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ABSTRACT In this work, a position control in task space for slider-crank mechanisms is presented. In order
to apply linear controllers it is required to linearize the mechanism dynamics at an equilibrium point.
However, complete dynamic knowledge is needed and the linearization technique gives an oversimplified
model that affects the control performance. In this work, it is proposed a novel method to design task space
controllers without using the complete knowledge of the mechanism dynamics and linearization methods.
From the extended dynamic model of parallel robots, it can be seen that the end-effector (slider) dynamics
is expressed as a linear system that can be used directly for the control design instead of the complete
mechanism linear dynamics. The approach requires a minimal knowledge of the mechanism dynamics and
avoids linearization methods. To verify our approach, it is used pole placement and sliding mode controllers
whose gains are tuned according to the slider dynamics. A linear sensor is mounted at the slider to measure its
position and avoids considering noise and disturbances at links before the slider. Simulations and experiments
are presented to validate our approach using two kinds of slider-crank mechanisms.

INDEX TERMS Slider-crankmechanism, extended dynamicmodel, linear system, controllable, disturbance,
pole placement, sliding mode control.

I. INTRODUCTION

Position control is a well known problem for mechanical
systems, specially in robots manipulators and mechanisms.
The dynamic model of these systems is very non-linear [1],
and the controllers design need to compensate the nonlinear-
ities [2]. To satisfy the control objectives there are developed
different controllers, such as PD+ [3], PID [4], [5], adaptive
[6], [7], sliding mode [7]–[9], neural networks [10], among
others.
Linear controllers such as PD or PD+ [11], [12] do

not guarantee stability in tracking problems, meanwhile
non-linear controllers such as adaptive or sliding mode can
guarantee it [7], [13]. For simplicity, controllers without
non-linear terms are preferred because only depends on state
measures and gain tunings [11], such as linear controllers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nasim Ullah .

There is a wide theory for linear systems [14] to achieve track-
ing tasks, but require a linear robot/mechanism dynamics.

PID control is the most popular controller for industrial
applications. The gain tuning requires knowledge of the com-
plete mechanism dynamics and its linear model obtained
from a linearization method at a point of interest. However
the integral term reduces the bandwidth and can destroy the
closed-loop performance [7], [15]. Other controller widely
used at the literature is sliding mode control (SMC) [8], [9]
where the position control is guarantee by choosing a big
enough gain such that the disturbances are compensated,
however the slidingmanifolds and controller gains are chosen
arbitrarily because the mechanism dynamics is non-linear.

There exist several methods to linearize robot/mechanism
models. The simplest method is when velocity and grav-
ity are neglected, then the Coriolis matrix and the gravity
forces vector are zero [16], however this is an oversimplified
model [11]. If gravity is taken into account, it is obtained
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another way to linearize the dynamics [17], but it has been
shown that the Coriolis effect even at low speeds should be
accounted for [18]. The most used method is Taylor series
expansion [19], but requires the knowledge of the robot
dynamics model. All the above methods make the lineariza-
tion at one operating point or equilibrium point, then the
controller is restricted to areas near that point. In the special
case of mechanisms, the linearization gives an oversimplified
model and many information is lost since all the generalized
coordinates depend on the independent coordinate. For this
reason it is preferred to avoid linearizationmethods for closed
chain mechanisms.
There exists a kind of mechanisms that has a linear move-

ment at its end-effector, which are called slider-crank mech-
anisms [20]. This mechanisms are widely used for machine
tools or molding machines [21] for cutting tasks. One of the
most used slider-crank mechanism is the Whitworth mech-
anism [6], [21], [22] which is of our interest. Generally the
Whitworth mechanism is controlled in joint space [23] such
that the slider is controlled indirectly. Nevertheless, the pre-
cision of the controller is affected by noise measures, joint
clearance and disturbances of the links before the slider [24],
therefore it is preferred to control the mechanism dynamics in
task space. The transformation from joint space to task space
requires the Jacobian matrix. The task space model is more
complex model than the joint space model and does not take
advantage of the linear behavior of the slider.
In this work a novel method to design task space controllers

