
 

  

Task Taxonomy for Graph Visualization 
 

Bongshin Lee, Catherine Plaisant,  
Cynthia Sims Parr 

Human-Computer Interaction Lab 
University of Maryland, 

College Park, MD 20742, USA 
+1-301-405-7445 

{bongshin, plaisant, csparr}@cs.umd.edu 

 
Jean-Daniel Fekete, 

Nathalie Henry 

INRIA Futurs/LRI Bat. 490 
Université Paris-Sud, 

91405 ORSAY, France 
+33-1-69153460 

Jean-Daniel.Fekete@inria.fr, nhenry@lri.fr 
 

ABSTRACT 
Our goal is to define a list of tasks for graph visualization that has 
enough detail and specificity to be useful to: 1) designers who 
want to improve their system and 2) to evaluators who want to 
compare graph visualization systems.  In this paper, we suggest a 
list of tasks we believe are commonly encountered while 
analyzing graph data.  We define graph specific objects and 
demonstrate how all complex tasks could be seen as a series of 
low-level tasks performed on those objects. We believe that our 
taxonomy, associated with benchmark datasets and specific tasks, 
would help evaluators generalize results collected through a series 
of controlled experiments. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – Graphical user interfaces (GUI), 
Evaluation/methodology. 

General Terms 
Design, Experimentation, Human Factors. 

Keywords 
Task Taxonomy, Graph Visualization, evaluation 

1. INTRODUCTION 
Despite a long history of graph visualization research, only a few 
graph visualization systems have actually been tested with real 
users.  Furthermore, the tasks that were used in these studies have 
been highly domain-specific.  To improve the evaluation of 
information visualization systems, it is important to have 
benchmark datasets and tasks [6].  In this paper, we suggest a list 
of tasks commonly encountered while analyzing graph data.   
There have been a number of general InfoVis task taxonomies, 
such as the task by data taxonomy [7].  We first prepared lists of 
tasks with examples taken from several domains such as food 
webs, bibliography, and student class assignments.  We used the 
taxonomy of tasks for tree visualization posted in the InfoVis 
2003 contest [3] as a starting point.  We then reviewed several 

user studies of graph visualization techniques and extracted the 
tasks used in those studies.   
After making those two lists, we considered the set of low-level 
Visual Analytics tasks proposed by Amar et al. [2].  These tasks 
were extracted from a corpus of questions about tabular data.  We 
realized that our tasks all seem to be compound tasks made up of 
Amar et al’s primitive tasks applied to the graph objects.  When 
some tasks could not be represented with those tasks and objects, 
we added either an object or a low-level task.  In this paper, we 
demonstrate how all complex tasks could be seen as a series of 
low-level tasks performed on those objects. 

2. GRAPH-SPECIFIC OBJECTS 
A graph consists of two types of primitive elements, nodes and 
links.  A subgraph of a graph G is a graph whose nodes and links 
are subsets of G.  There are several meaningful subgraphs such as 
connected components. 

2.1 Nodes 
Nodes by nature have an attribute degree that is the number of 
links incident to that node.  In a directed graph, nodes have two 
types of degrees according to the direction; indegree and 
outdegree.  For practical use, nodes also have a special “label” 
attribute.  They often have application-dependent attributes as 
well.  In network analysis, there are various measures used to 
determine the centrality, or relative importance, of a node within 
the graph (for example, the importance of a person within a social 
network).  Measures of centrality include betweenness and 
closeness.  There is also a special kind of node called an 
articulation point, whose removal disconnects a graph.   

2.2 Links 
Links can have labels and application-specific attributes.  For a 
directed graph, each link also has a “direction” attribute.  A bridge 
is a link whose removal disconnects a graph.   

2.3 Paths 
A path is an alternating sequence of nodes and links, often 
represented as a sequence of just nodes, since there is only one 
link between two nodes in most cases.  If the first and last nodes 
of the path are the same, we call it a cycle.  The shortest path 
between two nodes is a path in which the sum of the weights of 
the constituent links is minimized.  If the links are not weighted, 
we minimize the number of links in the path instead. 

