
Task Scheduling Strategies for Workflow-based Applications in Grids

Jim Blythe, Sonal Jain, Ewa Deelman,
Yolanda Gil, Karan Vahi

USC Information Sciences Institute
{blythe, sonjain, deelman, gil, vahi}@isi.edu

Anirban Mandal, Ken Kennedy.

Rice University Dept. of Computer Science
{anirban, ken}@cs.rice.edu

Abstract

Grid applications require allocating a large
number of heterogeneous tasks to distributed
resources. A good allocation is critical for efficient
execution. However, many existing grid toolkits use
matchmaking strategies that do not consider overall
efficiency for the set of tasks to be run. We identify two
families of resource allocation algorithms: task-based
algorithms, that greedily allocate tasks to resources,
and workflow-based algorithms, that search for an
efficient allocation for the entire workflow. We
compare the behavior of workflow-based algorithms
and task-based algorithms, using simulations of
workflows drawn from a real application and with
varying ratios of computation cost to data transfer
cost. We observe that workflow-based approaches
have a potential to work better for data-intensive
applications even when estimates about future tasks
are inaccurate.

1. Introduction

Scientific communities ranging from high-energy
physics [3], gravitational-wave physics [4], geophysics
[5], astronomy [6], to bioinformatics [7] are embracing
grid computing to manage and process large data sets,
execute scientific simulations and share both data and
computing resources. These scientific, data-intensive
applications are no longer being developed as
monolithic codes. Instead, standalone application
components are combined to process the data in
various ways. The applications can now be viewed as
complex workflows that consist of various
transformations performed on the data. For example, in
astronomy, workflows with thousands of tasks are
needed to identify galaxy clusters within the Sloan
Digital Sky Survey [6]. Because of the large amounts

of computation and data involved, these workflows
require the power of the grid to execute.

In earlier work [8] we described techniques to
generate a workflow based on a desired data product
and the requirements of the available components, in
terms of both input-output data and resource
constraints. Here, we focus on allocation of resources
to a workflow whose component tasks are known but
not yet allocated. This is an important topic in Grid
computing because of its high impact on the efficiency
of the workflows, which may generate large amounts
of data and occupy valuable resources for days. For
example, our experiments below show alternative
allocations by competitive algorithms whose runtimes
differ by 22 hours with a maximum of 3 days.

We investigate whether, and under what
conditions, an allocation algorithm should be
influenced by the workflow structure. We evaluate
resource allocation algorithms that use two distinct
approaches. The first greedily allocates each ready-to-
run task to a host based on information only about that
task. We refer to this as the task-based approach. The
second approach searches for an efficient allocation for
the whole workflow, and may revise the allocation of a
task based on subsequent tasks. We refer to this as the
workflow-based approach. Apart from these
differences, the two algorithms are based on the similar
heuristics. We note that in real deployments one would
want to find an overall allocation, but would only
release portions of the workflow that are ready to run.
If the underlying execution environment subsequently
changes, the allocation may be redone.

We test the algorithms empirically using
workflows that are generated in the context of an
astronomy application [9]. We have developed a grid
simulator for our experimentation, which allows us to
easily vary parameters such as task compute times and
file transfer times and also to introduce errors in their
estimation to simulate dynamic environments. We test
the different approaches in both compute- and data-
intensive scenarios.

mailto:vahi}@isi.edu

Many existing resource allocation strategies for
Grid applications, e.g. [21], concentrate on
matchmaking individual tasks to resources and do not
attempt to find an efficient overall allocation. Because
these algorithms do not examine tasks that come later
on in the workflow, their allocation of resources may
result in poor overall assignments if they create
excessive data movement, particularly in data-intensive
applications. Indeed, in our experiments, the
workflow-based approach performed similarly to the
task-based approach for compute-intensive cases but
found more efficient allocations in data-intensive
applications. Since the workflow-based approach
depends on predictions of future task performance, we
performed tests with inaccurate estimates of
component runtimes and data transfer times, and found
that the workflow-based approach still performs well
under these conditions. However, the workflow-based
approach is more computationally intensive and our
implementation is not scalable for workflows with
more than around ten thousand tasks.

J1
R1

F1
R1

F2
R1 F2

R1F2
R2
J1
R2

F3
R2 J4

R2

J3
R1

F4
R1F4

R2

F5
R2

 (a) (b)
Figure 1. Example Workflows (a) An Abstract

Workflow (b) Corresponding Concrete Workflow

In both approaches we initially used the min-min
heuristic to identify promising allocations [12].
However, the resulting workflows tended to leave a
significant number of resources idle during workflow
execution. We defined a new heuristic, weighted min-
min, that blends min-min with minimizing the idle time
of resources, and show that this heuristic outperforms
min-min in our test domain with both allocation
approaches.

