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Abstract. The widespread use of multi-CPU computers is challenging pro-
gramming languages, which need to adapt to be able to express potential paral-
lelism at the language level. In this paper we propose a new model for fine 
grained parallelism in Ada, putting forward a syntax based on aspects, and the 
corresponding semantics to integrate this model with the existing Ada tasking 
capabilities. We also propose a standard interface and show how it can be ex-
tended by the user or library writers to implement their own parallelization 
strategies. 

1 Introduction 

The development of ubiquitous multi-CPU computers has led to a more pressing need 
to be able to express parallel computational algorithms effectively in general purpose 
programming languages.  

The development of programs that capture concurrent properties of algorithms has 
been a focus of many research papers (since [1, 2]) and has been implemented in op-
erating systems, such as DEC RT-11, HP, Unix, POSIX and Microsoft Windows, and 
programming languages concurrent Pascal [1], Ada [3] and Java [4]. Most approaches 
focused either on concurrency in the small (a few of threads or interrupts) or special-
ized processor domains, such as SIMD (Single Instruction Multiple Data) environ-
ments. Recently, other languages, such as C# and C++ have added or are investigating 
methods of implementing fine grained concurrency, which is the subject of this paper. 
We are ignoring much of the work for SIMD machines for now as they use special-
ized toolsets and techniques.  

Unfortunately, the perception of the general threading or tasking environment is 
that the threads or tasks are too expensive in resource usage, cumbersome (in terms of 
being easy to use by average programmers), not easily mapped to the physical re-
sources at hand at the time of program execution, and divergent from the problem 
space when attempting to apply concurrency to computationally intensive activities 
[5, 6]. 

Arguably, the Ada tasking model with its first-class task types and well defined 
syntax/semantics for inter-task interactions [7] simplifies the expression of many 
concurrent properties and solutions. However, other models, such as loop-level paral-



lelism or parallel subprogram execution are not easily expressed in the current Ada 
model. In addition, the resource consumption issues and cost of dynamic task creation 
and destruction of Ada tasks when used in undisciplined ways still begs for a better 
approach to map the concurrency power available at the hardware level to algorithms 
written at the below-subprogram level.  

Parallel programming in Ada was considered several years ago ([8,9,10]). Mayer 
and Jahnichen [8] introduce a parallel keyword, which applies to for loops, al-
lowing a specific compiler to optimize loop iterations, targeted to a multiprocessor 
platform. Hind and Schonberg [9] also targeted the optimization of parallel loops, 
introducing the concept of lightweight (mini) tasks, to reduce the overhead of using 
tasks for parallelism. Thornley [10] proposes two extension keywords to standard 
Ada: parallel and single, where parallel is used for declaring that a block 
or a for loop will be executed in parallel.  

More recent proposals have been made to extend Ada's capabilities by using gener-
ics [11], pragmas [11], and language constructs [12]. This work builds upon these to 
present a more unified proposal. 

In this paper we address these issues as they relate to the Ada programming lan-
guage; propose syntax for Ada that more closely matches the  need for fine grain con-
currency than exists at present; and propose semantics for the syntax presented that 
seamlessly integrates the existing Ada tasking capabilities and the new fine grain 
concurrency. 

2 Problem Analysis 

Concurrency as a discipline has been the subject of intense research from the days of 
Per Brinch Hansen [13]. The most common usage was to handle external events, to 
manage the progression of work and to ensure that work was scheduled according to 
the importance (priority) of the work. For the majority of systems there was a single 
CPU that was the resource to be scheduled, and for the rest there were a few CPUs 
that were shared between many more tasks.  

As long as CPU speed was increasing exponentially, the pressure to increase 
throughput by increasing CPU count was overwhelmed by that speed increase. When 
maximum CPU speed became capped in the mid-2000's, the pressure to increase per-
formance by adding cores became overwhelming. We now stand on the threshold of 
“too many cores”, where chip manufacturers prepare to deliver hundreds or thousands 
of cores, each with tens or hundreds of “lanes” for parallel work. 

With these changes, there will be many more cores than tasks ready to execute at 
any one time. These cores are available to subdivide heavy calculations when the 
algorithms can be effectively parallelized. 