2.4 Graphs 
We consider graphs to be objects, as users might want to compare 
graphs or see how a graph changes over time.  Graphs have a 

 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
 

BELIV 2006 Venice, Italy. 
 

Copyright 2006 ACM 1-59593-562-2/06/05 ...$5.00 



 

  

“directed” attribute defined by whether or not links in the graph 
are directed and a “cyclic” attribute defined by whether or not the 
graph contains any cycles.  Graphs can also have some computed 
attributes such as the number of nodes and links. 

2.5 Connected Components 
A connected component is a maximal connected subgraph.  

2.6 Clusters 
A cluster is a set of objects that are spatially close together.  For 
graphs, this is a subgraph of connected components whose nodes 
have high connectivity.  For example cliques, subgraphs where 
elements are all connected to each other, are clusters.  In our 
terminology, clusters are based solely on link information, in 
contrast to groups. 

2.7 Groups 
A group can be defined as a set of related nodes, such as nodes 
with common attribute values or nodes of interest to users.  Thus, 
a group may be composed of several clusters. 

3. LOW-LEVEL TASKS 
Amar et al’s low-level visual analytic tasks (shown in Table 6.1) 
[2] are all relevant to graphs.  In the task descriptions, a “data 
case” is an entity in the dataset and an “aggregation function” is a 
function that creates a numeric representation for a set of data 
cases, such as average and sum.   

Table 1. Ten Analytic tasks proposed by Amal et al. 

Tasks Descriptions 

Retrieve Value Given a set of cases, find attributes of those 
cases. 

Filter Given some conditions on attributes values, 
find data cases satisfying those conditions. 

Compute 
Derived Value 

Given a set of data cases, compute an 
aggregate numeric representation of those 
data cases. 
(e.g. average, median, and count) 

Find Extremum 
Find data cases possessing an extreme value 
of an attribute over its range within the data 
set. 

Sort Given a set of data cases, rank them 
according to some ordinal metric. 

Determine 
Range 

Given a set of data cases and an attribute of 
interest, find the span of values within the 
set. 

Characterize 
Distribution 

Given a set of data cases and a quantitative 
attribute of interest, characterize the 
distribution of that attribute’s values over the 
set. 

Find Anomalies 

Identify any anomalies within a given set of 
data cases with respect to a given 
relationship or expectation, e.g. statistical 
outliers. 

Cluster Given a set of data cases, find clusters of 
similar attribute values. 

Correlate 
Given a set of data cases and two attributes, 
determine useful relationships between the 
values of those attributes. 

We see that the last three tasks do not have ground truth answers 
that we can easily compare with users’ answers.  The “Correlate” 

task may have a statistical ground truth but we assume that in the 
field of Information Visualization, the intended meaning of 
“Correlate” is “identify possible correlations.”  
We propose one graph-specific task and two general tasks that are 
not covered by the above list. 

• Find Adjacent Nodes: Given a node, find its adjacent nodes. 

• Scan: Quickly review the list of items. 
This task differs from the “Retrieve Value” task, since it 
usually requires users to review many items at once but not 
necessarily to retrieve exact values.  For example, if users 
want to find “Robin Williams” they can immediately move to 
the next item if it does not start with “R.”  They can also stop 
when they find an answer.  Depending on the task, users may 
need to continue to review all items.  The values may not be 
specific, for example users may need to scan for foreign 
names.  They need not be text, for example users may need 
to scan for color-coded information. 

• Set Operation: Given multiple sets of nodes, perform set 
operations on them. For example, find the intersection of the 
set of nodes. 