In the next section we present a formalization of
the workflow allocation problem for Grids and
describe the two families of algorithms we tested. In
section 3 we explain the details of our simulator and
the experimental setup used to compare the two
approaches, discussing the results in section 4. We
describe the weighted min-min heuristic in section 5
and investigate the impact of uncertainty in section 6.
Section 7 discusses related work. In the final section
we review lessons learnt and future work.

2. Resource allocation strategies

We refer to a directed acyclic graph (DAG) of tasks
that provides information only about task and file
dependencies as an abstract workflow, and to a DAG
that also provides information about the resource to
which each task is allocated as a concrete workflow.
Figure 1 shows an abstract and corresponding concrete
workflow with 4 task nodes, J1 – J4. F1 – F5 are files
that are transferred, while R1 and R2 are resources.
We use the terms ‘task’ and ‘job’ interchangeably.

Consider a DAG of jobs J = {j1, j2, ... jm} and a set
of available Grid resources R={r1, r2, ... rn}. A job ji
has an estimated run time t(ji) and each resource has an
intrinsic speed s(rj), so that the estimated running time
of the job on the resource is t(ji)/ s(rj). Resources can
be connected to each other and a link between any two
resources i, j is assumed to have a bandwidth b(i, j).
Each job has a set of associated input and output files.
Each file f used or produced by a job has a size l(f), so
we assume that transferring the file between resources
takes time l(f)/b(i, j). Each resource rj executes jobs in
sequence drawn from a single queue, qj. When a job
reaches the front of the queue it is executed
immediately if its input files are available at the
resource. If not, the resource remains idle until the files
are available.

J1

J2

J4

F1

F3

F2 F2

F5

F4

J3

A scheduling algorithm seeks a mapping from the

jobs in the abstract workflow to the resource queues,
S: J−> R x N, where S(ji) = (rj,x) means that job ji
occupies the xth position on the queue of resource rj.
We seek a schedule S that minimizes the makespan,
defined as the time from when execution starts until
the last job in the workflow is completed. Finding such
a schedule is NP-hard, by a reduction from Minimum
Multiprocessor Scheduling [10]. One approach for
solving the mapping problem optimally is to model it
as an Integer Linear Programming problem. However,
our mapping creates too many variables to be solved in
reasonable time by current methods, so we turn to
heuristic solutions to the problem.

We classify resource allocation algorithms into
two broad categories based on whether they take into
account future tasks in the workflow when allocating a
task. We refer to these categories as task-based (TBA)
and workflow-based (WBA) approaches.

2.1. Task-based approach

Algorithms that only reason about the tasks or jobs that
are ready to run at any given instant are classified as
task-based allocation algorithms. These algorithms
make local decisions about which job to send to which
resource. 1) while all jobs are not finished do

2) Find availJobs = jobs with every parent finished;
3) Schedule(availJobs);
procedure Schedule(availJobs)
4) while all availJobs not scheduled do
5) foreach job,j do
6) foreach resource,R do
7) Calc ECT(j, r);
8) Find min ECT(j, r) over all R;
9) Find min(min ECT(j, r)) over all J;
10) Schedule j
11) Update EAT(r)

For example, consider the abstract workflow in
Figure 1a, where file F1 is available initially and so
only job J1 is available for scheduling. Once J1
finishes, jobs J2 to J3 form the set of available jobs.
These jobs are selected for scheduling one at a time
using a local selection heuristic. We apply the widely-
used min-min heuristic from the domain of scheduling
parameter sweep applications [11] to study task-based
approaches. Min-min runs in polynomial time but
produces efficient schedules and has been evaluated
for many different situations involving
independent/non-communicating tasks in [12].
However, it does not guarantee an optimal mapping.

Figure 2: Min-min task scheduling algorithm.

We define some terms that will be used to
describe the algorithms. We assume that the estimation
of execution time of a particular job on a particular
resource is accurate (in Section 6 we investigate
uncertain execution time estimates). These time
estimates can be obtained using different kinds of
performance modeling techniques, e.g. analytical or
historical. For every (job, resource) pair we define the
following quantities:
• The Estimated Execution Time EET(j,r) is

defined as the time the resource r will take to
execute the job j from the time the job starts
executing on the resource.

• The Estimated Availability Time EAT(j,r) is
defined for every resource as the time at which the
resource r will become free to perform job j (i.e.
the time at which it will have finished executing
all the jobs before j in its queue).

• The File Availability Time FAT(j,r) is defined as
the earliest time by which all the files required by
the job j are available at the resource r.