of slider-crank mechanisms is presented. From the extended
dynamic model is obtained the slider dynamics which is a
simple double integrator system with a constant disturbance
that requires minimal knowledge of the mechanism dynamics
and avoids linearization methods. Also the precision problem
is avoided by using real measures of a linear sensor mounted
at the slider [25]. To prove our approach it is used two well
known controllers, pole placement and sliding mode control,
where its gains are tuned using the slider dynamics and linear
control theory. The controllers are tested in simulations and
experiments in two kind of slider-crank mechanisms. The
results show the effectiveness of our approach.
The paper outline is as follows: Section II shows the

non-linear dynamic model of a 1-degree of freedom (DOF)
slider-crank mechanism and its linear model using Taylor
series approximation; Section III gives the extended dynamic
model of slider-crank mechanisms and the slider dynam-
ics; in Section IV the controllers design (pole placement
and SMC) is presented; Section V gives two examples of
slider-crank mechanisms and their respective control gains
tuning; Section VI shows the experimental results and the
conclusions are given in Section VII.

II. DYNAMIC MODEL OF A 1-DOF CLOSED-CHAIN

SLIDER-CRANK MECHANISM

The dynamic model in joint space of a 1-DOF closed-chain
slider-crank mechanism is of the form:

M (q)q̈+ C(q, q̇)q̇+ G(q) = τ, (1)

whereM (q) ∈ R is the mechanism inertia, C(q, q̇) ∈ R is the
Coriolis term, G(q) ∈ R is the gravitational term, τ ∈ R is
the driven torque and q, q̇, q̈ ∈ R are the position, velocity
and acceleration of the generalized coordinate. In order to
transform the model (1) to task space it is required the slider
Jacobian term ρx(q) ∈ R as:

Mx ẍ + Cx ẋ + Gx = ρ−1
x (q)τ = u, (2)

where x, ẋ, ẍ ∈ R are the position, velocity and acceleration
of the slider. The termsMx ,Cx and Gx are obtained from the
velocity kinematics relation ẋ = ρx(q)q̇. The model (2) does
not consider the main advantage of slider-crank mechanisms,
i.e., the linear movement of the slider. The transformation
from joint space to task space considers all the dynamics
from the input link to the output link and yields a more
complex model in comparison to the joint space model (1).
The model (2) in state space is expressed as

ż =
d

dt

[

z1
z2

]

=

[

z2
−M−1

x (Cxz2 + Gx)

]

︸ ︷︷ ︸

f (z)

+

[

0
M−1
x

]

︸ ︷︷ ︸

g(z)

u (3)

The linear version of the mechanism dynamics is obtained
using Taylor series as follows

ż = Az+ Bu, (4)

where A =
∂f (z)
∂z

∣
∣
∣
z=z(0)

and B =
∂g(z)
∂u

∣
∣
∣
u=u(0)

, z(0) and u(0)

are the linearization points. Also the models (1),(2) and (4)
require knowledge of the complete dynamics and mainly
its parameters for the controller design. However in most
cases we do not have knowledge of the dynamics neither
the parameters for the linear model and controller design,
therefore we need to use identification methods or model-free
controllers to overcome this issue. For system identification,
the parameterization of the mechanism dynamics must be
in joint space and requires knowledge of the kinematics
equations because the secondary variables depends on the
generalized coordinates; on the other hand, the gains of the
model-free controllers need amanual tuning procedure which
is not the aim of this work.

In the following section is shown one special property
of slider-crank mechanisms which helps us in the controller
design and avoids the knowledge of the complete mechanism
dynamics and the use of linearization methods.