4. GRAPH TASK TAXONOMY 
In this section, we summarize a list of tasks commonly 
encountered while analyzing graph data.  These suggested tasks 
are further categorized into four groups: topology-based tasks, 
attribute-based tasks, browsing tasks, and the overview task.  Each 
task has general descriptions and example scenarios.  FOAF, FW, 
GO, and ARM represent friend-of-a-friend graph, food webs, gene 
ontology, and airport routing map respectively.  In addition, we 
show how each task can be decomposed into low-level tasks, 
shown in italics, on specified graph objects.  While there might be 
several ways to decompose a task, we only describe one way. 
Note that finding a node is a common starting point for many 
tasks, but it may not be performed by users when a search feature 
is provided by the system.  While we describe it as a component 
for each task, we may want to exclude it when we conduct a user 
study. 

4.1 Topology-Based Tasks 
4.1.1 Adjacency (direct connection) 
General Descriptions:  

• Find the set of nodes adjacent to a node. 

• How many nodes are adjacent to a node?   

• Which node has a maximum number of adjacent nodes? 
Examples: 

• (FOAF)  Find the names of the direct friends of Eric.   
[Find on Nodes + Find Adjacent Nodes on Nodes + Retrieve 
Value on Nodes] 

• (FW)  How many kinds of organisms do golden eagles eat?   
[Find on Nodes + Find Adjacent Nodes on Nodes + Filter on 
Links + Compute Derived Value (Count) on Nodes] 

• (FOAF)  Who is the most popular person? 
[Find Extremum on Nodes] 



 

  

4.1.2 Accessibility (direct or indirect connection)  
Accessibility task can be treated as a repetition of the Adjacency 
task. 

General Descriptions:  

• Find the set of nodes accessible from a node.   

• How many nodes are accessible from a node?   

• Find the set of nodes accessible from a node where the 
distance is less than or equal to n.   

• How many nodes are accessible from a node where the 
distance is less than or equal to n? 

Examples:  

• (FOAF) Who are your friends, your friends’ friends, and so 
on?   
[Find on Nodes + repeat (Find Adjacent Nodes on Nodes + 
Retrieve Value on Nodes) until no more new adjacent nodes 
are found] 

• (FOAF) How many friends are you connected to in this way? 
[Find on Nodes + repeat (Find Adjacent Nodes on Nodes) until no 
more new adjacent nodes are found + Count on Nodes] 

• (ARM) To what cities can we go from Seoul, Korea by 
changing planes only once?   
[Find on Nodes + repeat (Find Adjacent Nodes on Nodes + 
Filter on Links + Retrieve Value on Nodes) twice] 

4.1.3 Common Connection 
General Descriptions:  

• Given nodes, find a set of nodes that are connected to all of 
them. 

Examples:  

• (FOAF) Find all the people who know both John and Jack. 
[Find on Nodes + Find Adjacent Nodes on Nodes + Find on 
Nodes + Find Adjacent Nodes on Nodes + Set Operation 
(Intersect) on Groups] 

4.1.4 Connectivity 
General Descriptions:  

• Find the shortest path between two nodes.   

• Identify clusters.   

• Identify connected components. 

• Find bridges.   

• Find articulation points. 
Examples:  

• (ARM)  What is the shortest path from Seoul, Korea to 
Athens, Greece? 
[Find on Nodes + repeat (Find Adjacent Nodes on Nodes in a 
breadth-first manner) until find the path] 

• (FOAF) Count the number of clusters.   
[Scan on Graphs to count clusters] 

• (FW)  There may be subgraphs independent of each other. 
Count the number of connected components in the graph.   
[Scan on Graphs to count connected components] 

• (FOAF) Who is the person whose removal from the graph 
results in an unconnected graph? 
[Scan on Graphs to find an articulation point] 

• (FW) Which is the eating link whose removal from the graph 
results in an unconnected graph? 
[Scan on Graphs to find a bridge] 

4.2 Attribute-Based Tasks 
All the previous topology tasks can be repeated with added filter, 
compute, range, or distribution tasks (opposed to solely count 
tasks) on the attributes either on nodes or on links. 

4.2.1 On the Nodes 
General Descriptions:  

• Find the nodes having a specific attribute value.   

