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Abstract 
 

Grid applications require allocating a large 
number of heterogeneous tasks to distributed 
resources. A good allocation is critical for efficient 
execution. However, many existing grid toolkits use 
matchmaking strategies that do not consider overall 
efficiency for the set of tasks to be run. We identify two 
families of resource allocation algorithms: task-based 
algorithms, that greedily allocate tasks to resources, 
and workflow-based algorithms, that search for an 
efficient allocation for the entire workflow. We 
compare the behavior of workflow-based algorithms 
and task-based algorithms, using simulations of 
workflows drawn from a real application and with 
varying ratios of computation cost to data transfer 
cost. We observe that workflow-based approaches 
have a potential to work better for data-intensive 
applications even when estimates about future tasks 
are inaccurate. 
 
 
1. Introduction 
 

Scientific communities ranging from high-energy 
physics [3], gravitational-wave physics [4], geophysics 
[5], astronomy [6], to bioinformatics [7] are embracing 
grid computing to manage and process large data sets, 
execute scientific simulations and share both data and 
computing resources. These scientific, data-intensive 
applications are no longer being developed as 
monolithic codes. Instead, standalone application 
components are combined to process the data in 
various ways. The applications can now be viewed as 
complex workflows that consist of various 
transformations performed on the data. For example, in 
astronomy, workflows with thousands of tasks are 
needed to identify galaxy clusters within the Sloan 
Digital Sky Survey [6]. Because of the large amounts 

of computation and data involved, these workflows 
require the power of the grid to execute. 

In earlier work [8] we described techniques to 
generate a workflow based on a desired data product 
and the requirements of the available components, in 
terms of both input-output data and resource 
constraints. Here, we focus on allocation of resources 
to a workflow whose component tasks are known but 
not yet allocated. This is an important topic in Grid 
computing because of its high impact on the efficiency 
of the workflows, which may generate large amounts 
of data and occupy valuable resources for days. For 
example, our experiments below show alternative 
allocations by competitive algorithms whose runtimes 
differ by 22 hours with a maximum of 3 days.  

We investigate whether, and under what 
conditions, an allocation algorithm should be 
influenced by the workflow structure. We evaluate 
resource allocation algorithms that use two distinct 
approaches. The first greedily allocates each ready-to-
run task to a host based on information only about that 
task. We refer to this as the task-based approach. The 
second approach searches for an efficient allocation for 
the whole workflow, and may revise the allocation of a 
task based on subsequent tasks. We refer to this as the 
workflow-based approach. Apart from these 
differences, the two algorithms are based on the similar 
heuristics. We note that in real deployments one would 
want to find an overall allocation, but would only 
release portions of the workflow that are ready to run. 
If the underlying execution environment subsequently 
changes, the allocation may be redone. 

We test the algorithms empirically using 
workflows that are generated in the context of an 
astronomy application [9]. We have developed a grid 
simulator for our experimentation, which allows us to 
easily vary parameters such as task compute times and 
file transfer times and also to introduce errors in their 
estimation to simulate dynamic environments. We test 
the different approaches in both compute- and data-
intensive scenarios. 
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Many existing resource allocation strategies for 
Grid applications, e.g. [21], concentrate on 
matchmaking individual tasks to resources and do not 
attempt to find an efficient overall allocation. Because 
these algorithms do not examine tasks that come later 
on in the workflow, their allocation of resources may 
result in poor overall assignments if they create 
excessive data movement, particularly in data-intensive 
applications. Indeed, in our experiments, the 
workflow-based approach performed similarly to the 
task-based approach for compute-intensive cases but 
found more efficient allocations in data-intensive 
applications. Since the workflow-based approach 
depends on predictions of future task performance, we 
performed tests with inaccurate estimates of 
component runtimes and data transfer times, and found 
that the workflow-based approach still performs well 
under these conditions. However, the workflow-based 
approach is more computationally intensive and our 
implementation is not scalable for workflows with 
more than around ten thousand tasks.  
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Figure 1. Example Workflows (a) An Abstract 

Workflow (b) Corresponding Concrete Workflow

In both approaches we initially used the min-min 
heuristic to identify promising allocations [12]. 
However, the resulting workflows tended to leave a 
significant number of resources idle during workflow 
execution. We defined a new heuristic, weighted min-
min, that blends min-min with minimizing the idle time 
of resources, and show that this heuristic outperforms 
min-min in our test domain with both allocation 
approaches. 

