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Abstract: Task-space cooperative tracking control of the networked multiple Euler–Lagrange systems
is studied in this paper. On the basis of establishing kinematic and dynamic modeling of a Euler–
Lagrange system, an innovative task-space coordination controller is designed to deal with the
time-varying communicating delays and uncertainties. First, in order to weaken the influence of the
uncertainty of kinematic and dynamic parameters on the control error of the system, the product
of the Jacobian matrix and the generalized spatial velocity are linearly parameterized; thus, the
unknown parameters are separated from known parameters. The online estimation of uncertain
parameters is realized by designing parameters and by proposing new adaptive laws for the dynamic
and kinematic parameters. Furthermore, to describe the transmission of time-varying delay errors
among networked agents, a new error term is introduced, obtained by adding the observation error
and tracking error, and the coefficient of the network mutual coupling term related to the time-varying
delay rate is added with reference to the generalized space velocity and task-space velocity of the
Lagrange systems. In the end, the influence of the time-varying delay on the cooperative tracking
control error of the networked multiple Euler–Lagrange systems is eliminated. With the help of
Lyapunov stability theory, the tracking errors and synchronization errors of this system are calculated
by introducing the Lyapunov–Krasovskii functional; the asymptotic convergence results rigorously
prove the stability of the adaptive cooperative control systems. The simulation results verify the
excellent performance of the controller.

Keywords: cooperative tracking control; parameter adaptive law; time-varying delay; networked
multiple Euler–Lagrange systems; task-space velocity

1. Introduction

With the rapid development of mobile internet technology, multiagent systems found
applications in many fields, such as unmanned aerial vehicle swarm [1], sensor net-
work [2], data fusion [3], multi-manipulator systems [4], parallel computing [5], multi-robot
systems [6], traffic vehicle clusters [7], and network resource allocation [8]. Generally, the
dynamic performance of these systems is described by the Lagrange equation, and they
are collectively referred to as Euler–Lagrange systems [9]. To cooperatively accomplish an
overall task, efficient teamwork among multiple agents is required. Therefore, team control
of multiagent systems has become a hot research topic.

In the last few years, research hotspots related to networked Euler–Lagrange sys-
tems mainly involved consistency (cooperative) research [10], formation control [11], and
flocking motion control [12]. In addition, the control problem under different network
topologies also received great attention [13], such as directed graphs, undirected graphs,
and switching topology.

In recent years, scenarios that require multiple agents to cooperate to complete a
certain overall control task continued to emerge. In [9], distributed finite-time coordination
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control for networked Euler–Lagrange systems under directed graphs was studied. In order
to achieve the desired cooperative control goal in limited time, distributed synchronous
control and the distributed inclusive control were adopted simultaneously, and the results
were verified by simulation. The authors of [14] addressed a robust, adaptive finite-time
tracking control scheme for Euler–Lagrange systems. First, the scheme used a Gaussian
error function to approximate the input saturation non-linearity, and then the lumped
uncertainty term caused by uncertain model parameters and external disturbances was
expressed in a linear parametric form with a single parameter. Finally, a new robust
adaptive tracking control law was designed to solve the tracking control problem of
uncertain Euler–Lagrange systems. Simulation results demonstrate that the proposed
control scheme has finite-time convergence speed, as well as robustness to uncertainties
and unknown disturbances. Huang Yi et al. [15] studied the problem of fully distributed
event-triggered optimal coordinated control for multiple Euler–Lagrange systems. In order
to achieve the goal of minimizing the global cost function in a distributed manner, this
study introduces a new auxiliary system as a reference model when the model parameters
of the Euler–Lagrange system are unknown. Its output converges exponentially to the
optimal solution of the global cost function.

