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There is a growing interest in studies of human brain networks using resting-state

functional magnetic resonance imaging (fMRI). However, it is unclear whether and how

brain networks measured during the resting-state exhibit comparable properties to brain

networks during task performance. In the present study, we investigated meta-analytic

coactivation patterns among brain regions based upon published neuroimaging studies,

and compared the coactivation network configurations with those in the resting-state

network. The strength of resting-state functional connectivity between two regions

were strongly correlated with the coactivation strength. However, the coactivation

network showed greater global efficiency, smaller mean clustering coefficient, and lower

modularity compared with the resting-state network, which suggest a more efficient

global information transmission and between system integrations during task performing.

Hub shifts were also observed within the thalamus and the left inferior temporal cortex.

The thalamus and the left inferior temporal cortex exhibited higher and lower degrees,

respectively in the coactivation network compared with the resting-state network. These

results shed light regarding the reconfiguration of the brain networks between task and

resting-state conditions, and highlight the role of the thalamus in change of network

configurations in task vs. rest.

Keywords: brain network, coactivation, hub shift, meta-analysis, modularity, resting-state, small world, thalamus

INTRODUCTION

The human brain exhibits organized spontaneous fluctuations

in the resting-state (Biswal et al., 1995), enabling researchers to

study large-scale brain segregations and integrations (Bullmore

and Sporns, 2009, 2012; Menon and Uddin, 2010). The spon-

taneous fluctuations reveal high synchronization between brain

regions in the same brain system (Cordes et al., 2000; Greicius

et al., 2003), and are relatively independent between different

brain systems (Beckmann et al., 2005; Biswal et al., 2010). The

whole brain segregation and integration can also be studied using

graph theory based analysis (Bullmore and Sporns, 2009; Wang

et al., 2010). For example, the brain network in the resting-state

revealed modular structures, small world and scale free properties

(Salvador et al., 2005; Achard et al., 2006; Achard and Bullmore,

2007; Nakamura et al., 2009; Yan and He, 2011).

Despite the growing popularity of resting-state fMRI to study

brain functions, studies have yet to address a fundamental ques-

tion regarding whether the brain at resting-state is comparable

to the brain during task performing. Given that the evoked cere-

bral blood flow by different tasks account for less than 5% of

the resting-state cerebral blood flow (Raichle, 2010), the resting-

state brain already represents a large proportion of hemodynamic

information which may reflect brain maintenance. Studies have

also shown that task-related coactivation patterns correspond

well with the brain systems that are measured during the resting-

state (Toro et al., 2008; Smith et al., 2009). However, based on the

economic theory of brain network organization, the brain net-

work should be in an energy saving mode during the resting-state,

while exhibiting dynamic network reconfiguration in the pres-

ence of a task demand to facilitate global and between systems

information transmissions (Bullmore and Sporns, 2012). We pre-

dict that even though the connectivity in task conditions and the

resting-state may be similar, substantial differences of network

configurations may take place to support different task demands.

Changes in connectivity modulated by task are important

to understand brain integration (Friston, 2011). Specific con-

nections have been shown to be modulated by specific tasks

(McLntosh and Gonzalez-Lima, 1994; McIntosh et al., 1994;

Büchel and Friston, 1997; Rao et al., 2008). However, the mod-

ulations of connectivity are task specific, and it is difficult to

modulate the whole brain network using a specific task. Thus,

we adopted the same approach as Toro et al., and Smith et al.

to examine task activations or group differences and their cor-

responding coactivation pattern across the whole brain (Toro

et al., 2008; Smith et al., 2009). Specifically, we constructed brain

networks comprised of 140 regions of interest (ROIs) from the

whole brain based on both meta-analytic coactivation patterns

(Yarkoni et al., 2011) and resting-state correlations of fMRI sig-

nals (Biswal et al., 2010). The online database Neurosynth (http://

old.neurosynth.org/) was used to extract coactivation infor-

mation, which contained 47,493 activations from 4393 studies

(Yarkoni et al., 2011). We first asked whether the strength of coac-

tivation between a pair of ROIs was correlated with their resting-

state correlations. We then compared different network properties

based on graph theory between the two brain networks (Bullmore

and Sporns, 2009), including the small-worldness (Watts and
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Strogatz, 1998), modularity (Newman, 2006), and hub distri-

butions. We hypothesized that the brain when performing tasks

will be more integrated and thus exhibit higher global efficiency

and reduced modularity compared with the resting-state brain.