• The Estimated Completion Time ECT(j,r) is the
time at which job j would complete execution at
resource r:

ECT(j, r) = EET(j, r) + max(EAT(j,r), FAT(j, r))

We now describe the min-min local selection heuristic.
For each available job, the resource with the minimum
ECT value is found. Denote this as a tuple (j, r, t),
where j is the job, r is the resource for which the
minimum is achieved and t is the corresponding ECT
value. Next, the minimum ECT value over all available
jobs is found. A job with the minimum ECT value is

scheduled next. This is repeated until all the jobs have
been scheduled. The intuition behind this heuristic is
that the makespan increases the least at each iterative
step, hopefully resulting in a small makespan for the
whole workflow. Figure 2 summarizes the algorithm.

2.2 Workflow-based Approach

Algorithms that reason about the whole workflow
rather than the set of available jobs are classified as
workflow-based allocation algorithms (WBAs). In this
approach all the jobs in the workflow are mapped a
priori to resources in order to minimize the makespan
of the whole workflow. As mentioned in the
introduction mapping the entire workflow does not
imply scheduling all the jobs ahead of time. In fact if
changes in the environment occur, remapping may be
necessary. Mapping the entire workflow avoids
potential myopia in the scheduler, as is the case with
task-based approaches, which only consider available
jobs. In this section we present a local search algorithm
for workflow allocation based on generalized GRASP
procedure (Greedy randomized adaptive search) [13],
which has been shown to be effective for job-shop
scheduling [14].

In this approach a number of iterations are made
to find the best possible mapping of jobs to resources
for a given workflow. The main difference is that
WBA creates and compares many alternative whole
workflow schedules before the final schedule is
chosen, while TBA compares partial schedules among
the available tasks as the workflow is executed.

On each iteration, an initial allocation is
constructed in a greedy phase. In principle a number of
local modifications may be considered by swapping
pairs of tasks, but this is not implemented in the
current system. The initial allocation algorithm
computes the tasks whose parents have already been
scheduled on each pass, and considers every possible
resource for each such task. For each (task, resource)
pair, the algorithm computes the increase to the current

Figure 4: Architecture of Grid Simulator

makespan of the workflow if the task is allocated to
this resource. Let I-min be the lowest increase found
and I-max be the largest. The algorithm picks one pair
at random from those whose increase I is less than I-
min + α (I-max – I-min) for some width parameter α, 0
≤ α ≤ 1, and continues until all tasks are allocated. The
width parameter α determines how much variation is
allowed each time a candidate workflow allocation is
constructed. When α = 0, each iteration of the
algorithm behaves like the task-based min-min
solution. When α = 1, each iteration is random. In
some domains, a non-zero α is essential to find
globally optimal allocations, while in others the
variation due to several component allocations having
equally good heuristic scores is enough to find the
optimal. The algorithm for our workflow-based
approach is shown in figure 3, omitting the subroutine
to swap task allocations.

1) repeat until time limit is reached:
2) concreteWF = CreateMapping(workflow);
3) if concreteWF has lower makespan than bestConcreteWF
4) bestConcreteWF = concreteWF

procedure CreateMapping(workflow)
5) while all jobs in workflow are not mapped do
6) Find availJobs = unmapped jobs with every parent mapped;
7) Map(availJobs);
// 8) SwapAllocationsofPairsofTasks()

procedure Map(availJobs)
9) while all availJobs not mapped do
10) foreach job,j do
11) foreach resource,R do
12) calc ECT(j, r);
13) I-min = min makespan increase over all j and r;
14) I-max = max makespan increase over all j and r;
15) availPairs = all pairs (j’, R’)
16) s.t makespan increase <= I-min + α *(I-max – I-min);
17) (j*, R*) = random choice from availPairs;
18) map(j*, R*)
19) Update EAT(j*,R*)

Figure 3: Workflow-based algorithm

3. Experimental Setup

We investigated the performance of the two
approaches using a grid simulator built over the
popular network simulator NS-2 [17]. We use NS to
estimate the average bandwidths between the resources
and as a discrete event simulator. We briefly describe
the simulator and our experimental setup.

The grid simulator models resources, bandwidths
of links connecting different resources, jobs and files
being transferred as separate objects. This provides a
fairly simple testbed for comparing the performances

of scheduling algorithms for grids, in which the
underlying grid infrastructure can be changed very
easily. For example, we can easily change the number
of resources, their individual computational power, the
bandwidths of the links connecting them, etc.
Resources are modeled as sites containing one or more
hosts, where jobs are executed, and storage objects,
where related input/output data, program files are
stored. A site acts as an entry point for jobs to be
executed and also manages the fetching of files from
storage units. After a job is received, the site submits
the job on a compute resource within its pool that has
minimum job queue length. The site is created on top
of NS's node as an application agent capable of
transferring packets between them. The hosts are
modeled with first-come-first-serve queues.

