
Task Scheduling with Configuration Prefetching and
Anti-Fragmentation techniques on Dynamically

Reconfigurable Systems
Francesco Redaelli, Marco D. Santambrogio, Donatella Sciuto

{santambr,sciuto}@elet.polimi.it, francesco.redaelli@dresd.org

ABSTRACT
Aim of this paper is to define a scheduling of the task graph
of an application that minimizes its total execution time on
a partially dynamically reconfigurable FPGA. The sched-
uler has to take into account the reconfiguration overhead of
each task, the area constraint of the target FPGA, the prece-
dences between the tasks, configuration prefetching and mod-
ule reuse. We introduce an ILP formulation to solve the task
scheduling problem in the reconfigurable architecture sce-
nario. This formulation has been used to identify interesting
features for a possible heuristic scheduler. The results of the
ILP solution show how a reconfiguration-aware scheduler ex-
ploiting all the reconfiguration features can outperform one
with partial knowledge.

1. INTRODUCTION
Reconfigurable hardware in general, and FPGAs in par-

ticular, have received much attention over the last years.
At first they have been employed as a cheap means of pro-
totyping and testing hardware solutions without having to
undergo the long and expensive process of ASIC design, thus
allowing to drastically reduce the time-to-market. FPGAs
have been so successful in this task that nowadays it is not
uncommon to even directly deploy FPGA–based solutions.
In this scenario, that can be termed Compile Time Recon-
figuration (CTR), the configuration of the FPGA is loaded
at the end of the design phase, and it remains the same
throughout the whole time the application is running. In
order to change the configuration one has to stop the com-
putation, reconfigure the chip resetting it, and then start
the new application. CTR was for some years the only kind
of reconfiguration available for FPGAs. With the evolution
of technology, though, it became possible to considerably re-
duce the time needed for the chip reconfiguration: this made
it conceivable to reconfigure the FPGA between different
stages of its computation, since the induced time overhead
could be considered acceptable. This process is called Run
Time Reconfiguration (RTR), and the FPGA is said to be
Dynamically Reconfigurable. RTR can be exploited by creat-
ing what has been termed virtual hardware [1,2] in analogy
with the concept of virtual memory in general computers.
Consider an application that is too big to fit into a particu-
lar FPGA: one can partition it into n smaller tasks, each one
fitting on the chip. Then it is possible to load task 1 on the
chip, execute it, then reconfigure the FPGA for task 2 and
execute it, and so on until task n is finished. This idea is
called time partitioning, and has been studied extensively in
literature (see [3–6]). A further improvement in FPGA tech-
nology allows modern boards to reconfigure only some of the

logic gates, leaving the other ones unchanged. This partial
reconfiguration is of course much faster in case only a small
part of the FPGA logic needs to be changed. When both
these features are available, the FPGA is called partially
dynamically reconfigurable. This can be done using partial
reconfiguration bitstreams1. The main characteristic of bit-
streams is that they have a correlation with the operation
they are implementing: once the bitstream is defined the op-
eration is defined too, while given an operation, there could
exist more than one bitstream implementing it. Therefore
it is possible to assign to each bitstream an attribute called
type used to identify the operation implemented, the area
occupied on the target architecture and the time needed to
be configured and to be executed by that bitstreams.

Aim of this work is to propose an exact ILP formulation
for the task scheduling problem in a reconfigurable scenario.
Let us define a set of reconfiguration features that have to
be taken into account to define the schedule. Configuration
prefetching means that a module is loaded onto the FPGA
as soon as possible in order to hide its reconfiguration time
as much as possible. Module reuse means that two tasks of
the same type have the possibility to be executed exactly on
the same module on board, hiding completely the reconfig-
uration time. Configuration prefetching and module reuse
are combined with time partitioning techniques to optimize
the latency of the application [7] [8] [9]. Anti-fragmentation
techniques avoid the fragmentation of the available space on
board trying to maximize the dimension of free adjacent ar-
eas. The deconfiguration policy is a set of rules used to decide
when and how to remove a module from the FPGA. The task
scheduling problem, working with a partial dynamic recon-
figurable architecture is similar to the one proposed in [10]
and [11]. In [10] and [11] the authors consider the problem of
partitioning and scheduling a task dependence graph onto
an architecture defined using a general purpose processor
(GPP) and reconfigurable devices where tasks can be exe-
cuted both as software onto the GPP or as hardware cores
using the reconfigurable resources. They propose a heuristic
HW/SW partitioning and scheduling algorithm based on the
well known KLFM heuristic. The problem with these works
is that they do not consider all the features available to par-
tially dynamically reconfigurable devices i.e., module reuse
is rarely considered, and anti-fragmentation techniques are
almost always ignored. Our approach models the scheduling
problem through an ILP formulation that takes into account
all specific features of partially dynamically reconfigurable
architectures.