In addition, we hypothesized that the brain hubs may shift from

the default mode network (DMN) (Raichle et al., 2001; Greicius

et al., 2003) regions to other brain regions that are critical during

task executions.

METHODS

REGIONS OF INTEREST

One hundred and sixty functionally defined ROIs from

Dosenbach et al. were adopted in the present analysis (Dosenbach

et al., 2010). Twenty-four ROIs were removed because they were

outside the Neurosynth mask. We included four more ROIs that

were not represented within the 136 ROIs (Sabatinelli et al., 2011):

the right amygdala (Montreal Neurological Institute, MNI, coor-

dinates: 20, −4, −15), the left amygdala (−20, −6, −15), the right

parahippocampus (14, −33, −7), and the left parahippocampus

(−20, −33, −4). A total of 140 ROIs were used in the present

study to construct brain networks (supplementary Table S1).

COACTIVATION NETWORK

The online database, Neurosynth, was used to construct the coac-

tivation network (Yarkoni et al., 2011). The database search was

conducted in November, 2012 when the database had 4393 stud-

ies and 47,493 activations. For each of the 140 ROIs, Neurosynth

identified all the papers in the database that reported coordi-

nates within 10 mm from the ROI center, and exported a whole

brain z-score map representing the likelihood that a voxel coac-

tivated with the given ROI (Yarkoni et al., 2011). The images

were thresholded using a false discovery rate (FDR) criterion of

p < 0.05. Thus, the Neurosynth search of all the ROIs resulted in

140 coactivation maps.

One hundred and forty spherical ROIs were defined using radii

of 10 mm. The coactivation values of 140 ROIs were extracted

from 140 coactivation maps, which resulted in a 140 × 140

matrix. Each row of the matrix represented the coactivation val-

ues of a given ROI with the other ROIs. Because the number of

papers that was returned by each ROI inquiry was different, the

coactivation values from different ROI inquiry may be biased.

Therefore, we normalized each row by dividing the value from

the ROI corresponding to that row, so that the diagonal values of

the matrix were equaled to one. In addition, since the distribution

of the coactivation values are skewed, all the values of the matrix

were added by one, and were logarithmically transformed to facil-

itate a normal distribution. Finally, because the coactivation like-

lihood of region A with region B and the coactivation likelihood

of region B with region A are generally similar but have slightly

different values, the matrix was transposed, and averaged with the

original matrix to create a symmetrical coactivation matrix.

RESTING-STATE NETWORK

We analyzed a resting-state fMRI data set to construct a resting-

state network to compare with the coactivation network. The

Oulu dataset from the 1000 Functional Connectomes Project

was used (Biswal et al., 2010). This dataset originally contains

103 subjects. One subject’s data was discarded because of large

head motion (greater than 3 mm). Thus 102 subjects’ data

were included in the current analysis (36M/66F). The mean

age was 21.5 years (range from 20 to 23 years). Two hundred

and forty-five resting-state functional images were acquired for

each subject (TR = 1.8 s, 28 slices). High resolution anatomi-

cal image was also acquired for each subject using MPRAGE

sequence (Magnetization Prepared Rapid Acquisition Gradient

Functional MRI images were processed using the SPM8 tool-

box (http://www.fil.ion.ucl.ac.uk/spm/) under the MATLAB7.7

environment (www.mathworks.com). First, the MPRAGE

anatomical image for each subject was segmented into gray

matter (GM), white matter (WM), and cerebrospinal fluid (CSF)

using the new segment routine in SPM8. The deformation field

maps were also obtained in this step to later normalize the

functional images. For each subject, the first five images of the

fMRI images were discarded, resulting in 240 images per subject.