With the continuous progress of computer image processing technology, cooperative
control gradually transferred from the configuration space to the task space, while visual
servo control attracted more and more attention, and the design of visual servo controllers
defined in the task space became a research hotspot in this field [16–19]. In the task space,
homogeneous transformation is often required when designing a controller according to
the system’s kinematic and dynamic model. Unfortunately, in many real industrial envi-
ronments, these dynamic and kinematic parameters can be difficult to obtain or can exhibit
uncertainty. However, cooperative control is an effective method to deal with these uncer-
tainties. The authors of [20] proposed a new adaptive synchronous control (ASC) scheme
for the uncertainties of the system model of a cable-driven parallel robot (CDPR) and the
problems of multicable coordination. In addition to the tracking error, a new synchroniza-
tion error was introduced to describe the coordinated motion relationship between adjacent
cables. The adaptive rates were designed according to the linear expressions of kinematic
and dynamic models. Simulation results show that the proposed scheme simultaneously
suppresses the uncertainty of kinematics and dynamics, adjusts the coordinated motion of
multiple cables, and completes the high-precision tracking task. The authors of [21] studied
the tracking problem of a class of heterogeneous linear minimum-phase discrete-time
multiagent systems (MASs). By introducing distributed adaptive observers and reference
models, the complex cooperative tracking problem of an unknown heterogeneous MAS was
transformed into a reference model-to-leader cooperative tracking problem and a locally
robust model reference adaptive control problem. Simulation results show that the tracking
errors between the outputs of all agents and the leader’s output converge to a residual
set under the designed adaptive controller. The authors of [22] proposed a hierarchical
distributed control scheme, based on local and global information, to achieve the optimal
solution of the team objective function, which was used to solve the optimal consistency
problem of a group of integrator systems with dynamic uncertainty. The scheme designed
an optimal control law based on the neighbor information and local cost function gradient
for each agent, and a compensator was derived using the Lyapunov redesign technique to
deal with dynamic uncertainties. At the same time, the optimal controller was strengthened
by introducing the state difference between neighbors into the compensator. Simulation
results show that this scheme ensures the asymptotic convergence of the system in the
sense of stability.

In reality, if communication links are unreliable, or the bandwidth is limited, commu-
nication flows are, inevitably, delayed. Thus, the communication delay has an important
effect on the consistency and synchronization of multiple Euler–Lagrange systems. The
authors of [23] proposed a framework for designing robust controllers for a class of non-
linear-networked control systems using non-periodic feedback information. In order to
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solve the uncertainty problem in system dynamics, a linear robust control law was derived
using optimal control theory, and two different closed-loop systems were considered. In
order to save the network bandwidth, the state and input information was transmitted
periodically in the feedback loop, the event-triggered control technology was adopted to
reduce the transmission cost, and two different event-triggered robust control laws were
derived to stabilize the uncertain nonlinear system. The simulation results show that the
designed event-triggering controller satisfies the tradeoff between control performance
and network bandwidth saving in the case of uncertainty. The authors of [24] studied the
network control system used for remote control and monitoring of large complex systems,
and they proposed a method of real-time detection and estimation of delayed switching
attack, based on Lyapunov theory. A secure control strategy was designed to reduce the
influence of delayed switching attack in real time and the influence of network delay on
communication between agents. The stability of the secure control system was studied
using Lyapunov theory. The performance and security control strategy of the proposed
delay switching attack estimator were evaluated using simulations and semi-hardware
environments. The authors of [25] studied the distributed tracking control problem of mul-
tiple Euler–Lagrange systems with time-varying delays considering full-state constraints
and input saturation. First, a distributed observer was designed, such that the follower
could obtain the leader’s time-varying information. Then, the barrier Lyapunov function
technique was used to enable the system error to converge to a certain range, and the
influence of control input saturation was overcome using the inverse winding method.
Numerical simulation results verify the effectiveness of the algorithm. The authors of [26]
studied the consistency of topological interaction groups under communication constraints
and time delays. In the case of low noise, a sufficient condition for the stability of the
consensus process was given. In addition, this paper also analyzes more complex cases,
where noise and finite data rates worked together, revealing that the consensus process is
degraded when the data rate is reduced.

From the above analysis, it can be seen that the following problems need to be solved in
networked Euler–Lagrange systems: uncertainty in dynamics and kinematics, time-varying
communication delays, and the measurement of the task-space velocity. When these
problems are coupled, designing a suitable controller to realize cooperative synchronization
of multiple agents is difficult. This paper mainly contributes to the literature as follows:
(1) a cooperative tracking controller is designed for networked, uncalibrated multiple
Euler–Lagrange systems with a strongly connected communication graph; (2) task-space
synchronization control considering time-varying communication delay is studied; (3) the
coupling effects of uncertainty, time-varying communication delay, and task-space velocity
are considered.

2. Research Foundation

Lemma 1 (Barbalat Lemma) [27]. Suppose ∅ : [0, ∞)→ R is a uniformly continuous function,
and lim

t→∞

∫ t
0 ∅(τ)dτ exists and is finite; then, there is ∅(t)→ 0 when t→ ∞ .

Lemma 2 [27]. When the following conditions are true, i f t→ ∞, then the function V(x, t)→ 0 :

1. The lower bound of V(x, t) exists;

2.
.