The simulator can handle more than one workflow

simultaneously, thereby emulating a Grids’ capacity of
handling jobs from more than one client. The DAG
Monitor module manages information specific to
different workflows. It receives a workflow in the form
of a DAG. Depending upon the preferences set
different scheduling strategies are used to map jobs to
the sites.

The Grid Monitor (GM) is the central module of
the simulator, coordinating the activities of the other
modules. It receives jobs from the DAG Monitor and
passes them to the sites/resources where the job is to be
executed. It interacts with the NS scheduler for setting
events such as transfers, job start and finish times, etc.
and handles the events when they are due. The GM
keeps track of all the sites created and the files they
contain and the jobs that are scheduled on them.

We used a simple network of 6 fully connected
sites for all experiments in this paper, with each site
having a single host and storage unit. The hosts can
have the same or different computational speeds
resulting in a homogenous or heterogeneous case
respectively. A set of initially available files at each
site is specified for each workflow. It is assumed by
the schedulers that the initial files are available from at
least one site. For simplicity, we do not report results

with packet level file transfers in NS, which take large
amount of time for the size of workflows we deal with.
Thus, in our model, we assume that any number of
files can be transferred in parallel without affecting the
bandwidths of the connecting links and computational
powers of corresponding sites. We estimated
bandwidths by simulating a large amount of data
transfers on the topology used on NS.

4. Experimental comparison of the
approaches

We conducted several experiments in order to compare
the two scheduling approaches using workflows drawn
from the Montage astronomy application [9]. These
workflows have a basic structure shown in Figure 5,
but are varied in the number of jobs at each horizontal
level. The job compute times at a level were drawn
from a distribution for given mean and a variance of
10%. The mean was varied for each level. All files
produced by jobs at same level were modeled to have
same size. We conducted all the experiments on the
grid simulator and with the host topology described in
the previous section.

mProject

mDiff

mFitplane

mConcatFit

mBgModel

mBackground

mAdd

Figure 5: Montage workflow schema

In the simulator, we varied the relative time to

perform computational jobs versus file transfers to
explore different conditions for scheduling. For the
same workflows we multiply job compute times with a
factor called compute factor (CF) and file sizes with
data multiplying factor (DF) in order to obtain
different workflows. We refer to workflows whose file
transfer times dominate job compute times as data-
intensive (where CF is relatively small compared with
DF). Workflows whose job compute times dominate
file transfer times are termed as compute-intensive
(where CF is relatively large compared with DF). We

used two different resource scenarios, one in which all
resources have the same computational power
(homogeneous) and one with different computational
powers (heterogeneous). We ran the workflow-based
algorithm with a time limit of 200 seconds. Although
in WBA α can be varied to find best possible solution
in the specified time limit, in our experiments we fixed
the value of α to 0.005 as we observed this yielded the
best solution in most cases.

Table 1 compares the makespan of the allocation
found using the task-based approach with that found
using the workflow-based approach and a random
allocation for a workflow with 1185 job workflow for
(a) homogeneous and (b) heterogeneous resource
scenarios. The upper three rows in the tables, with
constant compute factor (CF) 0.1, represent data-
intensive cases and the lower three rows with constant
data multiplying factor (DF) of 100 represent compute-
intensive cases.

As can be seen from table 1, both the workflow
and task-based approaches outperform a random
allocation algorithm. WBA produces schedules with
significantly lower makespan for the data intensive
cases compared to TBA. There is no significant
difference for compute intensive cases. We also
compared the performance of these algorithms for
smaller workflows from the Montage domain with 57
and 739 jobs with similar results.

Experiment
Description

Random
Task

Based
Allocation

Workflow
Based

Allocation

WBA/
Random

TBA/
WBA

(a) 12834 3100 2112 6.08 1.47CF: 0.1
DF: 100 (b) 45504 7872 3863 11.78 2.04

(a) 97242 23413 15921 6.11 1.47CF: 0.1
DF: 1000 (b) 101952 32384 21267 4.79 1.52

(a) 942814 231569 154634 6.10 1.50CF: 0.1
DF: 10000 (b) 920314 239038 159825 5.76 1.50

(a) 18098 15354 14030 1.29 1.09CF: 1.0
DF: 100 (b) 440070 20260 20070 21.93 1.01

(a) 153307 134713 133959 1.14 1.01CF: 10.0
DF: 100 (b) 4395721 182076 180038 24.42 1.01

(a) 1496738 1337900 1337619 1.12 1.00CF: 100.0
DF: 100 (b) 44022665 1791580 1786649 24.64 1.00

Table 1: Average makespan in seconds by
strategy for 1185-job workflows.