The functional images were then motion corrected using the

realign function. One subject’s data were discarded after this step

because the head motion was greater than 3 mm, resulting in 102

subjects in total. Next, the functional images were coregistered

to the subjects’ own anatomical images. Then, the deformation

field map obtained from new segmentation step was applied to

the functional images to normalize them into the standard MNI

space.

One hundred and forty times series from the corresponding

ROIs were extracted for each of the subjects. Six head motion

parameters and their first order derivatives, first five eigenvec-

tors from signals within WM masks, and first five eigenvectors

from signals within CSF masks were regressed out using linear

regression (Chai et al., 2012). No global signal regression was

applied. Next, the time series were temporally filtered using a

band-pass filter of 0.01–0.1 Hz. For each subject, a 140 × 140

correlation matrix was calculated using Kendall’s rank correla-

tion to minimize spurs correlations due to noises. The correlation

matrices were transformed into Fisher’s z, and averaged across

subjects. Finally, the mean Fishers’ z matrix was transformed back

to correlation matrix using Fisher’s inverse transform.

NETWORK ANALYSIS

Because the values in the coactivation matrix and the resting-

state correlation matrix are essentially different, network sparsity

thresholds were used to keep the number of edges of the two net-

works the same when comparing the two networks. The sparsity

range was set between 6 and 40% with an increment of 1%. This

range was used because typical sparsity of human neuron network

is between this range, and the large scale brain networks revealed

small world properties within this range (Achard and Bullmore,
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2007; He et al., 2008). After thresholding, all the networks were

binary (unweighted) undirected networks.

We first compared the two networks in terms of small world

properties (global efficiency and mean clustering coefficient)

and modularity. The global efficiency characterizes how efficient

the whole brain network integrates information, and the mean

clustering coefficient characterizes how efficient the information

flows around local nodes (Watts and Strogatz, 1998). Modularity,

also known as Newman’s Q, characterizes the extent the whole

brain network can be divided into sub-communities (Newman,

2006). The global efficiency, mean clustering coefficient, and

modularity were calculated for the two networks at each sparsity

level using the brain connectivity toolbox (Rubinov and Sporns,

2010). As a reference, random networks were generated 1000

times at each sparsity level. The three parameters were also cal-

culated for the random networks, and were averaged across the

1000 random networks.

To determine the statistical significance, we created a null dis-

tribution of network differences by randomly shuffling the two

networks 1000 times and calculating their differences of network

properties for 1000 random networks. Specifically, at each spar-

sity level, we first identified edges that were different between the

two networks. Next, we randomly assigned 50% of these different

edges from the coactivation network to the resting-state network,

and vice versa, resulting in two new mixed networks. We then cal-

culated the three network parameters, i.e., the global efficiency,

mean clustering coefficient and modularity, for the two mixed

networks and obtained their differences between the two net-

works. The randomizations were performed 1000 times for each

sparsity level to obtain a difference distribution. The difference

of the three parameters between the coactivation network and

the resting-state network were then compared with the random-

ized distribution to determine statistical significances. A critical

threshold of p < 0.001 was used.

To demonstrate modular structures of the coactivation and

the resting-state network, we thresholded the two networks at a

sparsity level of 20%, and entered the two unweighted undirected

networks into Gephi (https://gephi.org/) to determine their mod-

ular structures using the algorithm by Blondel et al. (2008).

The two networks and their modular structures were rendered

into a 2D surface using the Fruchterman–Reingold Algorithm

(Fruchterman and Reingold, 1991).

We then examined whether the two networks displayed sim-

ilar hub distribution (Achard et al., 2006). In the present study,

we simply defined the importance of each node by calculating the

number of edges connected to this node (also known as degree).

