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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsider here passive mechanical wrists, capable of 

imparting a desired dumping matrix to a grasped workpiece. 
Previous work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA112. 131 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas shown how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto select a dumping matrix 
such that an assembly operatwn can be modc force-guided Thc 
passive mechanical wrist is to be progmnvnable - it can adopt a widc 
range of damping matrices - by virtue of a number of t u d e  dampers 
which inrcrconneet the joints. 

We have been studying the range of dmnping matrices that such a 
wrist can adopt. purely by tuning its dampers. We find that a 
redundant wrist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas a broader range of realizable damping matrices 
than a non-re- wrist. 

A kinematic Jacobian relates the task-space damping matrix to a 
similar matrix in the hydraulic space of the tunable dampers (joint- 
space). For redudmt wrists the transformation of damping matrices 
between task-space and joint-space is not straightfonvard. In this 
paper we identify the causal directions along which the 
transformations are linear. We show that the joint-space matrices 
which are obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas linear tranrfonnations of desired task-space 
matrices are all singular. Many realizable joint-space matrices 
(corresponding to a &sired task-space damping matrix) are shown to 
exist which are not discovered by linear transformations. 

- 1.0 BACKGROUND AND MOTIVATION 

The motion with which a robot responds to forces 
encountered during assembly may bring the workpiece closer to 
or farther from correct assembly. We have been studying 
methods of designing the accommodation (inverse damping) 
properties of a grasped workpiece, such that the forces arising 
during assembly always cause motions which move the 
workpiece closer to correct assembly. The design of an 
accommodation matrix for force-guided assembly was 
described in [13]. 

Implementing a suitable accommodation behavior is a 
form of force control 171. Force control schemes in which the 
robot mimics a passive physical system are known to enjoy 
inherent advantages in interactive robotic tasks such as 
automated assembly. Colgate and Hogan showed that onZy a 
passive system remains stable at all frequencies when coupled 
to an arb i t rq  passive environment [3]. Robot controllers may 
emulate a passive system in order to take advantage of this fact 
[I,  11.141. 

Unfortunately, the speed of a softwarecontrolled system 
is limited by the control system bandwidth [17]. This 
motivates the use of mechanical elements, such as springs, 
dampers etc., in order to implement force control. 

One of the best known mechanical devices used for a class 
of assembly tasks is the remote center of complimce (RCC) 
device 1161. Work on the analysis and design of devices with 
desirable compliance, accommodation, or inertia properties 
suitable for different classes of interactive tasks are found in [2. 
6,9,12,13,18]. 

A suitable force control law is task-specific. An 
accommodation matrix that works for a particular task is not 
necessarily useful (in fact it may be detrimental) for another. 
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Therefore, robots must be able to adopt a broad range of 
accommodation matrices in order to perform a variety of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtasks. 

A disadvantage of mechanically implemented force control 
is the loss of simple software programmability. This 
motivates the need for mechanical elements with 
programmable parameters, e.g. spring stiffness, damping 
coefficient etc. For example, Cutkosky and Wright developed a 
programmable RCC wrist for introducing variable compliance 
in a robot [4]. 

We have been studying the range of accommodation 
matrices attainable by coupling the joints of a robot (or more 
practically of a wrist) via a passive network of programmable 
dampers (see Fig. 1). The network directly determines the 
wrist's jo int-space accommodation matrix. This matrix 
describes the force-velocity relationship of the individual 
joints and does not involve their geometry or interconnections. 

Figure I .  A simple parallel 2 MIF passive mechanism. The ports of 
the hydraulic cylinders are interconnected through constrictions 
with tunable damping. 

The accommodation matrix of the workpiece as viewed by 
the environment is called the task-space accommodation 
matrix. This matrix relates the forces on and the velocities of a 
firmly grasped rigid workpiece. The task-space matrix is 
related to the joint-space matrix by the manipulator's Jacobian. 

Our objective is to achieve a wide range of task-space 
accommodation matrices by programming the network of 
dampers that couple the joints. However we find that passive 
networks may adopt only a particular class of accommodation 
matrices [5 ] .  We have proposed kinematic redundancy as a 
means of increasing the range of force control laws that may be 
implemented by a passive device. 



2.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOBJECTIVE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND SUMMARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this paper, we study the relationship between 

accommodation (or damping) matrices in joint-space and task- 
space for passive redundant manipulators. Our analysis can be 
immediately applied to networks of springs (imparting a 
compliance) or of masses (imparting an inertia matrix). 

