10 (+)
F14 9.2874 × 10−4 (+) 1.5099 × 10−11 (+) 2.0177 × 10−1 (≈) 1.5099 × 10−11 (+) 1.6692 × 10−11 (+)
F15 9.9938 × 10−1 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F16 1.3770 × 10−3 (+) 1.5080 × 10−11 (+) 3.6901 × 10−11 (+) 1.3034 × 10−10 (+) 1.4194 × 10−4 (+)
F17 4.0723 × 10−5 (+) 1.5090 × 10−11 (+) 3.1405 × 10−6 (+) 1.5099 × 10−11 (+) 2.4876 × 10−11 (+)
F18 2.3195 × 10−5 (+) 1.5099 × 10−11 (+) 9.9218 × 10−1 (−) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F19 9.9602 × 10−1 (−) 1.5099 × 10−11 (+) 2.7470 × 10−11 (+) 1.5099 × 10−11 (+) 8.4736 × 10−10 (+)
F20 2.7806 × 10−4 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F21 1.6643 × 10−1 (≈) 1.5099 × 10−11 (+) 7.4724 × 10−2 (≈) 1.5099 × 10−11 (+) 1.9101 × 10−10 (+)
F22 9.9902 × 10−1 (−) 1.5099 × 10−11 (+) 6.0116 × 10−9 (+) 1.5099 × 10−11 (+) 2.2296 × 10−4 (+)
F23 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 3.3825 × 10−5 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F24 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 6.7929 × 10−1 (≈) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F25 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.3543 × 10−2 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F26 2.4909 × 10−4 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 2.4876 × 10−11 (+)
F27 5.4683 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 5.3328 × 10−8 (+) 1.5099 × 10−11 (+)
F28 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)
F29 9.9999 × 10−1 (≈) 1.5099 × 10−11 (+) 9.0463 × 10−1 (≈) 1.5099 × 10−11 (+) 1.0000 × 100 (−)
F30 5.3240 × 10−1 (≈) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+) 1.5099 × 10−11 (+)

Table 2 shows that the APPE algorithm outperforms the PSO, BOA, GSA, GA, and
PPE algorithms in terms of overall performance. Finally, the Friedman test is shown in
Table 3.

Table 3. Friedman test.

Function Sum of Squares Degree of Freedom Mean Squares p-Value

F1 4.8847 × 102 5 9.7693 × 101 2.2171 × 10−28

F2 5.0833 × 102 5 1.0167 × 102 1.3767 × 10−29

F3 4.9640 × 102 5 9.9280 × 101 7.3103 × 10−29

F4 5.0313 × 102 5 1.0063 × 102 2.8500 × 10−29

F5 5.0047 × 102 5 1.0009 × 102 4.1388 × 10−29

F6 4.9533 × 102 5 9.9067 × 101 8.4866 × 10−29

F7 5.2127 × 102 5 1.0425 × 102 2.5197 × 10−26

F8 5.1380 × 102 5 1.0276 × 102 6.4053 × 10−30

F9 5.1107 × 102 5 1.0221 × 102 9.3906 × 10−30

F10 5.1613 × 102 5 1.0323 × 102 4.6205 × 10−30

F11 4.6787 × 102 5 9.3573 × 101 3.9463 × 10−27

F12 4.8173 × 102 5 9.6347 × 101 5.6836 × 10−28
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Table 3. Cont.