In the next section we present a formalization of 
the workflow allocation problem for Grids and 
describe the two families of algorithms we tested. In 
section 3 we explain the details of our simulator and 
the experimental setup used to compare the two 
approaches, discussing the results in section 4. We 
describe the weighted min-min heuristic in section 5 
and investigate the impact of uncertainty in section 6. 
Section 7 discusses related work. In the final section 
we review lessons learnt and future work. 

 
2. Resource allocation strategies 
 
We refer to a directed acyclic graph (DAG) of tasks 
that provides information only about task and file 
dependencies as an abstract workflow, and to a DAG 
that also provides information about the resource to 
which each task is allocated as a concrete workflow. 
Figure 1 shows an abstract and corresponding concrete 
workflow with 4 task nodes, J1 – J4.  F1 – F5 are files 
that are transferred, while R1 and R2 are resources. 
We use the terms ‘task’ and ‘job’ interchangeably. 

Consider a DAG of jobs J = {j1, j2, ... jm} and a set 
of available Grid resources R={r1, r2, ... rn}. A job ji 
has an estimated run time t(ji) and each resource has an 
intrinsic speed s(rj), so that the estimated running time 
of the job on the resource is  t(ji)/ s(rj). Resources can 
be connected to each other and a link between any two 
resources i, j is assumed to have a bandwidth b(i, j). 
Each job has a set of associated input and output files. 
Each file f used or produced by a job has a size l(f), so 
we assume that transferring the file between resources 
takes time l(f)/b(i, j). Each resource rj executes jobs in 
sequence drawn from a single queue, qj. When a job 
reaches the front of the queue it is executed 
immediately if its input files are available at the 
resource. If not, the resource remains idle until the files 
are available.  
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A scheduling algorithm seeks a mapping from the 

jobs in the abstract workflow to the resource queues,  
S: J−> R x N, where S(ji) = (rj,x) means that job ji 
occupies the xth position on the queue of resource rj. 
We seek a schedule S that minimizes the makespan, 
defined as the time from when execution starts until 
the last job in the workflow is completed. Finding such 
a schedule is NP-hard, by a reduction from Minimum 
Multiprocessor Scheduling [10]. One approach for 
solving the mapping problem optimally is to model it 
as an Integer Linear Programming problem. However, 
our mapping creates too many variables to be solved in 
reasonable time by current methods, so we turn to 
heuristic solutions to the problem. 

We classify resource allocation algorithms into 
two broad categories based on whether they take into 
account future tasks in the workflow when allocating a 
task. We refer to these categories as task-based (TBA) 
and workflow-based (WBA) approaches. 



2.1. Task-based approach 
 
Algorithms that only reason about the tasks or jobs that 
are ready to run at any given instant are classified as 
task-based allocation algorithms. These algorithms 
make local decisions about which job to send to which 
resource.  1)  while all jobs are not finished do 

2)   Find availJobs = jobs with every parent finished;  
3)   Schedule(availJobs); 
procedure Schedule(availJobs) 
4) while all availJobs not scheduled do 
5)   foreach  job,j  do 
6)      foreach  resource,R  do 
7) Calc ECT(j, r); 
8)    Find min ECT(j, r) over all R; 
9)   Find min(min ECT(j, r) ) over  all J;  
10)    Schedule j  
11)   Update EAT(r) 
 

For example, consider the abstract workflow in 
Figure 1a, where file F1 is available initially and so 
only job J1 is available for scheduling. Once J1 
finishes, jobs J2 to J3 form the set of available jobs. 
These jobs are selected for scheduling one at a time 
using a local selection heuristic. We apply the widely-
used min-min heuristic from the domain of scheduling 
parameter sweep applications [11] to study task-based 
approaches. Min-min runs in polynomial time but 
produces efficient schedules and has been evaluated 
for many different situations involving 
independent/non-communicating tasks in [12]. 
However, it does not guarantee an optimal mapping.  