III. EXTENDED DYNAMIC MODEL OF A 1-DOF

CLOSED-CHAIN SLIDER-CRANK MECHANISMS

In order to avoid the model (2) and the linear model (4) it
is used the Euler-Lagrange formulation [26] for the extended
dynamic model. The extended dynamic model of a 1-DOF
closed-chain slider-crank mechanism is of the form:

M ′(q′)q̈′ + C ′(q′, q̇′)q̇′ + G′(q′) = ρ
−⊤(q′)τ (5)

where q′ ∈ R
n′
are the extended coordinates whose compo-

nents are the generalized coordinate q and all the n secondary
variables. Here n′ = n + 1. M ′(q′) ∈ R

n′×n′
is the inertia
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matrix, C ′(q′, q̇′) ∈ R
n′×n′

represents the Coriolis and cen-
trifugal terms, G′(q′) ∈ R

n′
is the gravity vector, τ ∈ R is

the control input and ρ(q′) ∈ R
n′
is the extended Jacobian

vector. Notice that (5) is presented with the generalized coor-
dinates q′ instead of using the independent coordinate q. The
extended dynamics is obtained by using the relation

q̇′ = ρ(q′)q̇.

For slider-crank mechanisms, the position of the slider x is
themain control objective and a component of the generalized
coordinate vector, i.e. q′ = [q · · · x]⊤. In matrix form we
have:

M ′(q′) =

[

M (n′−1)×(n′−1) 0n′−1
01×(n′−1) m

]

C ′(q′, q̇′) =

[

C(n′−1)×(n′−1) 0n′−1
01×(n′−1) 0

]

(6)

G′(q′) =

[

Gn′−1
v

]

ρ(q′) =

[

ρn′−1
ρx(q′)

]

(7)

wherem is the slider mass, v is the slider gravity force compo-
nent that depends on themechanism configuration, and ρx(q′)
is the Jacobian component that gives themapping between the
joint velocity q̇ and the slider velocity ẋ. For a task position
control problem, we want to control the slider position to a
desired position, then the control problem simplifies to:

mẍ + v =





n′
∑

i=1

ρ2
i (q

′)





−1

ρx(q
′)τ = u, (8)

the above model only requires knowledge of the slider
mass; also avoids the knowledge of the complete mechanism
dynamics. By using this fact the following proposition is
derived:
Proposition 1: For any slider-crank mechanism controlled

in task space, its dynamics can be simplified as a linear system
of the form (8) without any kind of linearization and minimal
knowledge of its parameters.
The above proposition holds if it is considered that we

have real measures of the slider position x, otherwise the
controller is affected by noise and disturbances of the links
before the slider. It is clear that (8) is a linear system with a
disturbance [27]. In state space we have:

ẋ1 = x2

ẋ2 = bu+ d (9)

where b = 1/m and d = −v/m. In matrix form:

Ẋ =

[

ẋ1
ẋ2

]

=

[

0 1
0 0

]

︸ ︷︷ ︸

A

X +

[

0
b

]

︸︷︷︸

B

u+

[

0
1

]

d

︸ ︷︷ ︸

D

(10)

where X = [x1, x2]⊤. Since it is obtained a linear system it is
possible to use any controller from linear system theory as it
is demonstrated in the following section.

IV. CONTROLLERS DESIGN

It is designed twowell known controllers, pole placement and
sliding mode control. Before starting the controllers design,
it is necessary to verify that the system is controllable. The
controllability matrix of the system (10) is

C =
[

B AB
]

=

[

0 b

b 0

]

(11)

which is full rank since b 6= 0, then the system is controllable.

A. POLE PLACEMENT

We want to design a controller such that the system follows
a desired time-varying reference r ∈ C2. Position error is
defined as:

e = r − x = r − x1 (12)

Since the perturbation v only lies in the gravity force com-
ponent of the slider, then d is bounded by the acceleration of
gravity g = 9.81m/s2. Therefore, the disturbance is known
and can be compensated. The control law is of the form:

u =
1

b
(−d + k1e+ k2ė− r̈) (13)

where k1, k2 > 0. The closed-loop system of (10) under the
control law (13) is:

Ė =
d

dt

[

e

ė

]

=

[

0 1
−k1 −k2

]

E (14)

where E = [e, ė]⊤. Whose characteristic polynomial is:

λ2 + k2λ + k1

the closed loop system is stable and achieve the control
objective by assigning the controller gains strictly positive.
The desired system response can be obtained by:

λ2 + 2ξωnλ + ω2
n = λ2 + k2λ + k1

where ωn is the undamped natural frequency and ξ is the
damping factor. One way to obtain the control gain is by
means of the Ackermann formula [14]. Notice that we can
apply different linear controllers for a non-linear systemwith-
out any kind of linearization.