We calculated the degrees for each node for the two networks

at each sparsity level. Next, at each sparsity level, correlations of

node degrees between the coactivation network and the resting-

state network were calculated at the sparsity range of 6–40%. The

correlations reflected the similarity of hub distributions of the two

networks. There were only small correlations of degrees between

the two networks (see Results below), i.e., a high degree node in

the resting-state network was not necessarily a high degree node

in the coactivation network. Hence, we subtracted the degrees

between the two networks for each node at the sparsity level of

10, 20, and 30%. At each of the three sparsity levels, we sorted

the degree differences. The two networks were also randomized

using the method mentioned above, and the sorted degree dif-

ferences were calculated. The randomization was conducted 1000

times, and the distribution of the sorted degree differences was

obtained. Then, the original sorted degree differences between

the coactivation network and resting-state network was compared

with the distribution. Next, at each sparsity level, five nodes that

had the largest degree differences and five nodes that had the

least degree differences between the coactivation network and the

resting-state network were identified. These nodes were rendered

on a brain surface model using the BrainNet Viewer (http://www.

nitrc.org/projects/bnv/).

RESULTS

COACTIVATION AND RESTING-STATE NETWORKS

The pattern of the coactivation and the resting-state correlation

matrix were comparable (Figures 1A,B). Because the ROIs were

arranged according to their network affiliations as reported by

Dosenbach et al. (2010), square like structures along the diago-

nal were observed in both networks (see supplementary Table S1

for the network affiliations of the ROIs). In addition, the coacti-

vation strengths and the resting-state correlation strengths among

the 9730 (140 × 139/2) pairs of ROIs showed a strong linear rela-

tionship (Figure 1C), i.e., if two regions had higher correlation

in the resting-state, they also had higher coactivation strength,

and vice versa. The Pearson correlation between the coactivation

strengths and connectivity strengths was 0.72 (r2
= 0.51).

FIGURE 1 | Coactivation matrix (A), resting-state correlation matrix (B), and the relationship between coactivation strengths and resting-state

correlations (C). Each dot in the scatter plot represents one pair of ROIs. The red line in panel (C) represents the linear fit.
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SMALL WORLD AND MODULARITY

Both the coactivation network and the resting-state network

revealed smaller global efficiency and larger clustering coefficient

compared with the reference random networks, which charac-

terizes the small world network properties (Figure 2). Direct

comparison between the coactivation network and the resting-

state network revealed greater global efficiency and smaller mean

clustering coefficient for the coactivation network compared with

the resting-state network at selected sparsity levels (highlighted

by shading in Figure 2). Thresholding at a significance level of

p < 0.001, greater global efficiency for the coactivation network

were present at almost all the sparsity levels that were tested

between 6 and 40% (except for 23%), while smaller mean clus-

tering coefficient for the coactivation network were only present

at the sparsity level between 28 and 40%.

Both the coactivation network and the resting-state network

revealed higher modularity compared with the random net-

works (Figure 3A). The coactivation network generally revealed

lower modularity than the resting-state network at sparsity level

between 17 and 40% at the significance level of p < 0.001.

Figures 3B,C demonstrated the modular structures of the coac-

tivation network and the resting-state network at sparsity level

of 20%. For the resting-state network, four modules were clearly

FIGURE 2 | Global efficiency (A) and mean clustering coefficient (B) for

the coactivation, resting-state, and random networks as a function of

connectivity sparsity. The shading areas represent significant differences

between the coactivation and resting-state networks at p < 0.001 based on

1000 permutations.

visible with a large number of within module connections and a

small number of between modules connections. In contrast, five

modules for the coactivation network were difficult to distinguish

since there were large numbers of between module connections.