V(x, t)is negative semi-definite;

3.
.

V(x, t) is bounded.

2.1. Algebraic Graph Theory

When there is a directed path between any two vertices of a graph, the network
topology is strongly connected.

In this paper, the network was composed of N Euler–Lagrange systems, and its topol-
ogy was a directed digraph with strong connections. A directed graph is represented by
the notation G(V, E), where V denotes non-empty vertex sets representing the nodes in the
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network, and E ∈ V×V denotes the edge set describing the signal communication between
the nodes of the directed graph. In addition, the edge (i, j) represents the communication
path from j to i. When there is a directed path between any two vertices of a graph, the
network topology is strongly connected [28]. The set of neighbor nodes of the i-th node can
be represented by Ni = {j|(i, j) ∈ E}. Matrix W =

[
wij
]

represents the weight applied to
the directed paths. Here, i f j ∈ Ni, then wij > 0; otherwise, wij = 0. We assume that one
node only transmits the state signals to nodes other than itself (i.e., i /∈ Ni). Therefore, if
i ∈ V, then wij = 0. The Laplacian matrix L =

[
lij
]

can be defined as follows:

lij =

 ∑
j∈Ni

wij i = j

−wij i 6= j
(1)

For a strongly connected network, L satisfies Lemma 3.

Lemma 3. If the Laplace matrix of a strongly connected topological network is L, then there exists a
positive vector γ =

[
γij,1, γij,2, . . . , γij,N

]T
(γi > 0 ∀i ∈ {1, . . . , N} ),which makes the following

formula true:

γT L = 0 (2)

2.2. Modeling of Euler–Lagrange Systems

A multiple Euler–Lagrange system includes N Euler–Lagrange subsystems.
xi(t) ∈ Rm(i = 1, . . . , N) represents the task-space position vector of the i-th subsystem,
where m represents the dimensions of the position coordinate. On the basis of the kinematic
characteristics of the Euler–Lagrange subsystem, the task-space position xi(t) satisfies

xi(t) = fi(qi(t)) (3)

where qi(t) ∈ Rn represents the generalized coordinate position vector of the i-th Lagrange
subsystem, n represents the generalized coordinate dimension, and fi(∗) represents the
non-linear mapping from the generalized coordinate position to the task-space position,
which satisfies

fi(qi(t)) =
(

R P
0 1

)
qi(t) (4)

where R is the rotation matrix, and P is the translation vector.
Differentiating Equation (3) yields the task-space velocity [29].

.
xi = Ji(qi(t))

.
qi(t) (5)

where Ji(qi(t)) represents the relation between the generalized coordinate space veloci-
ties and task-space velocities of the i-th Euler–Lagrange subsystem, and it describes the
kinematic properties.

A Euler–Lagrange system generally has multiple degrees of freedom, e.g., the joint
angle dimension of a manipulator. The generalized coordinate space is its joint angle
space. It is noteworthy that the kinematic relationships become more and more complex
with the increase in dimensions. These complex kinematic relations are included in the
Jacobian matrix expressed macroscopically. In fact, the Jacobian matrix has the properties
described below [29].

Property 1: The kinematic equation (Equation (5)) is linearly parameterized and the
following form is obtained:

Ji(qi(t))
.
qi(t) = Yk,i

(
qi(t),

.
qi(t)

)
θk,i (6)
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where Yk,i
(
qi(t),

.
qi(t)

)
denotes the kinematic regression matrix, and θk.i denotes the un-

known kinematic parameter vector, which is constant.
For ease of expression, we abbreviate qi(t) to qi and Ji(qi(t)) to Ji. Furthermore, accord-

ing to the Euler–Lagrange Equations (2)–(7), the dynamic equation of the i-th subsystem
can be obtained as follows:

Hi(qi)
..
qi +

[
1
2

.
Hi(qi) + Ci

(
qi,

.
qi
)] .

qi + gi(qi) = τi (7)

where τiεRn×1 represents the control input vectors of the i-th Euler–Lagrange subsystem
(e.g., the joint torque input for the i-th manipulator), Hi(qi) ∈ Rn×n represents the sym-
metric positive definite inertia matrix, 1

2

.
Hi(qi) + Ci

(
qi,

.
qi
)

is the Coriolis and centrifugal
matrix, Ci

(
qi,

.
qi
)

is the skew-symmetric matrix, and gi(qi) represents the gravitational force.
Any vector Ψ∈ Rn with proper dimensions satisfies

ΨTC
(
q(t),

.
q(t)

)
Ψ = 0 (8)

This property plays a crucial role in the subsequent analysis. Meanwhile, the dynamic
equation (Equation (7)) satisfies the property described below.