B. SLIDING MODE CONTROL

If we assume that the disturbance is unknown and bounded,
then a simple way to compensate it is by using sliding mode
control. For the sliding surface design gain C we can use the
Ackermann-Utkin formula [28]. We have that the system in
terms of the error is:

Ė = AE− B(u+ F) + R

s = CE (15)

where R = [0, r̈]⊤, F = B+D and B+ stands for the
Moore-Penrose Pseudo-inverse of B, which verifies that the
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disturbance is coupled to the control. Taking the time deriva-
tive of the sliding surface (15) and equating to zero yields the
equivalent control:

ṡ = C (AE− B(u+ F) + R) = 0

ueq = (CB)−1C (AE+ R) − F (16)

For our control design we have that CB = 1. Then the
closed-loop system under the equivalent control is:

Ė = (I − BC)(AE+ R) (17)

Consider the next Lyapunov function:

V (s) =
1

2
‖s‖2 (18)

Taking the time derivative of V :

V̇ = s⊤ (C(AE+ R) − u− F) (19)

If we choose the control u as:

u = C(AE+ R) + Ksign(s) (20)

then we have:

V̇ = s⊤ (−Ksign(s) − F)

≤ −‖s‖(K − F̄) (21)

where ‖F‖ ≤ F̄ , if we choose K = F̄ + K0, with K0 > 0,
then the time derivative of V is:

V̇ ≤ −K0‖s‖ (22)

We can use more sophisticated algorithms to accomplish the
control objective, but they are not relevant since the purpose
of this work is to show that we can control this type of mech-
anisms using simple linear controllers based on the slider
dynamics.

When the control u in (13) or (20) is applied to the mecha-
nism dynamics, it needs to be transformed into control torque
as:

τ = ρ−1
x (q′)u, (23)

also the Jacobian component can be compensated by using
the Jacobian compensator of our previous work [25]. Here
we do not use the transformation τ = ρx(q)u since we do not
want to control the force of the slider dynamics.

V. SLIDER-CRANK MECHANISM EXAMPLES

In this section two slider-crank mechanisms are analyzed,
whose configuration differs in the location of the slider.

A. WHITWORTH MECHANISM

A widely used mechanism is the Whitworth mechanism
shown in Figure 1.

The generalized coordinate vector is given by q′ =

[q, r3, θ4, θ5, x]⊤, the extended dynamic model is

M ′(q′) =









M11 0 0 0 0
0 M22 0 0 0
0 0 M33 M34 0
0 0 M34 M44 0
0 0 0 0 m6









FIGURE 1. Whitworth mechanism.

C ′(q′, q̇′) =









0 0 0 0 0
0 0 −C23 0 0
0 C23 C33 C34 0
0 0 C43 0 0
0 0 0 0 0









G(q′) =
[

G1 G2 G3 G4 0
]⊤

ρ(q′) =










1
ρr3
ρθ4

ρθ5

−
r2r4 cos(q− θ4) sin(θ4 − θ5)

r3 cos(θ5)










(24)

where m6 is the slider mass, v = 0, and ρx(q′) =

− r2r4
r3

cos(q − θ4) sin(θ4 − θ5) sec(θ5); the other terms are
not relevant for this approach. Finally we have that the slider
dynamic equation is:

m6ẍ = u, (25)

that is a simple double integrator systemwithout perturbation.
The solution of q′ is given in our previous work [25].