Figure 2: Min-min task scheduling algorithm.

We define some terms that will be used to 
describe the algorithms. We assume that the estimation 
of execution time of a particular job on a particular 
resource is accurate (in Section 6 we investigate 
uncertain execution time estimates). These time 
estimates can be obtained using different kinds of 
performance modeling techniques, e.g. analytical or 
historical. For every (job, resource) pair we define the 
following quantities: 
• The Estimated Execution Time EET(j,r) is 

defined as the time the resource r will take to 
execute the job  j from the time the job starts 
executing on the resource.  

• The Estimated Availability Time EAT(j,r) is 
defined for every resource as the time at which the 
resource r will become free to perform job j (i.e. 
the time at which it will have finished executing 
all the jobs before j in its queue).  

• The File Availability Time FAT(j,r) is defined as 
the earliest time by which all the files required by 
the job j are available at the resource r.  

• The Estimated Completion Time ECT(j,r) is the 
time at which job j would complete execution at 
resource r: 

ECT(j, r) = EET(j, r) + max(EAT(j,r), FAT(j, r)) 
 
We now describe the min-min local selection heuristic. 
For each available job, the resource with the minimum 
ECT value is found. Denote this as a tuple (j, r, t), 
where j is the job, r is the resource for which the 
minimum is achieved and t is the corresponding ECT 
value. Next, the minimum ECT value over all available 
jobs is found. A job with the minimum ECT value is 

scheduled next. This is repeated until all the jobs have 
been scheduled. The intuition behind this heuristic is 
that the makespan increases the least at each iterative 
step, hopefully resulting in a small makespan for the 
whole workflow. Figure 2 summarizes the algorithm.  

2.2 Workflow-based Approach  
 
Algorithms that reason about the whole workflow 
rather than the set of available jobs are classified as 
workflow-based allocation algorithms (WBAs). In this 
approach all the jobs in the workflow are mapped a 
priori to resources in order to minimize the makespan 
of the whole workflow. As mentioned in the 
introduction mapping the entire workflow does not 
imply scheduling all the jobs ahead of time. In fact if 
changes in the environment occur, remapping may be 
necessary. Mapping the entire workflow avoids 
potential myopia in the scheduler, as is the case with 
task-based approaches, which only consider available 
jobs. In this section we present a local search algorithm 
for workflow allocation based on generalized GRASP 
procedure (Greedy randomized adaptive search) [13], 
which has been shown to be effective for job-shop 
scheduling [14].  

In this approach a number of iterations are made 
to find the best possible mapping of jobs to resources 
for a given workflow. The main difference is that 
WBA creates and compares many alternative whole 
workflow schedules before the final schedule is 
chosen, while TBA compares partial schedules among 
the available tasks as the workflow is executed.  

On each iteration, an initial allocation is 
constructed in a greedy phase. In principle a number of 
local modifications may be considered by swapping 
pairs of tasks, but this is not implemented in the 
current system. The initial allocation algorithm 
computes the tasks whose parents have already been 
scheduled on each pass, and considers every possible 
resource for each such task. For each (task, resource) 
pair, the algorithm computes the increase to the current 



Figure 4: Architecture of Grid Simulator

makespan of the workflow if the task is allocated to 
this resource. Let I-min be the lowest increase found 
and I-max be the largest. The algorithm picks one pair 
at random from those whose increase I is less than I-
min + α (I-max – I-min) for some width parameter α, 0 
≤ α ≤ 1, and continues until all tasks are allocated. The 
width parameter α determines how much variation is 
allowed each time a candidate workflow allocation is 
constructed. When α = 0, each iteration of the 
algorithm behaves like the task-based min-min 
solution. When α = 1, each iteration is random. In 
some domains, a non-zero α is essential to find 
globally optimal allocations, while in others the 
variation due to several component allocations having 
equally good heuristic scores is enough to find the 
optimal. The algorithm for our workflow-based 
approach is shown in figure 3, omitting the subroutine 
to swap task allocations. 