One of the most important reasons for the
difference in performance of the two algorithms in this
domain is the ability to pre-position the data using
WBA. Transfer of a large file can begin immediately
after it is created because the destination is known
before the file is created. In TBA, transfer cannot
begin until the consuming job is scheduled, which is
only done after the last parent job has been scheduled.
In the Montage workflows, the files transferred

between the mProject and mBackground jobs are
typically large, and can be transferred simultaneously
with the execution of the mDiff and mFitplane jobs in
WBA.

We would also expect WBA to be more effective
in general data-intensive scenarios, when costly
transfers of large files might be avoided by producing
them where they are to be used, or at locations with a
high bandwidth connection. On the other hand TBA,
making purely local decisions about each job, tends to
distribute jobs evenly among available resources. In
data-intensive scenarios, this increases the chance that
a large file will need to be transferred. Allocating
several jobs on the same resource whose outputs are
later combined often leads to a more efficient
workflow even though the computation time for the
jobs will be longer.

WBA and TBA both perform much better than
random allocations in compute-intensive cases with
heterogeneous resources, but the difference is far less
marked with homogeneous resources. This is because
the general structure of a good solution is different in
the two cases. When one or two resources are faster
than others, a good schedule must allocate key jobs to
those machines, and this has a low probability of
occurring in a random allocation. When resources are
homogeneous, a good allocation must spread jobs
evenly between them, and a random allocation is likely
to have this characteristic.

TBA’s algorithm, and the Map() subroutine of
WBA have quadratic time complexity in the size of the
workflow. WBA took an average of 0.95 seconds per
iteration for 1185-job workflows, 3.5 seconds for 2047
jobs and 8 seconds for 3029 jobs. Using weighted min-
min, WBA typically finds a solution in a few tens of
iterations that is close to the best solution it finds in
hundreds of iterations, however it is unlikely to be
effective in its current form for workflows with tens of
thousands of jobs.

5. A New Local Selection Heuristic

While studying the performance of the two
approaches, we observed that resources are often left
idle, waiting for the input files for the job to be
executed to arrive. Since the local decision-making
policy is to minimize the estimated completion time,
we observed that this could lead to higher idle times.
We therefore developed a new heuristic to optimize the
resource utilization which explicitly reasons about the
idle time of the resources, called the weighted min-min
heuristic.

Idle time for a resource is the time when one or
more jobs wait in its queue for their files to be

transferred and no job can be executed. For large file
sizes and low bandwidth scenarios, this idle time
causes poor resource utilization. For example consider
figure 6. For job j to be mapped on to resource R1 the
required file F1 must be transferred from R2 to R1. If
F1 requires a considerable amount of time to transfer
(as in data intensive cases), the resulting idle time
IT(j,R1) for job j on resource R1 is significant. Figure
7 shows an example where a job j1 is mapped on
resource R1 since it has a lower estimated completion
time than another job j2, but j1 leads to a larger idle

time on resource R1. We observed such cases often in
our experiments.

To avoid this resource underutilization we
introduce a new local selection heuristic for job
scheduling. We first formalize the definition of idle
time as follows. Idle Time IT(r) for a resource r is the
total time spent by all the jobs scheduled at r waiting
for their respective files to arrive. Idle Time IT(j,r) for
a job j and resource r is the estimated total idle times
for all the resources if j is scheduled at r, which is the
sum of idle times of all the resources plus the idle time
caused if job j is executed on resource r.

IT(j, r) = IT(r)+ max(0, (FAT(j, r)-EAT(j, r)))

Weighted Min-Min Heuristic: For each available job
j, and feasible resource r, the weighted sum (WT) of
ECT and IT is computed as follows:

WT(j, r) = γ IT(j, r) + (1- γ)ECT(j, r),
For some γ with 0 ≤ γ ≤ 1. We find a job and resource
pair with minimum weighted sum, and such a job is
scheduled next. This is repeated until all the jobs have
been mapped.