Just as we use a manipulator's Jacobian matrix to 
transfonn forces and velocities between its joint-space and 
task-space, we can imagine similar transformations between the 
spaces for its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaccommodation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor damping matrices. 

By analogy to the term "forward kinematics." the 
computation of the task-space accommodation matrix from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
given joint-space accommodation matrix will be called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
forward transformation problem. The problem of determining 
the joint-space accommodation matrix from a desired task-space 
matrix will be called the inverse tramformation problem. 

The inverse transformation problem is relevant when. as 
described above, a desired accommodation matrix is specified in 
task-space in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAorder to make an assembly operation forceguided. 
The desired matrix is transformed to the robot's joint space. To 
implement the resulting joint-space accommodation matrix one 
still has to program the network appropriately as described in 
151. 

The tasks-space accommodation (or damping) matrices of a 
manipulator are related to their joint-space counterparts 
through a congruence transformation. This is a linear 
transformation involving the manipulator's Jacobian and is 
sensitive to the manipulator's pose. For non-redundant 
manipulators in non-singular poses, the forward and inverse 
transformations are simple one-to-one mappings between joint- 

For redundant manipulators, however, the transformations 
are not always straightforward. Kinematic redundancy imposes 
constraints on joint-space velocities (in parallel manipulators) 
or forces (in serial manipulators). These constraints give rise 
to preferred causal directions along which linear 
transformations of accommodation and damping matrices may 
take place. The causal directions depend on the structure of the 
manipulator (serial or parallel) as well as on the type of 
matrix being transformed (accommodation or damping). 

For example, in a parallel manipulator, an accommodation 
matrix maps linearly from task-space to joint-space but not in 
the reverse direction. A damping matrix, on the other hand, 
maps linearly from joint-space to task-space. Dual results exist 
for serial manipulators. 

For redundant manipulators some of the transformations 
are many-to-one. For instance, for a serial redundant 
manipulator, many joint-space accommodation matrices map to 
a single task-space matrix. To implement a desired task-space 
matrix, one has a choice of many joint-space matrices, and 
hopefully some of them are realizable by a passive network of 
dampers. 

Unfortunately the causal linear transformations do not 
directly identify all of the corresponding matrices in the case of 
many-to-one transformations. As an example, the inverse 
transformation (which is a linear congruence transformation) 
of a desired task-space accommodation matrix for a parallel 
manipulator yields only one matrix. However, infinitely many 
joint-space matrices exist that also correspond to the given 
task-space matrix. In order to take full advantage of 
redundancy, one must therefore look beyond the linear 
transformation. In the next section we give a simple physical 
example to point out some of the important characteristics 

space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand task-space. 

exhibited by redundant passive mechanisms. Section 4.0 
discusses the nature of force and velocity transformation 
between joint-space and task-space of redundant manipulators. 
An understanding of force and velocity transformation is 
important for identifying the causal directions in which 
accommodations and damping matrices transform. We discuss 
the latter in Section 5.0. Finally, in Section 6.0 we apply our 
results to passive force control. 

3.0 ANEXAMPLE 

Fig. 2 shows a parallel arrangement of two hydraulic 
cylinders that are connected to a massless cart. The cylinders 
have damping coetfiiicnts of dl and 4. This mechanism may be 
thought of as a redundant parallel manipulator with a 1- DOF 
task-space and a 2-DOF joint-space. The joint-space damping 
matrix Dj is a 2x2 diagonal matrix1 with dl and d2 as the 
diagonal elements. The task-space damping matrix Dl (a scalar 
here) is the apparent damping of the cart as seen by the 
environment, which we know to be (dl + 4). 

Although this example may appear a bit trivial, it exhibits 
some important characteristics of redundant mechanisms. For 

1 d2 

. f i  = 

= di 
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Figure 2. A simple parallel mechanism to illustrate the basic features of 

redundant parallel manipulators. 

instance, we can observe many-to-one mapping of damping 
matrices from joint-space to task-space in this manipulator as 
many combinations of dl and d;! give the same Dl . 

4.0 REVIEW OF VELOCITY AND FORCE TRANSFORMATIONS 

4.1 Velocity Transformation for Parallel Manipulators 

The velocity transformation relationship v,-+v, for a 
parallel manipulator is expressed as: 

Jv ,  = ~ j  

where vt is an ( m x l )  task-space velocity vector and v, is the 
corresponding (nx l )  joint-space velocity vector. m and n are the 
degrees of freedom of the task-space and the joint-space 
respectively. For a redundant manipulator n>m and J is an 
(nxm) Jacobian matrix transforming a task-space velocity to a 
joint-space velocity. 