1)  repeat until time limit is reached: 
2)   concreteWF = CreateMapping(workflow); 
3)   if concreteWF has lower makespan than bestConcreteWF 
4)     bestConcreteWF = concreteWF 
 
procedure CreateMapping(workflow) 
5)  while all jobs in workflow are not mapped do 
6)     Find availJobs = unmapped jobs with every parent mapped;  
7)     Map(availJobs); 
// 8)   SwapAllocationsofPairsofTasks() 
 
procedure Map(availJobs) 
9) while all availJobs not mapped do 
10)   foreach  job,j  do 
11)      foreach  resource,R  do 
12) calc ECT(j, r);  
13)   I-min  =  min makespan increase over all j and r; 
14)   I-max  =  max makespan increase over all j and r;  
15)  availPairs = all pairs (j’, R’) 
16)     s.t makespan increase <= I-min  + α *(I-max – I-min); 
17)   (j*, R*) = random choice from availPairs; 
18)   map(j*, R*)  
19)   Update EAT(j*,R*) 

 
 

Figure 3: Workflow-based algorithm 
 

3.  Experimental Setup 
 
We investigated the performance of the two 
approaches using a grid simulator built over the 
popular network simulator NS-2 [17]. We use NS to 
estimate the average bandwidths between the resources 
and as a discrete event simulator. We briefly describe 
the simulator and our experimental setup. 

The grid simulator models resources, bandwidths 
of links connecting different resources, jobs and files 
being transferred as separate objects. This provides a 
fairly simple testbed for comparing the performances 

of scheduling algorithms for grids, in which the 
underlying grid infrastructure can be changed very 
easily. For example, we can easily change the number 
of resources, their individual computational power, the 
bandwidths of the links connecting them, etc. 
Resources are modeled as sites containing one or more 
hosts, where jobs are executed, and storage objects, 
where related input/output data, program files are 
stored. A site acts as an entry point for jobs to be 
executed and also manages the fetching of files from 
storage units. After a job is received, the site submits 
the job on a compute resource within its pool that has 
minimum job queue length. The site is created on top 
of NS's node as an application agent capable of 
transferring packets between them. The hosts are 
modeled with first-come-first-serve queues. 

 
 
 
 
 
 
 
 
 
 
 
 
The simulator can handle more than one workflow 

simultaneously, thereby emulating a Grids’ capacity of 
handling jobs from more than one client. The DAG 
Monitor module manages information specific to 
different workflows. It receives a workflow in the form 
of a DAG. Depending upon the preferences set 
different scheduling strategies are used to map jobs to 
the sites.  

The Grid Monitor (GM) is the central module of 
the simulator, coordinating the activities of the other 
modules. It receives jobs from the DAG Monitor and 
passes them to the sites/resources where the job is to be 
executed. It interacts with the NS scheduler for setting 
events such as transfers, job start and finish times, etc. 
and handles the events when they are due. The GM 
keeps track of all the sites created and the files they 
contain and the jobs that are scheduled on them.  

We used a simple network of 6 fully connected 
sites for all experiments in this paper, with each site 
having a single host and storage unit. The hosts can 
have the same or different computational speeds 
resulting in a homogenous or heterogeneous case 
respectively. A set of initially available files at each 
site is specified for each workflow. It is assumed by 
the schedulers that the initial files are available from at 
least one site. For simplicity, we do not report results 



with packet level file transfers in NS, which take large 
amount of time for the size of workflows we deal with. 
Thus, in our model, we assume that any number of 
files can be transferred in parallel without affecting the 
bandwidths of the connecting links and computational 
powers of corresponding sites. We estimated 
bandwidths by simulating a large amount of data 
transfers on the topology used on NS.  
 