B. SIMULATIONS

The simulations are made using Matlab/Simulinkr in a time
of 10 seconds. It is used the slider dynamics (25) to design
the pole placement and sliding mode control. The slider mass
is m6 = 1 kg and there it is not considered any disturbance.
For pole placement controller, it is proposed ω2

n = 15 and
ξ = 1, then:

k1 = 15 k2 = 8.

For the SMC surface design, it is used the Ackermann-Utkin
formula with a desired pole in λ = −10. Then the surface is
given by:

C =
[

10 1
]

.

The desired trajectory is:

r = −0.2 − 0.2 sin(π t) (26)
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The SMC gain is proposed as K = 1 since the desired
trajectory and derivatives are bounded as ‖r‖ ≤ 1.
Figure 2 and Figure 3 show the slider position tracking and

the position error, respectively. Both controllers have good
tracking results, where the pole placement controller presents
more tracking error in comparison to the SMC. The main
reason of this difference is that pole placement control law
uses a feedforward term that depends on the value of b which
affects the controller precision. On the other hand, the SMC
avoids this problem by using a large enough control gain.

FIGURE 2. Position tracking.

FIGURE 3. Position error.

It is used the Integral Squared Error (ISE) to make the
comparisons between both controllers behavior. The ISE is
given by (27)

ISE =

∫ t

t0

(ke(σ ))2dσ, (27)

where k is a scaling factor. It is used a scaling factor of
k = 100, and the integrator is reset in each period of
the sine function to show how the position error decreases.
The ISE result is given in Figure 4 where it is shown that
both controllers achieve the control task by using the slider
dynamics for the gain tuning. The pole placement can be

FIGURE 4. ISE comparisons.

improved by choosing other values for ωn and ξ . SMC
presents good performance since there is no disturbance and
the slider dynamics is compensated. When there exists other
disturbances, the gain of the SMC needs to be large enough
such that ‖K‖ ≥ F̄ .

1) SENSITIVITY ANALYSIS

Our slider dynamics model is very simple, then we can think
that it cannot represent accurately the real dynamics [29].
Therefore the controller cannot guarantee good tracking per-
formance because it was designed according to parameters
that contain parametric error. The robustness of the con-
trollers are tested considering the sensitivity of the control
system to parametric errors [30]. Since the slider dynamics
is a double integrator system we have only one parameter
to evaluate. The parameter b has a random error of 50% of
its real value: b = b + 0.5bζ (t), where ζ (t) is a normally
distributed random function [31].

Figure 5 shows the tracking error of the Whitworth
without/with parametric error. The results show similar

FIGURE 5. Sensitivity analysis. PP = pole placement. 1 without
parametric errors, 2 with parametric errors.
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responses since the parameter b only increases or decreases
the amplitude of the control input. The control gains of the
pole placement controller only depends of the value of b
and since the random error is bounded then it does not
affect the robustness of the controller. However as we already
mentioned, the pole placement uses a feedforward control
term which affects the tracking performance. On the other
hand, SMC has robust performance even the parameter b has
parametric error. The hyperplane gainC is designed such that
it satisfies CB = 1, therefore small variations of b does not
affect the control performance.

C. INVERTED WHITWORTH MECHANISM

The inverted Whitworth mechanism is shown in Figure 6.

FIGURE 6. Inverted whitworth mechanism.

The generalized coordinate vector is given by q′ =

[q, r3, θ3, θ4, y]⊤, the extended dynamic model is

M ′(q′) =









M11 0 0 0 0
0 M22 0 M24 0
0 0 M33 M34 0
0 M24 M34 M44 0
0 0 0 0 m5









C ′(q′, q̇′) =









0 0 0 0 0
0 0 −C23 C24 0
0 C23 C33 C34 0
0 C42 C43 0 0
0 0 0 0 0









G(q′) =
[

G1 G2 G3 G4 m5g
]⊤

ρ(q′) =











1
ρr3
ρθ3

ρθ4
AB sin(2 − 2θ3+θ4)−(AB+ 2r3) sin(q−θ4)

2r−1
2 r3 sin(θ4)











(28)

where m5 is the slider mass, v = m5g, and ρx(q′) =
AB sin(2−2θ3+θ4)−(AB+2r3) sin(q−θ4)

2r−1
2 r3 sin(θ4)

. Finally we have that the

slider dynamic equation is:

m5ÿ+ m5g = u (29)

that is a simple double integrator system with a gravity
perturbation.