1a bitstream is a binary file used to configure an FPGA, or
part of it, with the desired functionality.

Section 2 describes the state of the art, proposing solu-
tions to related problems. Section 3 introduces the ILP
model. Section 4 presents a set of experimental results ob-
tained by running the developed scheduler and it compares
our ILP formulation with the one proposed in [11]. Finally,
Section 5 presents the conclusions of this work.

2. PROBLEM DESCRIPTION
Main goal of this work is to be able to execute onto a

dynamically partially reconfigurable FPGA, an application
that is too large to be completely mapped onto that FPGA.
Thus, the application has to be partitioned in such a way
that allows the mapping onto the target hardware using its
partial reconfiguration capability. The aim is to minimize
the total latency of the partitioned application. The formal
description of the problem is the following. Let us consider
the behavioral description of the application in terms of a
DAG task graph, in which each node describes the task op-
erations. Each task node is associated with a bitstream and
therefore its execution time, the amount of area used on the
target FPGA and the reconfiguration time needed. Given
this information the aim is to define a scheduling of the
task graph that minimizes the total execution time of the
algorithm; the scheduler has to take into account the recon-
figuration overhead of each task, the area constraint of the
target FPGA, the precedences between the tasks, configu-
ration prefetching and module reuse. The scheduler has to
give a solution in terms of:

• when to reconfigure a module and for which task;

• where to place the reconfigured module on the FPGA;

• when to start the execution of a task according with
its precedence constraints.

The FPGA architectures exploiting the partial dynamic re-
configuration feature may be seen as a sequence of reconfig-
urable columns, where a column is the minimum amount of
reconfigurable area that can be used. In this scenario, the
area property of a task can be expressed as the number of
adjacent columns needed by the task on the FPGA.

2.1 Related work
In [8] the authors present an ILP formulation consider-

ing a task graph, partitioned into time–partitions, defined
only with few task types achieving results similar to [12].
One of the first attempts to take into consideration partial
reconfiguration combined with configuration prefetching is
presented in [13]. The applications that can be scheduled
with this approach are linear multi-task applications: they
are a linear sequence of tasks and each task takes as input
the results of the previous task; furthermore this kind of
applications normally deals with large amounts of data e.g.,
image processing. The goal in [13] is to define a specific
methodology for scheduling the tasks of these applications
in order to reduce the overall completion time. The same
authors present in [7] an enhanced solution for the same
problem: PARLGRAN tries to reduce the total execution
time using two different techniques. The former one is called
simple fragmentation reduction and it places the new task
in the first available area on the FPGA in the opposite side
of the FPGA with respect to the location of the previous
task. The latter is called exploiting slack in reconfigura-
tion controller and it is a local optimization that postpones

the reconfiguration of a task in a position selected by the
previous technique if this reconfiguration causes a delay in
the subsequent task execution time. Furthermore, a task
is replicated if and only if the replication gives an improve-
ment in the execution time of the subsequent task considered
as unreplicable; this technique is called static pruning. For
replicated tasks there is a specific placement policy called
dynamic granularity selection: placing multiple copies of a
task in adjacent positions can reduce the fragmentation of
the area of the FPGA; moreover, if it leads to a temporal
improvement, the first copies of a task are stopped early
in order to overlap the reconfiguration of the following task
with the final execution of the last copies of the consid-
ered one. The authors do not consider the memory man-
agement in a context of parallel tasks that work on different
portions of the same data; moreover the memory available
for the tasks is not quantified and this could be a problem.
In [9] a reconfiguration sequence manager is discussed, using
as target architecture a partially dynamically reconfigurable
system (partially dynamically reconfigurable FPGA systems
or multi-FPGA systems). The proposed algorithm receives
as input an already scheduled task graph and it aims at
scheduling all these tasks onto the target architecture in or-
der to minimize only the total reconfiguration time needed.
The assumptions are the following: (a) every task has a fixed
size equal for each task, with the same reconfiguration time;
(b) on the target architecture there are K fixed positions
where to put a task.

Under these assumptions the algorithm finds a provable
optimal solution [9], and the techniques used are based on
the off-line paging solved by Least Imminently Used (LIU)
algorithm. This approach does not take into consideration
resource reuse and different task sizes. Furthermore, only
the total reconfiguration time is minimized, without consid-
ering the execution time and the reconfiguration time impact
described for example in [14] for a similar architecture.

3. ILP FORMULATION
Let us introduce the ILP formulation used to solve the

task scheduling problem in the reconfigurable architecture
scenario.

3.0.1 Constants
For every task i ∈ O let’s us define

• li := latency of i;

• di := reconfiguration time needed by i;

• ri := room occupied onto the fpga by i, expressed in
number of (adjacent) columns of the fpga.

Moreover, using the operator [·] that takes value 1 if · is true
and 0 otherwise, let:

• aij := [tasks i and j perform the same action2].