4. Experimental comparison of the 
approaches 
 
We conducted several experiments in order to compare 
the two scheduling approaches using workflows drawn 
from the Montage astronomy application [9]. These 
workflows have a basic structure shown in Figure 5, 
but are varied in the number of jobs at each horizontal 
level. The job compute times at a level were drawn 
from a distribution for given mean and a variance of 
10%. The mean was varied for each level. All files 
produced by jobs at same level were modeled to have 
same size. We conducted all the experiments on the 
grid simulator and with the host topology described in 
the previous section. 
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Figure 5: Montage workflow schema 
 
In the simulator, we varied the relative time to 

perform computational jobs versus file transfers to 
explore different conditions for scheduling. For the 
same workflows we multiply job compute times with a 
factor called compute factor (CF) and file sizes with 
data multiplying factor (DF) in order to obtain 
different workflows. We refer to workflows whose file 
transfer times dominate job compute times as data-
intensive (where CF is relatively small compared with 
DF). Workflows whose job compute times dominate 
file transfer times are termed as compute-intensive 
(where CF is relatively large compared with DF). We 

used two different resource scenarios, one in which all 
resources have the same computational power 
(homogeneous) and one with different computational 
powers (heterogeneous). We ran the workflow-based 
algorithm with a time limit of 200 seconds. Although 
in WBA α can be varied to find best possible solution 
in the specified time limit, in our experiments we fixed 
the value of α to 0.005 as we observed this yielded the 
best solution in most cases. 

Table 1 compares the makespan of the allocation 
found using the task-based approach with that found 
using the workflow-based approach and a random 
allocation for a workflow with 1185 job workflow for 
(a) homogeneous and (b) heterogeneous resource 
scenarios. The upper three rows in the tables, with 
constant compute factor (CF) 0.1, represent data-
intensive cases and the lower three rows with constant 
data multiplying factor (DF) of 100 represent compute-
intensive cases. 

As can be seen from table 1, both the workflow 
and task-based approaches outperform a random 
allocation algorithm. WBA produces schedules with 
significantly lower makespan for the data intensive 
cases compared to TBA. There is no significant 
difference for compute intensive cases. We also 
compared the performance of these algorithms for 
smaller workflows from the Montage domain with 57 
and 739 jobs with similar results.  

 

 
Experiment 
Description 

Random 
Task 

Based 
Allocation 

Workflow 
Based 

Allocation 

WBA/ 
Random

TBA/
WBA

(a) 12834 3100 2112 6.08 1.47CF: 0.1 
DF: 100 (b) 45504 7872 3863 11.78 2.04

(a) 97242 23413 15921 6.11 1.47CF: 0.1 
DF: 1000 (b) 101952 32384 21267 4.79 1.52

(a) 942814 231569 154634 6.10 1.50CF: 0.1 
DF: 10000 (b) 920314 239038 159825 5.76 1.50

(a) 18098 15354 14030 1.29 1.09CF: 1.0 
DF: 100 (b) 440070 20260 20070 21.93 1.01

(a) 153307 134713 133959 1.14 1.01CF: 10.0 
DF: 100 (b) 4395721 182076 180038 24.42 1.01

(a) 1496738 1337900 1337619 1.12 1.00CF: 100.0 
DF: 100 (b) 44022665 1791580 1786649 24.64 1.00

Table 1: Average makespan in seconds by 
strategy for 1185-job workflows. 

 

One of the most important reasons for the 
difference in performance of the two algorithms in this 
domain is the ability to pre-position the data using 
WBA. Transfer of a large file can begin immediately 
after it is created because the destination is known 
before the file is created. In TBA, transfer cannot 
begin until the consuming job is scheduled, which is 
only done after the last parent job has been scheduled. 
In the Montage workflows, the files transferred 



between the mProject and mBackground jobs are 
typically large, and can be transferred simultaneously 
with the execution of the mDiff and mFitplane jobs in 
WBA.  

We would also expect WBA to be more effective 
in general data-intensive scenarios, when costly 
transfers of large files might be avoided by producing 
them where they are to be used, or at locations with a 
high bandwidth connection. On the other hand TBA, 
making purely local decisions about each job, tends to 
distribute jobs evenly among available resources. In 
data-intensive scenarios, this increases the chance that 
a large file will need to be transferred. Allocating 
several jobs on the same resource whose outputs are 
later combined often leads to a more efficient 
workflow even though the computation time for the 
jobs will be longer. 