Property 2: The following equations can be obtained by linearly parameterizing the
dynamic Equation (7) of the i-th subsystem.

Hi(qi)
..
ξ i +

[
1
2

.
Hi(qi) + Ci

(
qi,

.
qi
)] .

ξ i + gi(qi) = Yd,i

(
qi,

.
qi,

.
ξ i,

..
ξ i

)
θd,i (9)

where
..
ξ i,

.
ξ i Rn×1; Yd,i

(
qi,

.
qi,

.
ξ i,

..
ξ i

)
Rn×p3 represents the dynamic regression matrix, and

θd,i Rp3×1 is the unknown dynamic parameter vector, which is constant. Here, p3 represents
the number of unknown parameters, which is related to the dimension of the generalized
coordinate vector.

2.3. Description of the Problems and Control Objectives

This paper focuses on networked multiple Euler–Lagrange systems, where the network
adopts a strongly connected directed topology, and its switching link between subsystems
contains bounded time-varying delay dij from node j to i. We took the slow time-varying

delay communication system as the research object, with a delay change rate
.
dij less than or

equal to 1. The kinematic and dynamic parameters (θk,i and θd,i) of Euler–Lagrange systems
are usually unknown.

The overall goal of this paper was to realize the asymptotic tracking of the collectively
expected task-space trajectory of all Euler–Lagrange subsystems by studying the task-space
coordination tracking controller and its control algorithm with excellent performance.

3. Design of Task-Space Cooperative Tracking Controllers

From the above analysis, it can be seen that the Jacobian matrix Ji composed of the
kinematic parameters is unknown. In order to solve this problem, our method involves
using its estimated matrix Ĵi to design the controller. According to Equation (6), the
following formula can be obtained:

Ĵi
.
qi = Yk,i

(
qi,

.
qi
)
θ̂k,i (10)

According to Equation (10), the product Ĵi
.
qi consists of two parts: Yk,i

(
qi,

.
qi
)

represents
the regression matrix, whereas the parameter vector θ̂k,i is the estimate of θk,i, which can be
estimated in real time using an adaptive law. On the basis of Ĵi, we propose the following
observers to estimate the task-space velocity:

.
x̂i(t) = (I + Kα,i) Ĵi

.
qi + (βiKα,i − αi I)∆̃xi(t)− Kα,i

.
xd + 2βiKα,i∆xi(t) (11)
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where Kα,i = K−1
3,i K2,i; K2,i ,K3,i denotes the control gain matrices,∆̃xi(t) = x̂i(t) − xi(t)

represents the observation errors, ∆xi(t) = xi(t)− xd(t) represents the tracking errors, and
α, β represent the positive constants.

Furthermore, by differentiating ∆̃xi(t) = x̂i(t) − xi(t), the estimate of the velocity
error can be obtained as follows:

∆̃
.
xi(t) =

.
x̂i(t)−

.
xi(t)

= Kα,i Ĵi
(
qi,

.
qi
) .
qi + (βiKα,i − αi I)∆̃xi + Yk,i

(
q,

.
q
)
∆θk,i − Kα,i

.
xd + 2Kαβi∆xi(t)

(12)

where ∆θk,i = θ̂k,i − θk,i. Furthermore, according to the description of the problem, we
need to consider the slow time-varying delay dij(t) from node j to i, which satisfies the
following relationship:

.
dij(t) ≤

.
dij ≤ 1 (13)

where
.
dij(t) represents the time-varying delay rate, and

.
dij represents the upper bound

of
.
dij(t). According to the above analysis, the reference generalized space and task-space

velocities can be defined as follows:
.
xr,i =

.
xd − βi∆x̂i − ∑

jεNi

wij
[
γij,1∆x̂i − γij,2∆x̂j

]
.
qr,i = Ĵ+i (qi)

.
xr,t

γij,1 = 1−
.
dij
2 , γij,2 = 1−

.
dij

(14)

where Ĵ+i (qi) denotes the pseudo-inverse of Ĵi(qi), ∆x̂j is abbreviation of ∆x̂j
[
t− dij(t)

]
=

x̂j
[
t− dij(t)

]
− xd

[
t− dij(t)

]
, γij,1, γij,2 are the gain coefficients of the network mutual

coupling term related to the time-delay rate, and ∆x̂i(t) = x̂i(t)− xd(t) is the estimated
tracking error.