Also, it is necessary to consider at most T time instants,
where

T :=

|O|X
i=1

(li + di). (1)

The fpga is composed of |U | columns.

2i.e. they can exploit reuse.

3.0.2 Variables
The following variables are defined:

• pihk := [task i is present on the fpga at time h and
the leftmost column it uses is the k-th];

• t̄ih := [the reconfiguration of task i starts at time h];

• mi := [task i exploits module reuse];

• Son
i := arrival time of task i on the fpga;

• Soff
i := last time instant when task i is on the fpga;

• te := overall execution time.

3.0.3 Constraints
The constraints marked with a ∗ are written with the if–

then transformation (see [15]).

Area constraints No more than |U | columns can be used
at any time:

∀h,

|O|X
i=1

|U|X
k=1

pihk · ri ≤ |U |, Area Constraint (2)

Also, a column can’t be used by more than one task at
the same time:

∀h, k,

|O|X
i=1

kX
l=max(k−ri+1,1)

pihl ≤ 1, Non Overlap (3)

The ci − 1 columns to the right of the leftmost column of
a task i can’t be used by another task since they are needed
by i:

|O|X
i=1

TX
h=1

|U|X
k=|U|−ri+2

pihk = 0, Right space (4)

Timing constraints The starting instant is reserved, see
(13):

|O|X
i=1

|U|X
k=1

pi0k = 0, Zero time (5)

The 1’s in pihk are arranged in a column for every task i
for the time it is on the fpga:∗

∀i, h, k,

TX
m=1

0
@

|U|X
l=1

piml − pimk

1
A ≤ T (1−pihk), Same column

(6)
Arrival time must be smaller than or equal to the first

instant for which p is 1:∗

∀i, h, Son
i − h

|U|X
k=1

pihk ≤ T

0
@1−

|U|X
k=1

pihk

1
A , Arrival time

(7)
Leaving time must be greater than or equal to the last

instant for which p is 1:

∀i, h, Soff
i ≥ h

|U|X
k=1

pihk, Leaving time (8)

The tasks cannot disappear and reappear from the fpga:

∀i,

TX
h=1

|U|X
k=1

pihk = Soff
i − Son

i + 1, Continuous usage (9)

We must enforce precedences:

∀(i, j) ∈ P, Soff
j − lj ≥ Soff

i , Precedences (10)

Reconfiguration constraints If a task does not exploit
reuse, then it must be on the fpga for at least3 the time
necessary for reconfiguration and execution:∗

∀i, di + li−
TX

h=1

|U|X
k=1

pihk ≤ T ·mi, Reconfigured time (11)

Reconfiguration starts as soon as the task is on the fpga:∗

∀i, Son
i −

TX
h=1

h · t̄ih = T · mi, Rec. start

Only one reconfiguration can take place at a time:

∀h,

|O|X
i=1

hX
m=max(1,h−tr

i +1)

t̄im ≤ 1, Single rec. (12)

A task can exploit module reuse at time h if and only if
at time h− 1 there is in the same position the same task or
an equivalent task:∗

∀i,∀h,∀k, 1−
|O|X

j=1,j 6=i

aij · pj(h−1)k − pi(h−1)k+

−T · (1− pihk) ≤ T · (1− mi), Reuse

(13)

If a task does exploit reconfiguration, it has to remain on
the fpga at least for the execution time:∗

∀i, li −
TX

h=1

|U|X
k=1

pihk ≤ T (1− mi), Reused time (14)

The reconfiguration time is unique. If there is task reuse,
it is not defined:

∀i,

TX
h=1

t̄ih ≤ 1− mi, No reconfiguration (15)

Definition of te

∀i, te ≥ Soff
i , te ≤ T (16)

3.0.4 Objective

min te (17)

4. EXPERIMENTAL RESULTS
To show the importance of a reconfiguration aware sched-

uler, the solutions obtained solving the ilp proposed in Sec-
tion 3 are compared with the ones obtained solving the mod-
ified ilp formulation presented in [11]. In [11] Dutt presents
an ilp model that describes a scheduler for HW/SW-Codesign
based system, thus, it needs to be modified to allow a schedul-
ing for only dynamically partially reconfigurable hardware

3Reconfiguration prefetching is allowed

Table 1: ILP results comparison

Task Graph TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

Proposed ILP 17 22 16 15 21 22 17 18 26 23
Dutt ILP 21 25 22 25 28 22 24 23 31 32

architectures, in particular fpgas. This is done by forcing
all the tasks to be executed in hardware. This new ilp ex-
ploits the configuration prefetching techniques, but does not
consider the module reuse concepts. It is simple to under-
stand that the ilp proposed in Section 3 will obtain results
in terms of schedule length better or at least equal to those
obtained with the Dutt ilp formulation. Table 1 presents
results obtained scheduling ten different task graphs with
the two ilp formulations.