WBA and TBA both perform much better than 
random allocations in compute-intensive cases with 
heterogeneous resources, but the difference is far less 
marked with homogeneous resources. This is because 
the general structure of a good solution is different in 
the two cases. When one or two resources are faster 
than others, a good schedule must allocate key jobs to 
those machines, and this has a low probability of 
occurring in a random allocation. When resources are 
homogeneous, a good allocation must spread jobs 
evenly between them, and a random allocation is likely 
to have this characteristic. 

TBA’s algorithm, and the Map() subroutine of 
WBA have quadratic time complexity in the size of the 
workflow. WBA took an average of 0.95 seconds per 
iteration for 1185-job workflows, 3.5 seconds for 2047 
jobs and 8 seconds for 3029 jobs. Using weighted min-
min, WBA typically finds a solution in a few tens of 
iterations that is close to the best solution it finds in 
hundreds of iterations, however it is unlikely to be 
effective in its current form for workflows with tens of 
thousands of jobs. 
 

5.  A New Local Selection Heuristic 
 

While studying the performance of the two 
approaches, we observed that resources are often left 
idle, waiting for the input files for the job to be 
executed to arrive. Since the local decision-making 
policy is to minimize the estimated completion time, 
we observed that this could lead to higher idle times. 
We therefore developed a new heuristic to optimize the 
resource utilization which explicitly reasons about the 
idle time of the resources, called the weighted min-min 
heuristic. 

Idle time for a resource is the time when one or 
more jobs wait in its queue for their files to be 

transferred and no job can be executed. For large file 
sizes and low bandwidth scenarios, this idle time 
causes poor resource utilization. For example consider 
figure 6. For job j to be mapped on to resource R1 the 
required file F1 must be transferred from R2 to R1. If 
F1  requires a considerable amount of time to transfer 
(as in data intensive cases), the resulting idle time 
IT(j,R1) for job j on resource R1 is significant. Figure 
7 shows an example where a job j1 is mapped on 
resource R1 since it has a lower estimated completion 
time than another job j2, but j1 leads to a larger idle 

time on resource R1. We observed such cases often in 
our experiments.  

 

To avoid this resource underutilization we 
introduce a new local selection heuristic for job 
scheduling. We first formalize the definition of idle 
time as follows. Idle Time IT(r) for a resource r is the 
total time spent by all the jobs scheduled at r waiting 
for their respective files to arrive. Idle Time IT(j,r) for 
a job j and resource r is the estimated total idle times 
for all the resources if j is scheduled at r, which is the 
sum of idle times of all the resources plus the idle time 
caused if job j is executed on resource r.  

IT(j, r) = IT(r)+ max(0, (FAT(j, r)-EAT(j, r))) 

 
Weighted Min-Min Heuristic: For each available job 
j, and feasible resource r, the weighted sum (WT) of 
ECT and IT is computed as follows: 

WT(j, r) =   γ  IT(j, r) + (1- γ )ECT(j, r), 
For some γ with  0 ≤ γ ≤ 1. We find a job and resource 
pair with minimum weighted sum, and such a job is 
scheduled next. This is repeated until all the jobs have 
been mapped.  

IT(j, R1) 

EAT(j,R1) 

ECT(j, R1) 

Resource R1 

FAT(F1, R1) 

FAT(F1, R2)

Resource R2 
Figure 6: Explanation of Idle Time

ECT(j1, R1)  
ECT(j2, R1)  

Figure 7: Significance of Idle Time



We use the same workflows and underlying grid 
topology on the simulator as for the earlier 
experiments to test the effect of the new heuristic. 
Table 2 compares both task and workflow approaches 
for different local selection heuristics for 1185 job 
workflows. We compare the min-min heuristic with 
the weighted min-min heuristic. We observe that 
weighted min-min heuristic results in an average speed 
up factor of 1.1 for the task-based approach and 1.27 
for the workflow-based approach. Reasoning about 
idle time makes a significant difference for data 
intensive cases. For compute intensive cases, the two 
heuristics perform nearly the same for both 
approaches. This is not surprising as the idle time plays 
a significant role only when file transfer times are 
comparable with or larger than the job compute times. 
The weight (γ) can be changed over different iterations 
in WBA, allowing it to find the best weight value for a 
particular workflow. For TBA, we observed that γ =0.5 
gave best solution in most of the experiments and used 
this weight for all the results reported here. In addition, 
WBA typically converges in around 5 iterations in the 
Montage domain using weighted min-min – far fewer 
than with regular min-min. In data-intensive cases, the 
weighted workflow-based approach leads to an 
average speed-up factor of more than 2 over the 
weighted task-based approach. 