• Review the set of nodes. 
Examples:  

• (FOAF)  Who do you know from the people currently shown 
on screen?   
[Filter on Nodes + Retrieve Value on Nodes] 

• (FOAF)  How many people do you know from the ones 
currently shown on screen? 
[Count on Nodes while Scan on Nodes] 

• (FOAF)  Are there any foreign-sounding names?   
[Scan on Nodes until find an answer] 

4.2.2 On the Links 
General Descriptions:  

• Given a node, find the nodes connected only by certain types 
of links.   

• Which node is connected by a link having the 
largest/smallest value? 

Examples:  

• (GO)  Find the nodes connected by “is-a” relationships from 
the “Biological Process” node. 
[Find on Nodes + Find Adjacent Nodes on Nodes + Filter on 
Links + Retrieve Value on Nodes] 

• (FW)  If a link has an attribute representing the percentage of 
the diet, what is main food of American crow? 
[Find on Nodes + Find Adjacent Nodes on Nodes + Find 
Extremun on Links + Retrieve Value on Nodes] 

4.3 Browsing Tasks  
4.3.1 Follow Path 
General Descriptions:  

• Follow a given path.   
Examples:  



 

  

• (FOAF) A user looks into A’s friend B, B’s friend C, and C’s 
friend D. 
[Find on Nodes + repeat (Find Adjacent Nodes on Nodes + 
Scan on Nodes) three times] 

• (FW) Follow the flow of energy from grasses, to a rabbit that 
eats grass, to a carnivore that eats the rabbit, and to a 
carnivore that eats that carnivore. 
[Find on Nodes + repeat (Find Adjacent Nodes on Nodes + 
Scan on Nodes) three times] 

4.3.2 Revisit 
General Descriptions:  

• Return to a previously visited node. 
Examples: 

• (FOAF) After they follow a path in the above task, they may 
want to see A’s other friends. 
[Scan on Nodes + Find Adjacent Nodes on Nodes]  

• (FW) Find another carnivore that eats the same rabbit. 
[repeat (Scan on Nodes) twice to find + Find Adjacent Nodes 
on Nodes] 

4.4 Overview Tasks 
This is a compound exploratory task to get estimated values 
quickly.  For example, we might ask users to estimate the size of 
the social network.  Note that sometimes it is more important to be 
able to estimate the answer than to get an accurate one.  Some of 
the topology tasks can be done easily using an overview of the 
graph as well.  For example, using particular layout algorithms, it 
is easy to see whether or not there are clusters and connected 
components.  Other algorithms help to find shortest paths between 
nodes.  . Overview tasks include finding patterns and outliers 

5. HIGH-LEVEL TASKS 
There are high-level tasks that are not covered by the above tasks.   

• When we compare two or more food webs, we can ask the 
following questions:  What do they have in common?  What 
are the differences among those food webs?  Is there any 
missing or conflicting information?   

• Due to errors in the data, several nodes may represent the 
same entity.  For example, the co-authorship graphs often 
have duplicate author nodes.  One important task is to 
identify whether two or more nodes represent the same 
person. 

• Some high-level tasks require users’ interpretation such as 
give a meaningful name to these groups or find a 
representative to these cluster. 

• How has the graph changed over time? 

6. CHARACTERIZING GRAPH                                      
VISUALIZATION TOOLS 
Graph visualization tools can be characterized by which objects 
(nodes or links) and tasks they focus on as shown in Table 2.  For 
example, TreePlus [5] focuses on nodes – less on links and not at 
all on clusters. NVSS [8] and NetLens [8] focus on groups, and 
most classic node-link diagrams and matrix representations [1] do 
well at clusters.  User studies for these tools focus on certain tasks, 

e.g. scanning and following path for TreePlus, or finding clusters 
and bridges in the graph layout experiments.  Some tools seem 
most strong at certain tasks.  For example, NetLens particularly 
excels at showing a distribution of items and filtering and sorting 
items.  Since NVSS partitions a large network into several smaller 
non-overlapping regions by node attributes, users were able to 
quickly identify patterns of interest among nodes. 
It would be useful if we could further characterize graph 
visualization tools by which graph characteristics they effectively 
visualize.  For example, some tools may be better at handling 
directed graphs and others at high-density graphs. 