For a redundant parallel manipulator there is one and only 
one joint-space velocity corresponding to a given task-space 
velocity. If the velocities of any m independent joints are 
known, the velocities of rest of the n-m joints are uniquely 
determined. The left nullspace of J correspond to those 

lCmss-coupling of the hydraulic cylinders (not shown in the picture) 
gives rise to the off-diagonal terms in the damping matrix, see [SI 
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velocities which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare physically impossible. The pseudo-inverse 
of the Jacobian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= UTA-' IT may not be used to obtain a vt 
for a given vi unless one restricts the set of joint-space 
velocities to be the physically possible ones. 

Por the manipulator in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, the Jacobian J = [ 1 1IT. The 
dampers must always have equal velocity. The left nullspace of 
J corresponds to physically impossible unequal damper 
velocities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 Force Transformation for Parallel Manipulators 

In our ideal lossless mechaniam, the virtual power in joint- 
space and taak-space are equal. The force transformation.t)A.f~ 
is dual to the velocity transformation expression of (1): 

where 4 is an (nx l )  joint-space force vector, f is the 

Jacobian transpose. 
Equation (2) maps an n-dimensional space (off. ) to a 

smaller m-dimensional space (off, ) in a many-to-one flashion. 
The non-uniqueness of the joint-space forces corresponds to the 
existence of the (n-m)-dimensional null-space of JT. Joint- 
space forces lying entirely in the nullspace of J T  are not 
manifested in the task-space. These are the internal forces in a 
mechanical system. 

Although many joint-space forces may result in a single 
task-space force, a farce applied in the task space of a physical 
system results in a unique joint-space force. The pseudo-inverse 
UT )+ cannot correctly depict thisft+G mapping. Although a 
mapping through the pseudo-inverse produces a uniquefi for a 
given ft. the mapping is based on an ad-hoc mathematical 
assumption that nullspace forces are zero, which is not 
necessarily satisfied by redundant manipulators. 

For the redundant manipulator in Fig. 2, we may write out 
(2) as, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 + 4 2  =ft. where41 and42 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare the forces in the two 
dampers. An unequal joint-space force generated in this 
mechanism (which happens whenever dl # d2) corresponds to a 
non-zero nullspace component. Given onlyfr, it is impossible 
to predict the joint-space forces from (2). However, if we 
know the accommodation properties of the manipulator, we can 
easily computefil. = dl (dl+ d2)-lf,, andr,;! = d2(dl+ d2)-lf, . 
This we do by ustng the velocity constraint (v.1 = v.2) and the 
task-space accommodation matrix (dl + d2)-$. In section 5.1 
we generalize this method to obtain a physically meaningful 
oneto-onefi+fi mapping. 

4.3 Serial Manipulators 

The velocity and force transformation relationships in 
serial manipulators are dual to those in parallel manipulators. 
For serial manipulators the transformation equations are, 

corresponding (mxl) task-space force vector, and J 'r is the 

vt = J v ~  and 4=JTft9 (3) 

where J is an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mat) Jacobian matrix. The mappings of Eq. (4) 
are dual to those in Equations (1) and (2). Note that the 
Jacobian matrix J in a serial manipulator transforms a joint- 
space velocity to a task-space velocity. In a parallel 
manipulator J represeats the inverse transformation. 

Serial redundant manipulators may have infinite number of 
joint-space velocities. all mapping onto a single task-space 
velocity. Joint-space velocities lying in the nullspace of J are 
not manifested in the task-space. There are joint-space force 
constraints in serial redundant manipulators as opposed to 

joint-space velocity constraints in parallel manipulators. The 
left nullspace of J T  (in Eq. 3 above) corresponds to the 
physically impossible forces which would require infinite joint 
velocities. 

5.0 TRANSFORMATIONS OF ACCOMMODATION AND 
DAMPING MATRICES 

In this section we use the causal transformations equations 
of force and velocity (Equations 1.2. and 3) to obtain the causal 
relationships of acoommodation and damping matrices between 
task-space and joint space of redundant manipulators. Our 
discussion in this section will mainly relate to parallel 
manipulators. 