Note that, in order to guarantee asymptotic convergence in the synchronization
error [30], the mutual coupling term is considered in Equation (14). Compared with
the literature [31], the reference generalized space velocities and the reference task-space
velocities of Euler–Lagrange systems proposed in this paper include the gain coefficients
related to

.
dij(t). Its key function is to ensure that the controller achieves good performance

in the presence of time-varying delay.
In addition, differentiating Equation (14) gives the following result:

..
xr,i =

..
xd − βi∆

.
x̂i − ∑

jεNi

wij

[
γij,1∆

.
x̂i − γij,2∆

.
x̂j

]
..
qr,i =

.
Ĵ
+

i (qi)
.
xr,i(t) + Ĵ+i (qi)

..
xr,i(t)

(15)

In the above analysis, a generalized spatial reference velocity was defined in order
to carry out stability analysis. Referring to the setup method of the sliding mode vector
in [32–34], a generalized spatial velocity sliding mode vector for Euler–Lagrange systems
can be defined as follows:

Sq,i =
.
qi −

.
qr,i (16)

By comprehensively deriving Equations (10)–(16), the following formula can be obtained:

ĴiSq,i = ∆
.
xi + βi∆x̂i + Yk,i

(
qi,

.
qi
)
∆θk,i + ∑

j∈Ni

wij
[
γij,1∆x̂i − γij,2∆x̂j

]
(17)

where ∆θk,i represents the estimation error of unknown parameters, ∆θk,i = θ̂k,i − θk,i.
By introducing Equation (17) into Equation (11), the following formula can be obtained:

∆̃
.
xi(t) = Yk,i

(
qi,

.
qi
)
∆θk,i − αi∆̃xi + Kα,i ĴiSq,i + Kα,iβi∆xi(t)

−Kα,i ∑
jεNi

wij
[
γij,1∆x̂i − γij,2∆x̂j

] (18)
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Above, we analyzed the uncertainty in kinematics; next, we focus on the uncertainty
in dynamics. According to Property 2, we can also estimate the dynamic parameters by
following a similar method to that used for estimating the kinematic parameters.

Ĥi(qi)
..
qi +

[
1
2

.̂
Hi(qi) + Ĉi

(
qi,

.
qi
)] .

qi + ĝi(qi) = Yd,i
(
qi,

.
qi,

..
qi
)
θ̂d,i (19)

where θ̂d,i represents the estimation vectors of unknown dynamic parameters,
and Ĥi(qi), Ĉi

(
qi,

.
qi
)
,ĝi(qi) represents the estimation of the corresponding matrices and

vectors of dynamic equations.
Our proposed cooperative controller is shown below.

τi = Yd,i

(
qi,

.
qi,

.
qr,i,

..
qr,i

)
θ̂d,i − K1,iSq,i − ĴT

i K2,i∆x̂i(t) (20)

where K1,i, K2,i are control gain matrices of the i-th Euler–Lagrange subsystem. The block
diagram of the cooperative controller is shown in Figure 1.
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After substituting Equation (20) into Equation (7), the following equation can be obtained:

Hi
..
qi +

[
1
2

.
Hi + Ci

]
.
qi + gi(qi) = Yd,i θ̂d,i − K1,iSq,i − ĴT

i K2,i∆x̂i(t)

By adding the term (−Yd,iθd,i) to the two sides of the above equation, we obtain the
following equation:

Hi
..
qi +

[
1
2

.
Hi + Ci

]
.
qi −Yd,iθd,i + gi(qi) = Yd,i[θ̂d,i − θd,i]− K1,iSq,i − ĴT

i K2,i∆x̂i(t)

Since ∆θd,i = θ̂d,i − θd,i, the following formula holds:

Hi
..
qi +

[
1
2

.
Hi + Ci

]
.
qi −Yd,iθd,i + gi(qi) = Yd,i∆θd,i − K1,iSq,i − ĴT

i K2,i∆x̂i(t)

Substituting Equation (16) into the above equation, the following equation can be obtained:

Hi
.
Sq,i +

[
1
2

.
Hi + Ci

]
Sq,i + Hi

..
qr,i +

[
1
2

.
Hi + Ci

] .
qr,i + gi(qi)−Yd,i∆θd,i

= Yd,i∆θd,i − K1,iSq,i − ĴT
i K2,i∆x̂i(t)
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After substituting Equation (9) into the above equation, the closed-loop system is
given by Equation (21).