7. CONCLUSION 
We have defined graph-specific objects and demonstrated how all 
complex tasks for graph visualization could be seen as a series of 
low-level tasks performed on those objects.  We believe that our 
taxonomy, associated with benchmark datasets, could help 
evaluators generalize results collected through a series of 
controlled experiments.   

8. WIKI VERSION OF TAXONOMY 
To allow this taxonomy to evolve, we created a wiki page for it at: 
http://www.infovis-wiki.net/index.php/Tasks_Taxonomy_for_Graphs 

9. Acknowledgements 
We would like to thank Ben Shneiderman for his encouragements 
and helpful comments. 

10. REFERENCES 
[1] Abello, J. and Korn, J. MGV: A System for Visualizing 

Massive Multigraphs, IEEE Trans. Visualization and 
Computer Graphics, 8 (1),  21-38, 2002. 

[2] Amar, R., Eagan, J., and Stasko, J. Low-Level Components 
of Analytic Activity in Information Visualization, 
Proceedings of the Symposium on Information Visualization 
(InfoVis ’05), 111-117, 2005. 

[3] InfoVis 2003 Contest: Visualization and Pair Wise 
Comparison of Trees, http://www.cs.umd.edu/hcil/iv03contest. 

[4] Kang, H., Plaisant, C., Lee, B., Bederson, B., NetLens: 
Iterative Exploration of Content-Actor Network Data, to 
appear in Proceedings of IEEE Symposium on Visual 
Analytics Science and Technologies (VAST2006)  

[5] Lee, B., Parr, C.S., Plaisant, C., Bederson, B.B., Veksler, 
V.D. Gray, W.D., and Kotfila, C. TreePlus: Interactive 
Exploration of Networks with Enhanced Tree Layouts, IEEE 
TVCG Special Issue on Visual Analytics, 12(6), 1414-1426. 

[6] Plaisant, C. The Challenge of Information Visualization 
Evaluation, Proceedings of the working conference on 
Advanced Visual Interfaces (AVI ’04), 109-116, 2004. 

[7] Shneiderman, B. The eyes have it: A task by data type 
taxonomy for information visualizations, Proceedings of the 
Symposium on Visual Languages (VL ’96), 336-343, 1996. 

[8] Shneiderman, B. and Aris, A., Network Visualization by 
Semantic Substrates, to appear in Proceedings of IEEE 
Symposium on Information Visualization (Infovis2006)



 

  

Table 2 Characterizing graph visualization tools based their focus of specific objects and tasks.   
These characterizations assume large graphs.   Large, bold X represents particular strengths. 

NOTE:  This table does not claim to be complete and fully accurate. It is meant to illustrate the kind of analysis which can be done with a taxonomy. 

 TreePlus Matrices NVSS Classic node link NetLens 
OBJECT FOCUS 
Nodes  X X x X X 
Links  X x X  
Paths x   X  
Graphs      
Groups   X  X 
Connected Components x X  X  
Clusters  X  X  

 
GENERAL LOW-LEVEL TASK FOCUS 
Retrieve Value X    X 
Filter   X  X 
Compute Derived Value      
Extremum     X 
Sort x    X 
Range     X 
Distribution  x  X X 
Anomalies    x  
Cluster  X  X  
Correlate      
Scan X   x X 
Set Operation x    X 

 
GRAPH-SPECIFIC TASK FOCUS 
Find Adjacent Nodes x x  X  

 
COMPLEX TASKS FOCUS 
Topology 
 Adjacency X X x x X 
 Accessibility X   x  
 Common Connection Interaction Interaction Visual  
 Find Shortest Path Computed   Visual/Computed  
 Find Clusters  Computed/Visual Visual  
 Find Connected Components Computed   Visual  
 Find Bridges    Visual  
 Find Articulation Points    Visual  
Attribute-Based 
 On the Nodes X  X  X 
 On the Links   X x  
Browsing 
 Follow Path X   x  
 Revisit X   X  
Overview  x  X X 

 