5.1 Force-Velocity Cycle 

We first start with the two causal kinematic 
transformations I :  vt +vi and JT:f.+f i  as seen in (1) and (2). 
respectively. We have two other hansformations, namely the 
task-space accommodation matrix At :fi+vf and the task-space 
damping matrix D. v+f . These four transformations may be 
simultaneously i&sdatd with the help of a force-velocity 
cycle diagram, as shown in Fig. 3. Mussa-Ivaldi et al. described 
similar causality cycles in biological networks as K-nets [lo]. 
Kim et al. described similar cycles (and named them 
premultiplier diagrams) to derive optimal control strategies 
for redundant manipulators [8] . 

There are two types of parameters in a force-velocity cycle. 
'Zbe first type corresponds to a force vector or a velocity vector. 
This includesfi,fi , v, , and vf . The second type of parameters 
includes the matrices J I JT, Aj , Dj  ,At, and Dt. Each of these 
matrices represents a transformation, and is therefore 
associated with an input vector and an output vector. The 
vector parameters are located at the nodes of the cycle whereas a 
matrix is positioned on the directed arc connecting the input 
and the output vectors. The direction of the arc specifies the 
causality of the mapping. Notice that for non-singular damping 
and accommodation matrices, the relationshipsff-vl a n d p v j  
are bi-directional. The relationships vt +v, and4-+fj  are, on 
the other hand, unidirectional for redundant parallel 
manipulators. This is because the inversion of the non-square 
Jacobian (or its transpose) is not always physically meaningful 

At /- 

Passive 
Parallel Redundant 

Manipulator 

Figure 3. The force-velocity cycle for a passive parallel 
redundant manipulator. The cycle may start from task-space 
velocity or task-space force only. 
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as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe have observed in the last section. These unidirectional 
branches are responsible for specifying the general direction of 
the forcevelocity cycle. 

Since passive systems consist of unpowered joints, they 
may only respond to forces or velocities imparted in the task- 
space. Thus, there are only two starting nodes in the force- 
velocity cycle of passive manipulators (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3). those 
corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvt and f r .  

Now consider the question: What joint-space force f, 
results from a given task-space velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? We are looking for 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvr+fj mapping here. The general rule is to start from the 
given input vector vf , travel in the causal direction (shown by 
the arrowheads) of the force-velocity cycle, get pre-multiplied 
by the encountered matrices until the output vector f. i s  
reached. Following this rule we obtain the desired relationsiip 

Afthough any two vectors may be related this way, only 
those relationships which represent mapping from one of the 
starting vectors are physically meaningful for a passive 
manipulator. For instance, one may express the mapping vJ+vr 
as vr = (At JT D, ) vi Since joint-space velocities are generated 
only as consequences of task-space velocities, and not the other 
way around. v,+vr is not a meaningful mapping for passive 
manipulators. 

The force-velocity cycle also helps in answering a typical 
matrix transformation question such as the following: How to 
compute the task-space damping matrix Dt for a given joint- 
space damping matrix D, ? The representative mapping here is 
D, +Dt. From the force-velocity cycle of Fig. 3, we see that Dr 
represents the mapping v,+fr.  This mapping may be 
represented in an alternative way if we follow the route 
vr-+vJ+4+ft. One may obtain this alternative relationship as, 

f i  =(D. AVt. 

Comparing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) with the relationshi fr = Dr v r ,  we may 

maps a joint-space damping matrix to the corresponding task- 
space damping matrix. 

We complete this discussion by illustrating the force- 
velocity diagram for serial redundant manipulators. As shown 
in Fig. 4 this diagram is dual to that for parallel manipulators. 
It is interesting to note that the general causality direction of 
Fig. 4 is clockwise, which is opposite to that for parallel 
redundant manipulators (Fig. 3). 

5.2 Linear Directions of Matrix Mapping 

derive the well-known expression Dr = J F .  DJ J, which linearly 

There are four different mappings of accommodation and 
damping matrices in a manipulator. These are Dj +Dr, Af+Aj, 
Aj +At, and D+Dj. We will show that for parallel redundant 
manipulators only the first two mappings are linear whereas 
for serial manipulators only the last two are linear. 

From the force-velocity cycles we can see that only if there 
are two different valid routes between two adjacent vectors, we 
get a linear relationship between the associated matrices. For 
example, the mapping D, +Dt was derived (in the last section) 
by observing that there are two different routes from v f  toff. 
One may obtain an Ar+A. mapping by exploiting two different 
routes between4 and v.. $he first route is direct and it involves 
A, only (see Fig. 3). +he other route is along4+fr+vr +v i  
FromFig. 3wegetA j=JArJT.  