IT(j, R1)

EAT(j,R1)

ECT(j, R1)

Resource R1

FAT(F1, R1)

FAT(F1, R2)

Resource R2
Figure 6: Explanation of Idle Time

ECT(j1, R1)
ECT(j2, R1)

Figure 7: Significance of Idle Time

We use the same workflows and underlying grid
topology on the simulator as for the earlier
experiments to test the effect of the new heuristic.
Table 2 compares both task and workflow approaches
for different local selection heuristics for 1185 job
workflows. We compare the min-min heuristic with
the weighted min-min heuristic. We observe that
weighted min-min heuristic results in an average speed
up factor of 1.1 for the task-based approach and 1.27
for the workflow-based approach. Reasoning about
idle time makes a significant difference for data
intensive cases. For compute intensive cases, the two
heuristics perform nearly the same for both
approaches. This is not surprising as the idle time plays
a significant role only when file transfer times are
comparable with or larger than the job compute times.
The weight (γ) can be changed over different iterations
in WBA, allowing it to find the best weight value for a
particular workflow. For TBA, we observed that γ =0.5
gave best solution in most of the experiments and used
this weight for all the results reported here. In addition,
WBA typically converges in around 5 iterations in the
Montage domain using weighted min-min – far fewer
than with regular min-min. In data-intensive cases, the
weighted workflow-based approach leads to an
average speed-up factor of more than 2 over the
weighted task-based approach.

Experiment
Description

TBA
Min-min

(i)

TBA
wtd

min-min
(ii)

Speed
up

(i)/(ii
)

WBA
Min-min

 (iii)

WBA
wtd
min-
min
 (iv)

Speed
up

(iii)/(iv
)

Wtd
Speed

up
(ii)/(iv

)
a 3100 3076 1.01 2112 2113 1.00 1.46CF: 0.1

DF: 100 b 7872 9297 0.85 3863 3129 1.23 2.97
a 23413 15890 1.47 15921 8798 1.81 1.81CF: 0.1

DF: 1000 b 32384 32271 1.00 21267 15113 1.41 2.14
a 231569 154575 1.50 154634 79031 1.96 1.96CF: 0.1

DF: 10000 b 239038 172900 1.38 159825 89210 1.79 1.94
a 15354 15152 1.01 14030 14037 1.00 1.08CF: 1.0

DF: 100 b 20260 20723 0.98 20070 20106 1.00 1.03
a 134713 134664 1.00 133959 134034 1.00 1.00CF: 10.0

DF: 100 b 182076 182041 1.00 180038 179928 1.00 1.01
a 1337900 1340170 1.001337619 1338148 1.00 1.00CF: 100.0

DF: 100 b 1791580 1792240 1.001786649 1783579 1.00 1.00

Table 2: Average makespan in seconds for
different heuristics for 1185-job workflows.

6. The Impact of Inaccurate Execution
Estimates

In practice, grid environments are highly dynamic.
A job may have a very different runtime on a resource
than the estimated time used for mapping. File transfer
times may also vary widely. Workflow-based
algorithms may be more vulnerable to inaccurate
estimates of runtimes because they rely on forecasts

for the performance of future tasks, while task-based
approaches only reason about the next tasks to be run.

We therefore compared the performances of the
two approaches under both compute-time and transfer-
time uncertainty. We simulate uncertain job compute
time by creating a distribution for a given percentage
of uncertainty and the expected job compute time for
all the jobs in the workflow. Algorithms for both the
approaches use the estimated job compute time but the
actual compute times are randomly picked from the
distribution. To model file transfer time inaccuracies
we use the expected and actual file sizes for all the
files. Again the two approaches rely on the estimated
file sizes but simulator picks up the actual file size
randomly from the distributions generated for all files
in the workflow.

Figure 8 presents performance of both the
approaches using the weighted min-min heuristic in a
case of uncertain compute times for a compute
intensive case (CF 100.0 and DF: 100). We found that
the effect of job compute time uncertainties is most
pronounced in the compute intensive case (and for the
same reason we chose a data intensive case for transfer
time uncertainties). We vary the uncertainty level from
0 to 400 %. 400% means that the simulator picks the
actual compute time randomly from the range: [1, (rt +
8 * rt)] where rt is the estimated runtime. The range
has width equal to twice the amount of possible
divergence and is shifted so as to always be positive.
Our results are averaged over 25 random trials. The
performance of TBA is more affected by uncertainty in
compute times than WBA, although both the
approaches perform poorly as the uncertainty
increases.

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0 50 100 150 200 250 300 350 400

(M
ill

io
ns

 o
f s

ec
on

ds
)

Uncertainty (%)

M
ak

es
pa

n

TBA Hom
WBA Hom
TBA Het
WBA Het

Figure 8: Average makespan in seconds for

uncertain compute times, 739 job workflows.

Figure 9 compares TBA and WBA for uncertain

transfer times for a data intensive case (CF: 0.1 DF:

10000) for a 739-job workflow. Here the difference
between the performances of TBA and WBA was
more pronounced. Performance of TBA degrades
rapidly with increasing uncertainty in comparison to
WBA. We conjecture that higher levels of uncertainty,
in our model, increase the mean transfer time, making
the problems more data-intensive.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 50 100 150 200 250 300 350 400

(M
ill

io
ns

 o
f s

ec
on

ds
)

Uncertainty (%)

M
ak

es
pa

n

TBA Hom

WBA Hom

TBA Het

WBA Het

Figure 9: Average makespan in seconds for
uncertain transfer times, 739 job workflows.