Hi
.
Sq,i +

[
1
2

.
Hi + Ci

]
Sq,i = Yd,i∆θd,i − K1,iSq,i − ĵT

i K2,i∆x̂i (21)

where we abbreviate Hi(qi) as Hi, Ci
(
qi,

.
qi
)

as Ci and Yd,i

(
qi,

.
qi,

.
qr,i,

..
qr,i

)
as Yd,i;

∆θd,i = θ̂d,i − θd,i is the estimation error of unknown dynamic parameter vectors.
We propose the adaptive laws for θk,i and θd,i as follows:

.
θ̂d,i = −Γ−1

d,i YT
d,i

(
qi,

.
qi,

.
qr,i,

..
qr,i

)
Sq,i (22)

.
θ̂k,i = Γ−1

k,i YT
k,i
(
qi,

.
qi
)[

K2,i∆xi(t)− K3,i∆̃xi(t)
]

(23)

4. Stability Analysis

In this section, we analyze the asymptotic stability of the multiple Euler–Lagrange
systems. For the network Lagrange system, when it has a strong connection communication
topology, we hope that the designed controller (Equation (20)) can not only ensure the
accuracy of the tracking error and synchronization error, but also ensure asymptotic stability
under the cooperation of the adaptive laws (Equations (22) and (23)). Specifically, when
t→ ∞, ∆xi → 0, ∆

.
xi → 0 and (xi − xj)→ 0, (

.
xi −

.
xj)→ 0 , ∀i, j ∈ V, where dij(t) satisfies

Equation (13).
First, we construct a Lyapunov-like positive definite function, as follows:

Vi =
1
2

ST
q,i Hi(qi)Sq,i +

1
2

∆xT
i K2,i∆xi +

1
2

∆̃xT
i (t)K3,i∆̃xi(t) +

1
2

∆θT
k,iΓk,i∆θk,i +

1
2

∆θT
d,iΓd,i∆θd,i (24)

After differentiating Equation (24), the following result can be obtained:

.
Vi = ST

q,i Hi(qi)
.
Sq,i + ∆xT

i K2,i∆
.
xi + ∆̃xT

i (t)K3,i∆̃
.
xi(t) + ∆

.
θ

T
k,iΓk,i∆θk,i + ∆

.
θ

T
d,iΓd,i∆θd,i (25)

Since θd,i and θk,i are constants,
.
θd,i = 0,

.
θk,i = 0, ∆

.
θk,i =

.
θ̂k,i −

.
θk,i =

.
θ̂k,i, and

∆
.
θd,i =

.
θ̂d,i−

.
θd,i =

.
θ̂d,i. By substituting Equations (8), (17), (18), and (21) into Equation (25),

the following formula is obtained:

.
Vi = −ST

q.iK1,iSq,i − βi∆xT
i K2,i∆xi − αi∆̃xT

i K3,i∆̃xi

−∆x̂T
i K2,i ∑

j∈Ni

wij
[
γij,1∆x̂i − γij,2∆x̂j

] (26)

According to the relationship between γij,1 and γij,2 given by Equation (14), Equation (26)
can be rewritten as follows:

.
Vi = −ST

q.iK1,iSq,i − βi∆xT
i K2,i∆xi − αi∆̃xT

i K3,i∆̃xi − ∆x̂T
i K2,i ∑

j∈Ni

wij

[(
1
2
+

γij,2

2

)
∆x̂i − γij,2∆x̂j

]
(27)

For networked multiple Lagrange systems, we introduce the following Lyapunov−Krasovskii
functional (LKF):

V =
N

∑
i=1

ηT
i Vi +

N

∑
i=1

∑
j∈Ni

ηT
i

wij

2

t∫
t−d(t)

∆x̂T
j (s)K2,j∆x̂j(s)ds (28)
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By differentiating Equation (28) and substituting Equations (12)–(14) and (21)–(23), the
following inequality can be obtained:

.
V ≤ −

N
∑

i=1
ηT

i ST
q,iK1,iSq,i −

N
∑

i=1
ηT

i ∆xT
i βik2,i∆xi −

N
∑

i=1
ηT

i αi∆̃xT
i K3,i∆̃xi

−
N
∑

i=1
∑

jεNi

ηT
i wij∆x̂T

i K2,i

[(
1
2 +

γij,2
2

)
∆x̂i − γij,2∆x̂j

]
+

N
∑

i=1
∑

jεNi

ηT
i

wij
2

[
∆x̂T

j K2,j∆x̂j − γij,2∆x̂T
j K2,j∆x̂j

] (29)

Let K2,i=K2,j; with the aid of Lemma 2, the following formula is true:

−
N
∑

i=1
∑

j∈Ni

ηT
i

wij
2

[
∆xT

i K2,i∆xi − ∆xT
j K2,j∆xj

]
=

− ηT
i
2 L
(
∆xT

1 K2,1∆x1 . . . ∆xT
NK2,N∆xN

)
= 0.