Function Sum of Squares Degree of Freedom Mean Squares p-Value

F13 4.6647 × 102 5 9.3293 × 101 4.7988 × 10−27

F14 4.7707 × 102 5 9.5413 × 101 1.0912 × 10−27

F15 5.0693 × 102 5 1.0139 × 102 1.6746 × 10−29

F16 4.4293 × 102 5 8.8587 × 101 1.2823 × 10−25

F17 4.8733 × 102 5 9.7467 × 101 2.5978 × 10−28

F18 4.8947 × 102 5 9.7893 × 101 1.9278 × 10−28

F19 5.0260 × 102 5 1.0052 × 102 3.0708 × 10−29

F20 4.8827 × 102 5 9.7653 × 101 2.2800 × 10−28

F21 4.3720 × 102 5 8.7440 × 101 2.8532 × 10−25

F22 4.7253 × 102 5 9.4507 × 101 2.0564 × 10−27

F23 4.4827 × 102 5 8.9653 × 101 6.0920 × 10−26

F24 4.7887 × 102 5 9.5773 × 101 8.4849 × 10−28

F25 4.5980 × 102 5 9.1960 × 101 1.2176 × 10−26

F26 4.5840 × 102 5 9.1680 × 101 1.4805 × 10−26

F27 4.8987 × 102 5 9.7973 × 101 1.8229 × 10−28

F28 5.2127 × 102 5 1.0425 × 102 2.2520 × 10−30

F29 3.6307 × 102 5 7.2613 × 101 8.6256 × 10−21

F30 4.9567 × 102 5 9.8933 × 101 9.3160 × 10−29

4.2. Heterogeneous Cloud Environment Test

After an extensive simulation of the APPE algorithm using the CEC2014 benchmark
suite, we put the APPE algorithm through its paces in a heterogeneous cloud environment
and compared the evaluation functions with the PSO, BOA, GA, GSA, and PPE algorithm.
Again, to guarantee the equality of the comparison, set the number of populations to 30 and
the number of iterations to 1000. At the same time, we create two separate heterogeneous
settings to assess the algorithm’s performance. In the first environment (represented by
Environment 1 in the future), the MIPS of the VM is different, and the other parameters
are the same. In the second environment (represented by Environment 2 in the future), the
MIPS, RAM and bandwidth of the VM are different, and the values are all random numbers
within a specific range. The relevant parameters of each heterogeneous environment are
shown in Tables 4 and 5.

Table 4. Environment 1 parameters.

Entity Parameter Values

Task Nm of Task 50–500
Length 100–1000

Virtual Machine Nm of VM 15
RAM 512 MB
MIPS 100–1000

Bandwidth 1000 MB
Size 10,000

VVM XUN
Operating-System Linux

Nm of CPUs 1

Host Nm of Host 2
RAM 2048 MB

Storage 1,000,000
Bandwidth 10,000

Data Center Amount 2
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Table 5. Environment 2 parameters.

Entity Parameter Values

Task Nm of Task 50–500
Length 100–1000

Virtual Machine Nm of VM 25
RAM 128–15,360 MB
MIPS 256–30,720

Bandwidth 128–15,360 MB
Size 10 GB

VVM XUN
Operating-System Linux

Nm of CPUs 1

Host Nm of Host 2
RAM 20 GB

Storage 1 TB
Bandwidth 10 GB

Data Center Amount 2

We put the algorithm through its paces in two heterogeneous environments. The
method is compared to similar algorithms under various numbers of work conditions
to demonstrate the algorithm’s stability and efficiency. Figure 2 shows the algorithm
performance in the two heterogeneous environments with the number of tasks ranging
from 50 to 500, where the x axis stands for the amount of tasks and the y axis denotes the
performance index evaluation function value.

In Figure 2a, the overall performance of the PPE, BOA, and GA algorithm is the worst.
The evaluation results of the PSO algorithm are similar to that of the APPE algorithm,
but the effect is always worse than that of APPE algorithm when the number of tasks is
different. In the meantime, the GSA algorithm occasionally has better evaluation results
than the APPE algorithm, but on the whole, the APPE algorithm is more robust. Because
the random characteristic is introduced into the GSA algorithm, the force of the agent in
the D dimension is the random weighted sum of the forces exerted on it by other agents in
this dimension, which makes the GSA algorithm less robust.

In Figure 2b, with the increasing number of tasks, the performance of PPE, BOA,
BA and GSA algorithms gradually deteriorates. The PSO algorithm and APPE algorithm
always maintain this good performance, but the performance of the APPE algorithm
is better.

In order to properly show the algorithm’s convergence, Figures 3 and 4 show the
convergence of the algorithm with a different amount of tasks in two heterogeneous
environments. Due to space constraints, this article only displays a subset of the results.
Only the scenarios when the number of jobs is little, big, or in the medium range are
presented for each heterogeneous environment.

In Figures 3 and 4, when the APPE algorithm is compared to similar algorithms,
it is discovered that the APPE algorithm has a quicker convergence speed and a lower
adaption value and significant advantages in different tasks and different heterogeneous
environments. In short, the application of the APPE algorithm has a good performance
and effect in solving the task scheduling issues.
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5. Conclusions

An advanced PPE algorithm was suggested throughout this research to address the
task scheduling problem in a heterogeneous cloud environment. By optimizing a new
heuristic algorithm PPE, it balances the optimization and exploration capabilities of the
solutions. The provided task scheduling performance indicators are used to thoroughly
analyze the influence of numerous elements on the ultimate rental cost. However, the
scheduling model proposed in this research is only suitable for solving the static task
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scheduling problems, and cannot allocate resources at any time according to the arrival
time of tasks which will be solved in future work. The experiments revealed that the
advanced PPE method is particularly successful at solving NP-hard problems, lowering
the cost and improving the resource usage of virtual machines. Our future work is to
study multi-objective problems. At the same time, we wanted to explore the dynamic load
balancing mechanism to alleviate the problem of the cloud resource waste.
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