The task graphs used to obtain these results have been de-
signed manually, and each one has ten tasks. To make the
ilps feasible to be solved, the maximum execution time for
a task has been set to 5, while the maximum reconfiguration
time to 3; furthermore, the fpga where the tasks are sched-
uled has only 5 columns (except for Ten7 and Ten8 where
the columns are 6). This kind of graphs does not represent
any realistic specification, but are useful to understand how
module reuse can affect the schedule length. Table 1 shows
that the proposed ilp formulation obtains results sometime
much better than the Dutt one, but in some cases this gap
can be small or even null: in Ten6, for instance, even using
module reuse the task graph characteristics do not allow for
a better schedule.

The examples proposed in this section consider only very
small task graphs and fpgas: this is done to limit the ex-
ecution time of the ilp solver. Even for these graphs the
solver needs several days of work: this is a proof of the un-
feasibility of using an ilp scheduler for real applications, and
the need to develop heuristic approaches that can however
benefit from the ILP model for their definition.

5. CONCLUSIONS AND FUTURE WORK
The aim of this work was to develop an ilp model for the

problem of scheduling a task graph on a partially dynami-
cally reconfigurable architecture. This model takes into ac-
count all the possible features exploitable on this kind of
architectures: configuration prefetching, module reuse and
anti-fragmentation techniques. The results show how the
joined use of all these techniques can considerably improve
the schedule length.

6. REFERENCES
[1] Xiao ping Ling and Hideharu Amano. Performance

evaluation of wasmii: a data driven computer on a virtual
hardware. In Arndt Bode, Mike Reeve, and Gottfried Wolf,
editors, PARLE, volume 694 of Lecture Notes in Computer
Science, pages 610–621. Springer, 1993.

[2] William Fornaciari and Vincenzo Piuri. Virtual fpgas:
Some steps behind the physical barriers. In IPPS/SPDP
Workshops, pages 7–12, 1998.

[3] João M. P. Cardoso. On combining temporal partitioning
and sharing of functional units in compilation for
reconfigurable architectures. IEEE Trans. Computers,
52(10):1362–1375, 2003.

[4] João M. P. Cardoso and Horácio C. Neto. Compilation for
fpga-based reconfigurable hardware. IEEE Design & Test

of Computers, 20(2):65–75, 2003.
[5] Meenakshi Kaul, Ranga Vemuri, Sriram Govindarqjan, and

Iyad Ouaiss. An automated temporal partitioning and loop
fission approach for fpga based reconfigurable synthesis of
dsp applications. In DAC ’99: Proceedings of the 36th
Annual Conference on Design Automation (DAC’99),
pages 616–622. IEEE Computer Society, 1999.

[6] Joo M. P. Cardoso. Loop dissevering: A technique for
temporally partitioning loops in dynamically reconfigurable
computing platforms. In IPDPS ’03: Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS’03), page 181.2. IEEE Computer
Society, 2003.

[7] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Parlgran:
parallelism granularity selection for scheduling task chains
on dynamically reconfigurable architectures. In Proceedings
of Asia and South Pacific Design Automation Conference,
ASP DAC, January 2006.

[8] K. Jafri, N. Jafri, and S. Khan. Constraint based temporal
partitioning model for partial reconfigurable architectures.
In Proceedings of IEEE INIMIC, pages 242–246, 2003.

[9] S. Ghiasi and M. Sarrafzadeh. Optimal reconfiguration
sequence management. In Proceedings of Asia South
Pacific Design Automation Conference, ASP DAC, pages
359–365, 2003.

[10] S. Banerjee, E. Bozorgzadeh, and N. Dutt.
Physically-aware hw-sw partitioning for reconfigurable
architectures with partial dynamic reconfiguration. In DAC
2005, pages 335–340, June 2005.

[11] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Integrating
physical constraints in hw-sw partitioning for architectures
with partial dynamic reconfiguration. In IEEE Transaction
on very large scale integration systems, 14(11):1189–1202,
November 2006.

[12] M. Kaul and R. Vemuri. Temporal partitioning combined
with design space exploration for latency minimization of
run-time reconfigured design. In Proceedings of Design,
Automation and Test in Europe Conference and
Exhibition, pages 202–209, DATE 1999.

[13] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Considering
run-time reconfiguration overhead in task graph
transformation for dynamically reconfigurable
architectures. In Proceedings of the 13th annuals IEEE
Symposium on Field-Programmable Custom Computing
Machines, FCCM’05, 2005.

[14] J. Resano et al. Specific scheduling support to minimize the
reconfiguration overhead of dynamically reconfigurable
hardware. In DAC’04, June 2004.

[15] Wayne L. Winston. Introduction to Mathematical
Programming: Applications and Algorithms. Duxbury
Resource Center, 2003.