There is an apparent belief that we can create lightweight threads and that a pro-
gram can detect how many cores are available at any one time and allocate the light-
weight threads to cores to execute a parallel algorithm. This belief ignores the fact 
that the operating system schedules all resources, memory, threads, and cores. A pro-
gram cannot schedule cores without scheduling the threads that could be using them.     



An approach institutionalized by MIT [14, 15] and now commercialized by Intel 
[16] and being used by ParaSail [17], Intel's Threading Building Blocks [18], Java 
Fork/Join [19], OpenMP [20], Microsoft's Task Parallel Library [21], is to put light-
weight “tasks” on top of thread pools. This is a promising approach that we investi-
gate further to implement the model that we develop here. 

Another issue that must be addressed for such distribution is the nature of the algo-
rithm being distributed.  Any algorithm that is a candidate for parallel execution must 
calculate a deterministic result independently of the order in which the fragments are 
combined. This is simple if there is only a single operation (such as “+” or “*”) and 
the operation is commutative, but may not be trivial for non-commutative operations 
such as “-” or for more complex combinations of such functions or operations.  

Often, the algorithm must be rewritten to add partial temporary accumulator varia-
bles and to combine these temporary variables correctly to produce the correct result. 
In some cases, the compiler may be able to perform such rewrites, but it is ultimately 
the programmers’ responsibility to be aware of such issues and to ensure that when 
parallelism is applied to a programming construct, the algorithm as written will not be 
incorrect when executed in parallel. 

3 Semantic Model 

In order to effectively describe the new concurrent behavior, we introduce a unit of 
concurrency called a “tasklette”. Unlike tasks, tasklettes are not nameable or directly 
visible in a program. A tasklette carries the execution of a subprogram or of a code 
fragment in parallel with other tasklettes executing the same code fragment (with 
different variables) and possibly in parallel with other tasklettes executing code frag-
ments from other Ada tasks. 

Tasklettes come in two types. The first type is invisible to the programmer and is 
created by the compiler when it can determine that an operation can be parallelized 
and submitted to multiple CPUs. Example of such usage could be the default initiali-
zation or assignment of values to arrays of records or the copy of a large structure 
using the Ada assignment operator. 

The second tasklette type is the subject of this paper and requires the programmer 
to use explicit syntax to guide the compiler and runtime. This syntax will include the 
use of aspects on subprograms or on loops. This syntax will be specified in the next 
section, followed by examples. 

A major impetus behind making tasklettes not declarable is to separate the pro-
grammer from the implementation of the parallel constructs 1. Programmers will de-
clare an intent that code fragments be executable in parallel, but need not concern 
themselves with the details of the parallelism itself. Tasklettes are meant to augment, 
not replace tasks as the visible unit of concurrency. 

                                                           
1  This is the opposite of tasks, where the decision was to make the parallel computation obvi-

ous, since tasks are used to express concurrent activities while tasklettes are used to map the 
application to the underlying platform. 



Tasklettes behave as if each one is executed by a single Ada task that is explicitly 
created for the execution of the tasklettes and terminated immediately after execution 
of the code fragment. Instead of attempting to map tasklettes to cores, we map them to 
tasks and use the Ada tasking model to express the concurrency since tasks in Ada 
already have a computationally sound model that addresses priority and scheduling on 
multicore platforms. To not base this concurrency on tasks could mean extreme diffi-
culty in using tasks and tasklettes in the same partition. 

Any such tasks that execute the tasklettes are usually hidden from the programmer, 
and the only interface that the compiler exposes (even if we create our own task pool) 
is a set of packages and generics to let the pool provide the service. This interface is 
specified in section 5.  

At the present time we are working to extend the model to include real-time behav-
iors, task priorities, and the Ravenscar tasking model. To date we have found no fun-
damental limitations that would prevent this extension. 

 
Figure 1 – the proposed model 

We propose a runtime model where the execution of code fragments executed by 
multiple tasklettes is restricted to producing the same result as would happen if exe-
cuted sequentially. This has some obvious constraints on the user code: 

⎯ Parallel code fragments must not update any non-atomic variable read by 
another code fragment that is executed in parallel, without making special 
language measures to protect the variable 2. 