One can check that for a parallel manipulator it is impossible 
to obtain the other two linear mappings. A, +Af and Df+D, , 

Serial Redundant 
Manipulator 

JT 

I Aj 

Figure 4. The force-velocity cycle for a passive serial redundant 
manipulator. The cycle may mmmence from task-space velocity 
or task-space force only. 

without inverting the Jacobian. We will show that inversion 
of J or JT produces physically meaningless results. 

For the parallel manipulator in Fig. 2, we can obtain the 
linear relationships , 

D t = d l + d 2  and Aj=[ :: ( 5 )  

where A .  and at are the joint-space and task-space 
accommodation matrices respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat is a scalar in this case. 

a”,], where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
al= lldl and a2= lld2. we can computeAr = D+’ = (JTDj J)-l 

= (llal + l/a*)-l, an Aj +At relationship that is nonlinear. 
If we invert Aj  = JAr  J T  and use At = J+ Aj (JT)’, this 

would produce wrong results. This is because it assumes a 
linear Aj  +At relationship where no such relationship really 
exists. Also the process of pseudo-inversion of Jacobian 
matrices looses the information about task-s ace velocit 

and calculate A, = J+ Aj (JT)+ = 0.25(al +q). One can easily 
check that this result is incorrect. 

For serial manipulators, we have results which follow 
f ”F ig .4 :  AI = J Aj JT andDj = JT Dr J. Theseare the 
only linear relationships between accommodation and damping 
matrices in a serial redundant manipulator. One should 
remember that the Jacobian J in serial manipulators represents 
the v.+v, mapping. 

hotice that for non-redundant manipulators, serial or 
parallel, one may obtain all of the four transformations 

As another example, for a given Aj  = [ 

constraints. We compute J+ = [0.5 0.51 and (J 3! )+ = (J+) ? , 

Dj +Dr, Ar+Aj,Aj +At, and Dr+Dj. 

5.3 Flexibility in Programming a Task-Space Matrix 

Flexibility in programming a task-space matrix in a 
redundant manipulator results from the choice one can have in 
selecting a joint-space force (in parallel) or a joint-space 
velocity (in serial) for desired task-space counterparts. In Fig. 
5 we show how the existence of nullspace forces in a parallel 
manipulator gives rise to a set of joint-space accommodation 
matrices, all of which map to a single task-space 
accommodation matrix. 
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Velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  An abstract illustration depicting the redundancy of 
accommodation matrices in a parallel manipulator. An infinite 
number of combinations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, is equivalent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto a specified At. 

Consider the e f f y t  of a particular task-spa5e 
accommodation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt on a particular task-space force f t .  
%e pnsformation of this force takes place according to vt  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
At f t .  This tas$-space+velocity corresponds to a unique joint- 
space velocity v t  = J v t  . We know that there are an infinite 
number of joint-space forces&, each of which maps to fr under 
the transformation of JT (see Section 4.2). These forces are 
composed of a unique row space component of JT and arbitr 
nullspace components. Fro,m Fig. 5. we can iFfer that any A 
that maps one of t h e 8  to vt is equivalent to At . Consequenth 
we have an infinite number of joint-sgace accommodation 
matrices all of which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare equivalent to At . All different joint- 
space forces that are resulted from a givend by modifying the 
accommodationldamping characteristics in a fixed geometry 
mechanism, have a unique row space component given by 
(JT)'4 = f;. This is true since all t h e 4  must satisfy (2) 
which is a consequence of invariance of power in joint-space and 
task-space. 

Fog a seqal manipulator the situa+tion is reversed. For a 
given ft and vt we will have a unique ft and an infinite number 
of combinations of vi. 

"it 

6.0 APPLICATION 

Recall (from Section I) that our main interest is the 
implementation of passive force control laws by a low-inertia 
unpowered mechanical wrist. A network of programmable 
passive dampers interconnects the joints of this wrist. The 
network of dampers is equivalent to a network of resistors in 
the electrical domain. From electrical network theory, we 
learn that there is a class of conductance matrices (analogous to 
accommodation matrices) for which the resistor values of the 
network may be computed algorithmically. These matrices are 
called domiMnt matrices. The diagonal elements of dominant 
matrices are greater than or equal to the sum of the absolute 
values of all other elements in the same row (or column) [15]. 
Therefore for any desired dominant accommodation matrix in 
the joint-space of a manipulator, one can compute the resistor 
values in algorithmically. 