7. Related work

Scheduling application components onto
multiprocessors is a hard problem that has been studied
extensively in the literature. In most cases the problem
is NP-complete, since the minimum multiprocessor
scheduling problem is NP-complete [10]. Therefore,
most of the literature deals with finding good heuristic
solutions. There is a body of work on multiprocessor
scheduling of independent application components.
[12] gives an overview of different heuristics including
min-min, max-min and sufferage. [11] extends some of
these heuristics and presents a new heuristic to
consider data movement, which is important in the
Grid context. Simple heuristics for dynamic matching
and scheduling of independent jobs onto
heterogeneous resources are presented in [1, 2]. [18]
applies a modified min-min heuristic to schedule
independent components on the Grid.

Our work deals with scheduling tasks whose
dependencies with each other form a DAG, so these
heuristics can’t be directly applied. However, we use
min-min during the overall scheduling process. [19]
gives a survey on different heuristic scheduling
techniques for scheduling application DAGs onto
homogeneous platforms. These heuristics also can’t be
applied directly to grids because they are highly
heterogeneous. [20] considers DAG scheduling for
heterogeneous platforms. Most of the heuristics are

generalizations of the list-scheduling based heuristics
for homogeneous platforms, which have several
drawbacks in grids. First, they do not consider the
global effect of the current scheduling decision.
Second, they do not group tasks for scheduling and
third, the dramatic heterogeneity of grids makes the
average values they use for edge and node weights
questionable.

Our work has some similarities with the Levelized
Min Time heuristic [20] in the sense that we also
consider the nodes level by level. However we use
more sophisticated heuristics at each level and
randomize decisions to reduce the probability of being
caught in local minima. The work in [16] on a hybrid
scheduling heuristic for DAG scheduling onto
heterogeneous systems is most closely related to ours.
Unlike their work, we consider resource speeds and
bandwidths, to reflect the heterogeneity of the Grid.
Current Grid workflow management systems use
simple approaches to scheduling such as first-come-
first-served with matchmaking [21], or random
allocations or round-robin [8].

The GridLab group [22] describe genetic
algorithms, simulated annealing and tabu search for
workflow scheduling. However we are not aware of an
experimental evaluation of their techniques. These
techniques have also been applied to job-shop
scheduling problems, and tested under uncertainty
[23]. The GRASP algorithm, which forms the basis of
our workflow-based algorithm, was also used for job-
shop scheduling by Binato et al. [14].

8. Conclusions and Future work

We distinguished the task-based and workflow-based
approaches to resource allocation for tasks in
workflows, and compared them via simulation on a
class of workflows based on an astronomy application.
The performance of the two approaches is similar for
compute-intensive cases, but the workflow-based
approaches perform better for data-intensive cases,
where they take advantage of the ability to begin
transferring large data sets earlier and make decisions
based on global measures of performance.

However, the time taken by the workflow-based
algorithms grows more rapidly than for the task-based
approaches, making them less appropriate for
workflows containing several thousand tasks.
Although the class of workflows tested is too small to
draw conclusions for a wide range of workflows, they
are realistic and representative of problems
encountered on the grid. Our results indicate that task-
based approaches may be the better suited to compute-

intensive domains by virtue of their speed, but
workflow-based approaches appear better suited to
data-intensive domains, when they are practical.

We also demonstrate a new heuristic that
improves the resource utilization by taking the
resource idle time into account. The heuristic
converges to a good solution quickly for our tested
workflows, making workflow-based approaches
suitable for larger workflows. We are currently
investigating ways to scale the workflow-based
approaches to handle even larger workflows, based on
both modifications to the algorithm and aggregating
groups of tasks in the original workflow to create a
small sub-problem. We are also studying the
performance of the two approaches and the new
heuristic on a wider range of workflow schemas.

Acknowledgments

We are grateful for conversations with Carl
Kesselman and Rizos Sakellariou. Jaskaran Singh
initially implemented the simulator.

This work was supported by NSF under grant ITR
AST0122449 (NVO), grant No. ACI 0103759
(GrADS), Cooperative Agreement No. CCR-0331654
(VGrADS) and by an internal grant from the
Information Sciences Institute. Montage is supported
by the NASA Earth Sciences Technology Office
Computing Technologies program, (ESTO-CT) under
Cooperative Agreement Notice NCC 5-6261.