⎯ Program execution must not proceed beyond the parallelized code until 
tasklettes executing that fragment have completed and delivered their results. 

                                                           
2  If the underlying implementation does not use tasks, then protected operations and potential-

ly blocking operations cannot be called directly from user code. As the proposed model is 
based on mapping tasklettes to tasks this restriction is not needed. 

Program Code 
  
 for I in 1 .. N  
   with Parallel => true 
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 end loop; 
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Our proposal includes an Ada interface to implement the semantic model provided in 
this paper. Compilers and runtimes would be free to provide an implementation that 
does not use the interface as long as the execution of the tasklettes has the same se-
mantic effect given here. However, if a task pool is provided for the default, then it 
must be used as specified here. Figure 1 provides an overview of the proposed model. 

4 Syntax 

In this section we present the addition of parallelization abilities to subprograms and 
loops 3. The most relevant addition to the language is the introduction of the Paral-
lel aspect, which, when applied to a specific construct instructs the implementation 
that parallelization should be provided. 

It is important to note that the programmer must also be able to specify the under-
lying behavior of the runtime, both controlling the scheduling of tasklettes and the 
parameters of the task pool. This is achieved through the programmer being able to 
interact with the underlying library as will be detailed in Section 5.  

4.1 Parallel Subprograms 

Subprograms are a natural candidate for parallelization, in particular for the case of 
pure functions, which are not intended to present side effects. Nevertheless, even 
subprograms that operate on shared data can be parallelized as it may be possible for 
the programmer to control contention, to verify that contention is controlled, or to 
verify that parallel access is on non-overlapping areas of data 4.   

Two possibilities are provided for the placement of the aspect specification. One is 
to place with Parallel in the specification of the subprogram, and the second is 
for the syntax to be placed in the actual call.  

The first method (on the subprogram specification) can be used to create default 
behavior and make the parallel nature visible to callers. The second approach supports 
legacy libraries, and allows the programmer to have a fine-grained control of the par-
allel behavior (at the time of call, e.g. due to different execution conditions).  

In its simple form, if the programmer accepts the default behavior of the underly-
ing task pool and tasklette scheduling, she just needs to include the Parallel aspect in 
the call to the subprogram:  

 Ret := Call (Parameters)  
     with Parallel => True;  

                                                           
3  We also considered the parallelization of blocks, but after analyzing we found that the syn-

tax required to make them effective would be similar to declaration of “anonymous” sub-
programs, e.g. with in and out parameters, so we decided to propose that programmers spec-
ify parallel subprograms in these cases. 

4  Access even on non-overlapping areas of data may cause contention as a write into a varia-
ble may cause a cache line to be invalidated, thus impacting on variables in the same line. 



Note that, in accordance to the rules for aspects [22], the => true can be omitted. In 
case with Parallel is not included the value of the aspect is false, so the subpro-
gram cannot be executed asynchronously.   

In order for the return of the parallel call to be “safe”, and so that no waiting needs 
to be implemented explicitly by the programmer, the asynchronous call waits either 
on (what comes first): 

─ Access to the variable holding the call result, or 
─ The end of the enclosing scope of the call.  

This restriction implements fully-strict parallelism [23], and guarantees that the asyn-
chronous subprogram has access to the stack frame of the enclosing scope of the call 
in its execution, a similar approach as determined for Cilk, and which has been pro-
posed for C++ [24]. An example for instance is a parallel solution for the Fibonacci 
series, which could be written as 5:  

 function Fibonacci(N: Natural) return Natural is 
  function Sequential_Fibonacci (N: Natural)  
    return Natural is 
   ... -- Some implementation of iterative fibonacci 
  end  Sequential_Fibonacci; 
 begin 
  if N < Cut then -- to stop parallelism (efficiency) 
   return Sequential_Fibonacci(N); 
  else 
   return  
    Fibonacci (N-1) with Parallel => True 
    + Fibonacci (N-2) with Parallel => False; 
  end if; 
 end Fibonacci;  

We also considered that a way to control parallel actions is necessary, including (i) 
“select”ing on multiple alternative parallel actions, continuing after getting the first 
result, and (ii) directly requesting the abort of all tasklettes still pending in the current 
scope (for scope exit). We have identified this as future work. 