For a specified task-space accommodation matrix, a set of 
equivalent joint-space matrices exist in a redundant 

manipulator, although not all of them are accessible by the 
linear transformation of the task-space matrices. In fact, we 
show that joint-space matrices that are images of task-space 
matrices under the linear transformation A j  = J At JT are all 
singular matrices of rank m, where m is task-space DOF. This is 
due to the fact that At is of rank m, and no linear congruence 
transformation on it (here, with full rank Jacobians) may 
change the rank of the resulting matrix. Fig. 6 illustrates the 

Dt At 

Ai 

Figure 6. An illustration of the fact that the image of task-space 
accommodation matrices under linear mapping consists of singular 
joint-space accommodation matrices only. Area OD corresponds to 
Aj matrices of rank m. Area 0 correspnds to Aj matrices of rank n. 
Area 0 corresponds to Dj matrices of rank n. Area 0 corresponds 
to Dj matrices of rank less than R. m and n are the task-space DOF 
and the joint-space DOF, respectively. 

transformation of accommodation and damping matrices in 
redundant parallel manipulators. We explain this figure with 
the help of our simple parallel manipulator of Fig. 2. As seen 
in (5 )  every A, which are images of task-space matrices under 
linear transformation are singular (they have equal elements). 
This is a marginally dominant matrix and is implementable. 
These matrices belong to area 8 in Fig. 6. Any matrix of the 

form Aj = [" ] where the specified task-space matrix At = 

(l/al + l / q ) - I  belongs to area @ . There are other non- 
diagonal non-singular accommodation matrices which falls in 
the area €B . For the specified Aj above, area Q will contain 

damping matrices of the form Dj = [ : 2 ] .  Again. there 

will be other non-diagonal non-singular damping matrices in 

the area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. For a given At = Dt-', a typical matrix of area @ is 

0 a2 

of the form Dj = [ iii :;i ] where Dt = dl 1+ 2d1 I + d22 and 
~~ 

dlld22- d122 = 0 (to render Dt singular). 
We give a simple example to demonstrate that for a given 

At equivalent dominant matrices may exist beyond area @. 
This would justify the search for appropriate joint-space 
accommodation matrices which are not attainable by linear 
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transformation of A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ A t JT. Imagine a parallel redundant 
mechanism with three hydraulic cylinders arranged in the same 
pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The Jacobian matrix for the mechanism is J 
= [l 1 l]T. Now, for a given a t  = 3, the joint-space 

accommodation matrix according to (8) is A, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 3 3 . 

This resulting A, is not a dominant matrix, and therefore 
no systematic way for its implementation exists. One can 

nevertheless find out a dominant A j  = 0 9 0 which may be 

easily implemented. This latter matrix belongs to the area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
and it is not linearly related to any task-space matrix. We may, 
however, follow the transformation: A j  -+D,+dt+at to verify 
that the latterAj indeed comsponds to the given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat .  

[: 1 11 
[: 111 

7.0 CONCLUSIONS 

This paper investigated how accommodation and damping 
matrices transform between task-space and joint-space of 
redundant manipulators. 

We found that in parallel redundant manipulators 
infinitely many joint-space forces may map onto a single task- 
space force. The joint-space velocities are, however, subjected to 
constraints, the violation of which would require mechanical 
deformation of the manipulator. In serial redundant 
manipulators. on the other hand, infinitely many joint-space 
velocities may map onto a single task-space velocity. The joint- 
space forces, in this case, are subjected to constraints, the 
violation of which would require infinite joint velocities. 

We have found that redundant manipulators may exhibit an 
increased range of task-space accommodation and damping 
matrices. This makes them valuable for the implementation of 
force control. 

Redundancy dictates the causal directions in which 
accommodation and damping matrices may linearly transform 
between the joint-space and the task-space of a manipulator. 
These causal directions result from inherent constraints on 
joint-space velocity (in parallel manipulators) and force (in 
serial manipulators) imposed by redundancy. 

Joint-space matrices are mapped in a many-to-one fashion to 
the task-space matrices. This provides a manipulator the 
flexibility to choose from a set of joint-space matrices in order 
to achieve a specified task-space matrix. However this is 
complicated by the fact that this mapping is not always linear. 
Also, the linear transformation tbat maps task-space matrices 
to joint-space matrices result in singular joint-space matrices 
only. Therefore one has to look beyond these linear mappings in 
order to exploit the full potential offered by kinematic 
dundancy. 
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