 

 
Experiment 
Description 

TBA 
Min-min 

(i) 

TBA 
wtd 

min-min 
(ii) 

Speed 
up 

(i)/(ii
) 

WBA 
Min-min 

 (iii) 

WBA 
wtd 
min-
min 
 (iv) 

Speed
up 

(iii)/(iv
) 

Wtd 
Speed

up 
(ii)/(iv

) 
a 3100 3076 1.01 2112 2113 1.00 1.46CF: 0.1 

DF: 100 b 7872 9297 0.85 3863 3129 1.23 2.97
a 23413 15890 1.47 15921 8798 1.81 1.81CF: 0.1 

DF: 1000 b 32384 32271 1.00 21267 15113 1.41 2.14
a 231569 154575 1.50 154634 79031 1.96 1.96CF: 0.1 

DF: 10000 b 239038 172900 1.38 159825 89210 1.79 1.94
a 15354 15152 1.01 14030 14037 1.00 1.08CF: 1.0 

DF: 100 b 20260 20723 0.98 20070 20106 1.00 1.03
a 134713 134664 1.00 133959 134034 1.00 1.00CF: 10.0 

DF: 100 b 182076 182041 1.00 180038 179928 1.00 1.01
a 1337900 1340170 1.001337619 1338148 1.00 1.00CF: 100.0 

DF: 100 b 1791580 1792240 1.001786649 1783579 1.00 1.00
 

Table 2: Average makespan in seconds for 
different heuristics for 1185-job workflows. 

 
6. The Impact of Inaccurate Execution 
Estimates 
 

In practice, grid environments are highly dynamic. 
A job may have a very different runtime on a resource 
than the estimated time used for mapping. File transfer 
times may also vary widely. Workflow-based 
algorithms may be more vulnerable to inaccurate 
estimates of runtimes because they rely on forecasts 

for the performance of future tasks, while task-based 
approaches only reason about the next tasks to be run.  

We therefore compared the performances of the 
two approaches under both compute-time and transfer-
time uncertainty. We simulate uncertain job compute 
time by creating a distribution for a given percentage 
of uncertainty and the expected job compute time for 
all the jobs in the workflow. Algorithms for both the 
approaches use the estimated job compute time but the 
actual compute times are randomly picked from the 
distribution. To model file transfer time inaccuracies 
we use the expected and actual file sizes for all the 
files. Again the two approaches rely on the estimated 
file sizes but simulator picks up the actual file size 
randomly from the distributions generated for all files 
in the workflow. 

Figure 8 presents performance of both the 
approaches using the weighted min-min heuristic in a 
case of uncertain compute times for a compute 
intensive case (CF 100.0 and DF: 100). We found that 
the effect of job compute time uncertainties is most 
pronounced in the compute intensive case (and for the 
same reason we chose a data intensive case for transfer 
time uncertainties). We vary the uncertainty level from 
0 to 400 %. 400% means that the simulator picks the 
actual compute time randomly from the range: [1, (rt + 
8 * rt)] where rt is the estimated runtime. The range 
has width equal to twice the amount of possible 
divergence and is shifted so as to always be positive. 
Our results are averaged over 25 random trials. The 
performance of TBA is more affected by uncertainty in 
compute times than WBA, although both the 
approaches perform poorly as the uncertainty 
increases.  
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Figure 8: Average makespan in seconds for 

uncertain compute times, 739 job workflows. 
 
Figure 9 compares TBA and WBA for uncertain 

transfer times for a data intensive case (CF: 0.1 DF: 



10000) for a 739-job workflow.  Here the difference 
between the performances of TBA and WBA was 
more pronounced. Performance of TBA degrades 
rapidly with increasing uncertainty in comparison to 
WBA.  We conjecture that higher levels of uncertainty, 
in our model, increase the mean transfer time, making 
the problems more data-intensive. 
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Figure 9: Average makespan in seconds for 
uncertain transfer times, 739 job workflows. 