References

[1] Braun T D, et al, A taxonomy for describing matching
and scheduling heuristics for mixed-machine heterogeneous
computing systems. IEEE Workshop on Advances in Parallel
and Distributed Systems, West Lafayette, IN, Oct. 1998, pp.
330-335.
[2] Maheswaran M, et al, Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. In
the 8th IEEE Heterogeneous Computing Workshop (HCW
’99), San Juan, Puerto Rico, Apr. 1999, pp.30-44.
[3] GriPhyN, www.griphyn.org
[4] E. Deelman, et al., "GriPhyN and LIGO, Building a
Virtual Data Grid for Gravitational Wave Scientists," Intl
Symp on High Performance Distributed Computing, 2002.
[5] SCEC CM Environment, www.scec.org/cme/.
[6] J. Annis, Y. Zhao, et al., "Applying Chimera Virtual Data
Concepts to Cluster Finding in the Sloan Sky Survey,"
Technical Report GriPhyN-2002-05, 2002.
[7] NPACI, Telescience,
https://gridport.npaci.edu/Telescience/.

[8] Deelman, E. Blythe, J. et al., Mapping Abstract Complex
Workflows onto Grid Environments. Journal of Grid
Computing, vol.1, 2003 pp. 25-39.
[9] Berriman el al. Montage: a Grid Enabled Image Mosaic
Service for the National Virtual Observatory, ADASS 13,
2003
[10] Garey, M. and Johnson, D., Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, New York, 1979
[11] Casanova,. H. et al., Heuristics for scheduling parameter
sweep applications in Grid environments. In Proc. 9th
Heterogeneous computing Workshop (HCW’2000), Cancun,
Mexico, 2000, pp.349-363.
[12] Tracy D, et al, A Comparison of eleven Static Heuristics
for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems. J. Parallel
and Distributed Computing, 61, pp.810-837, 2001
[13] Resende, M. and Ribeiro, C., Greedy Randomized
Adaptive Search Procedures, State-of-the-art Handbook in
Metaheuristics, Glover and Kochenberger, eds., Kluwer
Academic Publishers, 2002
[14] Binato, S. et al., A GRASP for job shop scheduling. In
Ribeiro and Hansen, eds, Essays and surveys on
metaheuristics, pp 59-79. Kluwer Acad. Publishers, 2001.
[15] Freund R et al, Scheduling resources in multi-user,
heterogeneous, computing environments with SmartNet. In
Proc. 7th IEEE Heterogeneous Computing Workshop (HCW
’98), Orlando, FL, USA, Mar. 1998, pp.184-199.
[16] Sakellariou. R and Zhao, H., A Hybrid Heuristic for
DAG Scheduling on Heterogeneous Systems. In Proc 13th
Heterogeneous Computing Workshop (HCW ‘04), Santa Fe,
New Mexico, USA, 2004.
[17] Network Simulator, http://www.isi.edu/nsnam/ns
[18] He, X., Sun, X, and von Laszewski, G., QoS guided
min-min heuristic for grid task scheduling. Journal of
Computer Science and Technology, 18, 2003, pp.442-451.
[19] Yu-Kwong Kwok and Ishfaq Ahmad, Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. In ACM Computing Surveys, vol. 31,1999
pp. 406-471.
[20] Topcuoglu, H., Hariri, S. and Wu, M., Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing. IEEE Transactions on Parallel
and Distributed Systems, 13, 2002, pp. 260-274.
[21] DAGMan meta-scheduler for Condor
http://www.cs.wisc.edu/condor/dagman
[22] Mika, M. et al. A Metaheuristic Approach to Scheduling
Workflow Jobs on a Grid, in Grid Resource Management:
State of the Art and Future Trends, Kluwer Academic
Publishers, 2003
[23] Beck, C. and Wilson, N. Job shop scheduling with
probabilistic durations, European Conference on Artificial
Intelligence (ECAI ‘04), 2004
[24] Cooper, K. et al. New Grid Scheduling and
Rescheduling Methods in the GrADS Project, 18th
International Parallel and Distributed Processing
Symposium (IPDPS'04) - Workshop 10 (NSF NGS
Workshop), 2004

http://www.griphyn.org/
http://www.cs.wisc.edu/condor/dagman

	1. Introduction
	2. Resource allocation strategies
	2.1. Task-based approach
	2.2 Workflow-based Approach

	3. Experimental Setup
	4. Experimental comparison of the approaches
	We conducted several experiments in order to compare the two
	Experiment Description

	5. A New Local Selection Heuristic
	WT(j, r) = γ IT(j, r) + (1- γ)ECT(j, r),
	Experiment Description
	Wtd
	Speed

	Acknowledgments

	References