(30)

Therefore, Equation (29) can be arranged as

.
V ≤ −

N
∑

i=1
ηT

i ST
q,iK1,iSq,i −

N
∑

i=1
ηT

i βi∆xT
i K2,i∆xi −

N
∑

i=1
ηT

i αi∆̃xT
i (t)K3,i∆̃xi(t)

−
N
∑

i=1
∑

j∈Ni

ηiwij
γij,2

2
[
∆x̂i − ∆x̂j

]TK2,i
[
∆x̂i − ∆x̂j

] (31)

According to Equations (13) and (14), we have
.
dij ≤ 1, γij,2 = 1−

.
dij ≥ 0. Then,

.
V ≤ 0

holds, which means that V has an upper bound. Therefore, Sq,i, ∆xi(t), ∆̃xi(t), ∆θk,i, and
∆θd,i are bounded. Hence, Sq,i, ∆xi(t), ∆̃xi(t), ∆θk,i, and ∆θd,i ∈ L2 ∩ L∞. From Equations

(22) and (23), ∆
.
θk,i, ∆

.
θd,i ∈ L∞ can be derived. Since ∆x̂i(t) = ∆̃xi(t) + ∆xi(t), then

∆x̂i(t) ∈ L∞. Furthermore, from Equation (14), we can conclude that
.
xr,t ∈ L∞,

.
qr,i ∈ L∞.

With Sq,i ∈ L∞,
.
qi ∈ L∞ holds; then

.
xi(t) ∈ L∞, ∆

.
xi(t) ∈ L∞ can be easily deduced.

Since
.
qi, ∆̃xi(t), ∆xi(t) are bounded, we have

.
x̂i(t) ∈ L∞ by means of Equation (11). Due

to the bounded
.
xi(t), ∆̃

.
xi(t) ∈ L∞, it is easy to derive

..
xr,t(t) ∈ L∞,

..
qr,i(t) ∈ L∞ using

Equation (15). From Equation (21),
.
Sq,i ∈ L∞ exists. By differentiating

.
V,

..
V ∈ L∞ can

be derived. Thus,
..
V is bounded. According to Lemma 1, when t→ ∞ ,

.
V → 0 exists.

Therefore, ∆x̂i − ∆x̂j → 0 for i ∈ V, j ∈ Ni as t→ ∞ .
Furthermore, ∆x̂i − ∆x̂j is convergent, which means that ( ∆x̂i − ∆x̂j → 0)

and
(
∆x̂j − ∆x̂j

)
→ 0 , for i ∈ V, j ∈ Ni as t→ ∞ . Similarly,

.
xi −

.
xj → 0 can also be

derived. For strongly connected graphs, there exists xi − xj → 0 ,
.
xi −

.
xj → 0 for i, j ∈ V

as t→ ∞ .

5. Numerical Simulation

To test the performance of the proposed controller, a six-DOF manipulator system in a
strongly connected network was taken as an example for simulation. The image plane was
considered as the task-space. First, the Laplace matrix L is given as follows:

L =



1 −0.5
0 1

0 −0.2
−1 0

0 −0.3
0 0

0 −0.5
0 −1

1 −0.5
−1 3

0 0
0 −1

−0.3 −0.7
0 0

0 0
−0.5 −0.2

1.5 −0.5
0 0.7

 (32)
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The time-varying delays in network communication topology are defined by the
following matrix:

=



0 x
0 0

0 z
y 0

0 m
0 0

0 y
0 x

0 y
y 0

0 0
0 m

z x
0 0

0 0
x z

0 y
0 0

 (33)

where x = 0.3 + 0.5 sin(t/2), y = 0.1 + 0.6 sin(t/2), z = 0.6 + 0.7 sin(t/2), and
m = 0.4 + 0.4 sin(t/2).