HUB SHIFTS

At all sparsity levels between 6 and 40%, the correlations between

node degrees of the coactivation network and the resting-state

network were small (range from 0.17 to 0.38) (Figure 4A). We

then plotted the node degrees of the coactivation network against

the node degrees of the resting-state network at 10, 20, and 30%

sparsity levels (Figures 4B–D). We observed that there were sev-

eral nodes in the upper right corner or lower right corner of the

scatter plots, which indicates that these nodes had higher degrees

in one network but not in the other network.

Additional analysis showed that the distribution of degree dif-

ferences between the coactivation network and the resting-state

network were outside the distribution of sorted degree differences

FIGURE 4 | (A) Correlations between nodes’ degree of the coactivation

network and the resting-state network as a function of connectivity

sparsity. Panels (B–D) show the scatter plots of node degrees between the

two networks at sparsity level of 10% (B), 20% (C), and 30% (D),

respectively. The lines in the scatter plots represent the linear fit.

FIGURE 3 | (A) Modularity for the coactivation, resting-state, and

random networks as a function of connectivity sparsity. The

shading areas represent significant differences between the

coactivation and resting-state networks at p < 0.001 based on 1000

permutations. Panels (B,C) demonstrate the modular structures for

the coactivation network and the resting-state network at sparsity

level 20%. The node colors in panels B and C encode different

modules.
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of randomized 1000 permutations (Figures 5A–C), indicating

that the degree differences between the two networks are not

likely due to random noises. We then subtracted the degrees in

the activation network by the degrees in the resting-state network

for all 140 nodes at sparsity levels of 10, 20, and 30%, respec-

tively. The top five nodes that had the greatest degree differences

between the two networks are illustrated in Figures 5D–F and

Table 1. Across the three sparsity levels, the bilateral thalamus

demonstrated higher degrees in the coactivation network com-

pared with the resting-state network. Other regions, including

the basal ganglia, inferior parietal lobule (IPL), posterior pari-

etal cortex, medial frontal cortex (mFC), and anterior insula,

also showed higher degrees in the coactivation network at vari-

ous sparsity levels. In contrast, a node in the inferior temporal

cortex revealed consistently higher degree in the resting-state net-

work compared with the coactivation network. Other regions,

including the precuneus, angular gyrus, inferior parietal sulcus

(IPS), temporoparietal junction (TPJ), superior frontal cortex,

parahippocampal gyrus, and inferior cerebellum, also showed

higher degrees in the resting-state network at various sparsity lev-

els. The connectivity of the thalamus and the left inferior cortex

for the two networks at sparsity level of 20% are illustrated in

Figure 6.

DISCUSSION

The current study compared the whole brain network configu-

rations between the coactivation network and the resting-state

network. We first observed a high correlation between the coacti-

vation strength and the resting-state correlation across all pairs

of ROIs. In other words, if a pair of brain regions has greater

functional connectivity in the resting-state, they are more likely

to have greater coactivation, and vice versa. This is in line with

previous findings that the coactivation patterns correspond well

with the resting-state connectivity and networks (Toro et al.,

2008; Smith et al., 2009). However, further analysis revealed sub-

stantial differences in network configuration between the two

networks. Specifically, the coactivation network revealed higher

global efficiency, lower mean clustering coefficient, and lower

modularity as compared with the resting-state network. Shifts in

hub regions were also observed where the thalamus had greater

degrees in the coactivation network than in the resting-state net-

work, and a region in the left inferior temporal cortex had greater

degrees in the resting-state network than in the coactivation net-

work. These results were similar when using NKI-dataset (see

supplementary materials).

The brain network exhibits a so-called “small-world” prop-

erty (Watts and Strogatz, 1998) that the network has greater

mean local efficiency but smaller global efficiency than random

network. Small world properties have been initially shown in non-

human primates (Sporns, 2000; Stephan et al., 2000) and later in

human brain network using both the resting-state fMRI (Salvador

et al., 2005; van den Heuvel et al., 2009) and diffusion weighted

imaging (Hagmann et al., 2007; Gong et al., 2009). The cur-

rent results revealed greater global efficiency and smaller mean

local efficiency for the coactivation network as compared with

the resting-state network, suggesting that the whole brain is con-

nected more efficiently to support global information flow during

task performing. These results are in line with the findings that the

brain exhibits higher global efficiency as task difficulty increases

(Kitzbichler et al., 2011), and in the awake state compared with

the stage 1 sleep (Uehara et al., 2013).