VI. EXPERIMENTAL RESULTS

We use an inverted Whitworth mechanism prototype
(see Figure 7) to test our approach with the well known
PID control. The real time environment is Matlab/Simulinkr

using a Sensoray model 626 for data acquisition. For slider
position measures it is used a US-digital strip sensor with
a resolution of 300 cpi which avoids noise measures and
disturbances of links before the slider [25].

FIGURE 7. Inverted whitworth mechanism prototype.

The desired trajectory is given by the following expression:

yd (t) = −0.22 + 0.03 sin
(π

2
t
)

(30)

First it is designed the PID controller. The linearized
dynamics of the invertedWhitworth mechanism in task space
is:

ÿ = −0.0281396y+ 0.253427u. (31)

Note that it is required the complete knowledge of the
mechanism dynamics. The PID controller in frequency
domain is of the form:

u(s) = Kp + Ki
1

s
+ Kd

Ns

s+ N
, (32)

where Kp,Ki,Kd are the proportional, integral and derivative
gains, respectively, and N is the filter coefficient. The gains
are tuned using the Matlab control toolbox. The tuned gain
values are: Kp = 15.344, Ki = 1.097, Kd = 48.006 and
N = 1391.169.
Now it is designed the pole placement and sliding mode

controller using our approach. The slider mass is m6 = 4.5×

10−4 kg. The slider dynamics is given by

Ẋ =

[

0 1
0 0

]

X +

[

0
2222.22

]

u−

[

0
9.81

]

(33)

For pole placement controller, we choose ω2
n = 40 and

ξ = 1, then

k1 = 40, k2 ≈ 13
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However the prototype presents friction, then k2 requires to
be tuned manually via trials for a desired response. The final
derivative gain is k2 = 5. For the SMC surface design, it is
used Ackerman-Utkin formula with a desired pole in λ = −5.
Then the surface gain is given by

C =
[

0.0023 0.0005
]

Since F = B+D = 0.0044, then the sliding gain is proposed
as K = 0.0045. We use a Jacobian compensator [25] instead
of the real Jacobian, whose value is ρ̂x = 0.1.
The tracking results are given in Figure 8 and Figure 9.

Both controllers achieve good tracking performance with
small error values. Since the Jacobian compensation is con-
stant, then the singularities at the beginning and end of the
slider stroke are avoid. Here the performance of the con-
trollers are similar due the friction at the slider groove. The
main disadvantage of the PID controller is that it requires
complete knowledge of the mechanism dynamics to make the
linearization and obtain the values of its gains. It has been
proved that our approach can guarantee position tracking of
the slider using simple controllers with minimal knowledge
of the mechanism dynamics and linearization methods.

FIGURE 8. Position tracking.

FIGURE 9. Position error.

VII. CONCLUSION

In this work a position control in task space for slider-crank
mechanisms that avoids linearization and complete knowl-
edge of the mechanism dynamics is presented. The extended
dynamic model gives the information about the slider dynam-
ics which helps to avoid any kind of linearization and trans-
formation between the joint and task space. The resulting
system is a double integrator system with a disturbance
which is simple to control by using any controller from
linear systems control theory. Two slider-crank mechanism
are presented as examples to show the linearity of the slider
dynamics. A linear sensor is used to avoid precision problems
due to noise and disturbances at the links before the slider.
Simulations and real time experiments were carried out using
an inverted Whitworth mechanism prototype to verify our
approach using pole placement and sliding mode controllers.

Our future research focuses on generating a constant veloc-
ity profile of the slider for cutting tasks which guarantees the
complete turn of the crank and avoids the singularities points
at the beginning and end of the slider stroke.
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