From Equations (13) and (14), γij,1 and γij,2 can be obtained as γ12,1 = γ52,1 = γ42,1 =
γ63,1 = 0.75, γ32,1 = γ23,1 = γ43,1 = γ34,1 = γ56,1 = 0.7, γ14,1 = γ51,1 = γ64,1 =
0.65, γ16,1 = γ46,1 = 0.8, γ12,2 = γ52,2 = γ42,2 = γ63,2 = 0.5, γ32,2 = γ23,2 = γ43,2 =
γ34,2 = γ56,2 = 0.4, and γ14,2 = γ51,2 = γ64,2 = 0.3, γ16,2 = γ46,2 = 0.6.

In this simulation, this paper took the two-link manipulator system as an example to
illustrate the problem simply and effectively with the following parameters: connecting
rod length, li,1 = li,2 = 1 m; distance between the center of gravity of the connecting rod
and the first connection, lci,1 = lci,2 = 0.5 m; mass, lm,1 = lm,2 = 0.5 kg; length of the object
to be grabbed, lo,1 = 0.1 m. Since each manipulator is the same, their parameters are also
the same. The vertex at the end of the grasping object away from the grasping point was
chosen as the reference point.

As the actual dynamic parameters are unknown, they are estimated by the linearization
method described in Properties 1 and 2. In the simulation process, we randomly set θd,i and
θk,i which represent unknown dynamic and kinematic parameter vectors, respectively; the
unknown parameter vectors were updated iteratively in real time through the adaptive law,
thus, eventually converging to a constant vector equal to the actual value. The controller
gains are K1,i = 1.35I2, K2,i = 0.75I2, K3,i = 55I2, Γd,i = 0.1I2, Γk,i = I2, αi = 17, βi = 8,
i = 1,. . . ,6. We chose the common expected trajectory on the image plane to be a circle,
where xd,1(t) = 0.50 + 0.1 sin(0.54 + 3t), xd,2(t) = 0.50 + 0.1 cos(0.54 + 3t).

Figures 2–6 show the simulation results, in which the convergence of the position and
velocity tracking errors of the six agents on the X- and Y-axes are shown in Figures 2 and 3,
respectively, and the actual positions of the six agents on the X- and Y-axes are shown
in Figure 4. Figure 5 shows the convergence of the X-axis synchronization error between
the two agents, and Figure 6 shows the convergence of the kinematic parameter estimates
when three different initial values are taken. The results show that the estimated values of
kinematic parameters gradually converge to their actual values over time without being
affected by different initial values.
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Figure 6. Kinematic parameter estimates θ̂k,i when θ̂k,i(0) has three different initial values.
(a) θ̂k,i(0) = θ̂k,i(01), (b) θ̂k,i(0) = θ̂k,i(02), (c) θ̂k,i(0) = θ̂k,i(03).

The research results in this paper were compared with the case in [34], which can
only handle constant communication delay. The synchronization error curve is shown in
Figure 5. Controller 1 was proposed in [31], whereas controller 2 was proposed in this
paper. The simulation results show that the proposed controller (Equation (20)) guarantees
the asymptotic convergence of the synchronization error between agents; hence, networked
Euler–Lagrange systems with time-varying delays can realize synchronization in the task-
space, even in the case of dynamic and kinematic uncertainties.

Note that, when estimating unknown parameters, the variation range of unknown
parameters is generally determined on the basis of engineering experience, and the initial
value of parameter estimation is selected within this range. In this paper, the initial value
of the kinematic parameters of the robotic subsystems was randomly selected within the
range [1,3].

6. Conclusions

First, a novel task-space cooperative tracking control strategy was proposed for net-
worked, uncalibrated, multiple Euler–Lagrange systems with complex characteristics,
including kinematic, dynamic uncertainty, and time-varying communication delay. By
considering the influence of time-varying communication delay, a task-space reference
velocity observer was proposed to solve the problem where the task-space velocity is not
easy to obtain.

Second, adaptive laws for estimating uncertain kinematic and dynamic parameters
were designed. Using these adaptive laws, unknown kinematic and dynamic parameters
can be estimated in real time, so as to ensure that the networked, uncalibrated, multiple
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Euler–Lagrange system can track a collectively expected trajectory in the presence of
time-varying communication delays.

Third, with the help of Lyapunov stability analysis theory, the asymptotic convergence
of the tracking error and synchronization error of the system was proven. Simulation results
show that the proposed task-space cooperative tracking control strategy has good control
performance. This research provides an effective control scheme for the collaborative
control of networked robot systems with complex characteristics, and its results lay a
foundation for the real-time control of multiagent systems in the future.
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