The current study also revealed smaller modularity in the

coactivation network as compared with the resting-state net-

work. These results suggest that the whole brain is less segregated

as independent modules when performing tasks as compared

with the resting-state. In other words, there are more between

module connections and less within module connections when

performing tasks, while more within module connections and

less between module connections exist in the resting-state. These

results are in line with the economy theory of brain network that

long range between system connections are more costly, so that

dynamic connectivity between brain systems is only present upon

task demands (Bullmore and Sporns, 2012). Consistent with this

notion, brain network modularity reduces when the task demand

FIGURE 5 | Top row, sorted degree differences of 140 ROIs between

the coactivation network and the resting-state network at sparsity

of 10% (A), 20% (B), and 30%(C), respectively. The chromatic lines

represent sorted degree differences of scrambled networks for 1000

permutations. Bottom row, five regions that have largest and least

degree differences between the coactivation network and the

resting-state network at sparsity of 10% (D), 20% (E), and 30% (F),

respectively.
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Table 1 | Top five regions that have greater or smaller degree in the

coactivation network as compared with in the resting-state network

for the sparsity of 10, 20, and 30%, respectively.

MNI coordinates Label Degree differences

Coactivation > correlation
x y z

SPARSITY = 10%

−12 −12 6 Thalamus 27

11 −12 6 Thalamus 24

−41 −40 42 IPL 21

−35 −46 48 Post-parietal 18

0 15 45 mFC 16

−36 18 2 Ant insula 16

−16 29 54 Sup frontal −18

−36 −69 40 IPS −18

23 33 47 Sup frontal −19

−59 −25 −15 Inf temporal −21

51 −59 34 Angular gyrus −21

SPARSITY = 20%

−12 −12 6 Thalamus 54

11 −12 6 Thalamus 42

−20 6 7 Basal ganglia 36

−12 −3 13 Thalamus 30

−41 −31 48 Post-parietal 30

23 33 47 Sup frontal −23

−3 −38 45 Precuneus −24

−52 −63 15 TPJ −26

−16 29 54 Sup frontal −28

−59 −25 −15 Inf temporal −37

SPARSITY = 30%

−12 −12 6 Thalamus 61

11 −12 6 Thalamus 52

−12 −3 13 Thalamus 37

−41 −40 42 IPL 37

−20 6 7 Basal ganglia 34

18 −81 −33 Inf cerebellum −26

−3 −38 45 Precuneus −26

−21 −79 −33 Inf cerebellum −26

−52 −63 15 TPJ −31

−20 −33 −4 Parahippocampal −31

−59 −25 −15 Inf temporal −39

Regions highlighted in bold represent the regions show consistent differences

between the two networks across the three sparsity levels.

increases (Kitzbichler et al., 2011), and in awake state than during

non-rapid eye movement sleep (Boly et al., 2012).

In addition to the whole brain network properties, the current

study also identified hub regions by calculating degrees (number

of connections) for each ROI. In contrast to the high correlation

of network strengths between the coactivation network and the

resting-state network, the correlations of node degrees between

the two networks are small (around 0.3). This suggests a hub

shift between task performance and resting-state (Fransson et al.,

2011; Achard et al., 2012), which may reflect the adaptive brain

reorganization that support the execution of tasks. However, the

low correlations of degrees are inconsistent with a previous study

showing a high correlation of degrees between a passive fixation

condition and a continuous semantic classification task condition

(Buckner et al., 2009). The differences may be due to the method-

ological differences used by Buckner et al. (voxel-wise analysis);

the voxel-wise degree distributions are likely to be affected by the

underlying brain anatomy, and the high correlation between the

two degree maps may partially reflect the anatomical informa-

tion. In addition, the differences may also be explained by the

task adopted by Buckner et al., which is different from the current

coactivation approach. Further studies are needed to investigate

shifts in hubs elicited by different tasks.