 

7. Related work 
 

Scheduling application components onto 
multiprocessors is a hard problem that has been studied 
extensively in the literature. In most cases the problem 
is NP-complete, since the minimum multiprocessor 
scheduling problem is NP-complete [10]. Therefore, 
most of the literature deals with finding good heuristic 
solutions. There is a body of work on multiprocessor 
scheduling of independent application components. 
[12] gives an overview of different heuristics including 
min-min, max-min and sufferage. [11] extends some of 
these heuristics and presents a new heuristic to 
consider data movement, which is important in the 
Grid context. Simple heuristics for dynamic matching 
and scheduling of independent jobs onto 
heterogeneous resources are presented in [1, 2]. [18] 
applies a modified min-min heuristic to schedule 
independent components on the Grid.  

Our work deals with scheduling tasks whose 
dependencies with each other form a DAG, so these 
heuristics can’t be directly applied. However, we use 
min-min during the overall scheduling process. [19] 
gives a survey on different heuristic scheduling 
techniques for scheduling application DAGs onto 
homogeneous platforms. These heuristics also can’t be 
applied directly to grids because they are highly 
heterogeneous. [20] considers DAG scheduling for 
heterogeneous platforms. Most of the heuristics are 

generalizations of the list-scheduling based heuristics 
for homogeneous platforms, which have several 
drawbacks in grids. First, they do not consider the 
global effect of the current scheduling decision. 
Second, they do not group tasks for scheduling and 
third, the dramatic heterogeneity of grids makes the 
average values they use for edge and node weights 
questionable.  

Our work has some similarities with the Levelized 
Min Time heuristic [20] in the sense that we also 
consider the nodes level by level. However we use 
more sophisticated heuristics at each level and 
randomize decisions to reduce the probability of being 
caught in local minima. The work in [16] on a hybrid 
scheduling heuristic for DAG scheduling onto 
heterogeneous systems is most closely related to ours. 
Unlike their work, we consider resource speeds and 
bandwidths, to reflect the heterogeneity of the Grid. 
Current Grid workflow management systems use 
simple approaches to scheduling such as first-come-
first-served with matchmaking [21], or random 
allocations or round-robin [8].  

The GridLab group [22] describe genetic 
algorithms, simulated annealing and tabu search for 
workflow scheduling. However we are not aware of an 
experimental evaluation of their techniques. These 
techniques have also been applied to job-shop 
scheduling problems, and tested under uncertainty 
[23]. The GRASP algorithm, which forms the basis of 
our workflow-based algorithm, was also used for job-
shop scheduling by Binato et al. [14]. 
 
8. Conclusions and Future work 

 
We distinguished the task-based and workflow-based 
approaches to resource allocation for tasks in 
workflows, and compared them via simulation on a 
class of workflows based on an astronomy application. 
The performance of the two approaches is similar for 
compute-intensive cases, but the workflow-based 
approaches perform better for data-intensive cases, 
where they take advantage of the ability to begin 
transferring large data sets earlier and make decisions 
based on global measures of performance. 

However, the time taken by the workflow-based 
algorithms grows more rapidly than for the task-based 
approaches, making them less appropriate for 
workflows containing several thousand tasks. 
Although the class of workflows tested is too small to 
draw conclusions for a wide range of workflows, they 
are realistic and representative of problems 
encountered on the grid. Our results indicate that task-
based approaches may be the better suited to compute-



intensive domains by virtue of their speed, but 
workflow-based approaches appear better suited to 
data-intensive domains, when they are practical. 

We also demonstrate a new heuristic that 
improves the resource utilization by taking the 
resource idle time into account. The heuristic 
converges to a good solution quickly for our tested 
workflows, making workflow-based approaches 
suitable for larger workflows. We are currently 
investigating ways to scale the workflow-based 
approaches to handle even larger workflows, based on 
both modifications to the algorithm and aggregating 
groups of tasks in the original workflow to create a 
small sub-problem. We are also studying the 
performance of the two approaches and the new 
heuristic on a wider range of workflow schemas. 
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