The thalamus regions showed consistently higher degrees (the

number of connections with other regions) in the coactivation

network as compared with the resting-state network. The tha-

lamus relays visual and auditory information gathered from the

eyes and ears to the cerebral cortex (Hotta and Kameda, 1963).

Different parts of the thalamus have intensive connections to

wide spread cortical regions (Zhang et al., 2008; Eckert et al.,

2012). In addition, the thalamus as a relay is important for

corticocortical communication, and thus is suggested to be a

potential hub for the brain function (Guillery, 1995). Previous

resting-state fMRI studies occasionally identified the thalamus as

a hub region (van den Heuvel et al., 2008), however, most of

studies did not support this view (Achard et al., 2006; Buckner

et al., 2009; Yan and He, 2011; Zuo et al., 2012). This may be

because the centrality (as measured by degree or eigenvector

centrality) of the thalamus is context specific (Lohmann et al.,

2010; Gili et al., 2013). This is in line with the present result,

and suggests that the thalamus mediates corticocortical com-

munication during task, but this mediation is weakened in the

resting-state.

In contrast, the left inferior temporal cortex region revealed

higher degree in the resting-state network as compared with the

coactivation network. This region is part of the DMN (Raichle

et al., 2001; Buckner et al., 2008), which is generally deactivated

during tasks (Shulman et al., 1997). Regions that are connected

with the left inferior temporal cortex mostly constitute the DMN

(Figure 6D). Consistent with previous studies of brain centrality

(Achard et al., 2006; Buckner et al., 2009), the left inferior tempo-

ral cortex showed high centrality in resting-state. But, the current

analysis also revealed that the degree is significantly less in the

coactivation network. This may reflect the less involvement of this

region during tasks as compared with the resting-state (Shulman

et al., 1997).

By comparing network configurations of the coactivation net-

work with the resting-state network, the current analysis provides

insight on the different brain modes during task and resting-

state. The brain during task exhibits greater small-worldness that

facilitates global information transmission, and smaller modu-

larity that facilitate information transmission between different

systems. These results motivate future studies to investigate brain

network configurations in different task conditions. In addition,

the current analysis identified the thalamus as a hub region only

in the coactivation network but not the resting-state network,

suggesting that the role of thalamus in the brain network may

be overlooked when studying the resting-state brain network.
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FIGURE 6 | Connectivity of the thalamus (A,B) and left inferior temporal cortex (ITC) (C,D) for the coactivation (A,C) and resting-state correlation (B,D)

networks at sparsity of 20%.

A difficulty of studying thalamus connectivity is that the thalamus

is spatially heterogeneous, so that different substructures connect

to different brain regions (Zhang et al., 2008; Eckert et al., 2012).

Future studies may need to use fine spatial scales to investigate the

thalamus and its effect on network configurations (Wang et al.,

2009; Hayasaka and Laurienti, 2010).

Recently, several efforts have been made to study brain net-

works using inter-individual covariance from different imaging

modalities, for example brain structures (Mechelli et al., 2005;

Chen et al., 2008), brain metabolisms (Horwitz et al., 1984; Di

et al., 2012), and resting-state brain parameters (Zhang et al.,

2011; Taylor et al., 2012). Although these studies provide infor-

mation on brain integration, the lack of theoretical basis causes

difficulty in combining results from different imaging modal-

ities. The current study may provide a theoretical framework

to relate the different levels of brain network (e.g., anatomical,

metabolic, and hemodynamic) in terms of local/global efficiencies

and modular integrations. Future work on systematically compar-

ing different levels of brain network configuration will facilitate in

testing theories of brain organization such as the economic theory

(Bullmore and Sporns, 2012).
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