4.2 Parallel loops 

Parallelizing loops is one of the best known examples of the advantages of parallel 
execution. A simple loop that can be parallelized is: 

 for I in 1 .. N  
  with Parallel => True  
 loop --... end loop; 

                                                           
5  To increase efficiency this solution parallelizes one of the branches, since the existing task 

can do the N-2 branch, and stops parallelization when it is more efficient to go sequentially.  



In the simple case the compiler could create N tasklette objects, one per iteration, 
which would be placed in the queue of the default task pool. This approach is only 
appropriate if each iteration is computationally intensive (e.g. ray tracing). In most 
cases, the advantages of parallelization are only obtained if some partitioning is used.  

This partitioning could be performed by the compiler, dividing the range in P 
“chunks” (even with variable or varying dimensions), with P < N, e.g. based on the 
number of available cores.  

Nevertheless, in most cases loop iterations are not independent, and some sort of 
reduction may be required. As an example, if the loop was calculating a sum, then 
each chunk would produce a partial value which would need to be reduced to one 
result. Generalizing, for some code: 

 X : User_Type := Some_Default; 
 for I in 1 .. N loop 
  X := Func(X, I); 
 end loop; 

the programmer could express the loop in terms of a formal parallel model, being able 
to identify to the compiler the reduction operation, the variable which will be partially 
calculated in each chunk of iterations and then accumulated (or reduced), and the 
identity value, which is used to initialize each partial result: 

 function G (Accumulator, Iteration_Result: User_Type)  
   return User_Type is  
  ... -- some function 
begin 
 X : User_Type := Some_Default; 
 for I in 1 .. N  
   with  Parallel => True, Reduction => G, 
      Accumulator => X,  
         Identity => Some_Identity_Value  
 loop 
  X := Func(X, I); 
 end loop; 
end; 

Nevertheless, for the general case, the compiler may not be able to parallelize a se-
quential loop without the help of the programmer (e.g. even in simple aggregation 
loops, if the operation is not associative). One approach would be for the programmer 
to rewrite the loop in terms of the associative operation. For instance: 

for I in 1 .. N loop  
 Sub := Sub - Buffer(I); 
end loop; 



could be rewritten in order to have an associative operation being performed 
(Sub := Sub + (-Buffer(I)) 6 . This would nevertheless require the pro-
grammer to change the code. Instead, our proposal allows for the programmer to di-
rectly identify reduction and identity: 

for I in 1 .. N  
 with  Parallel => True, Reduction => ”+”,  
    Accumulator => Sub, Identity => 0 
loop 
 Sub := Sub - Buffer(I); 
end loop; 

4.3 Explicit control of partitioning 

For the cases that the partitioning is not easy to understand or the reduction operation 
is not as simple to identify (or the programmer prefers to explicitly handle it in the 
loop), we also allow for the explicit control of partitioning.  

In its simple form, the programmer may partition the loop into “chunks”, using a 
sequential iteration in each chunk. For example (for simplicity assuming that N is 
divisible by Chunk_Size): 

for I in 1 .. N/Chunk_Size with Parallel => True  
loop 
 for J in I*Chunk_Size .. (I+1)*Chunk_Size-1  
                with Parallel => False loop 
   --... 
 end loop; 
end loop; 

The Parallel => False in the inner loop is not necessary, but can be given for 
higher clarity. Chunk_Size can be a constant, a user variable (e.g. the user queries 
the number of cores in the platform) or even a function supplied by the task pool (e.g. 
how many tasks in the task pool are available). 

The chunk policy can also be provided as an aspect of the loop. This allows more 
advanced partitioning approaches, with variable chunk sizes depending on the system 
load, dynamically managed by the underlying runtime. In this case, the start and fin-
ish of the chunk is obtained using attributes on the appropriate loop control variable:    

for I in 1 .. N  
       with Parallel => True,  
            Chunk_Size => [N_Core | auto | dynamic]  
loop 
 for J in I’Chunk_First .. I’Chunk_Last loop  

                                                           
6  Compilers may eventually be able to perform many automatic parallelizations in these sim-

ple examples being shown. Nevertheless the model is for the general case. 



    -- Other attributes could give size and range 
    -- No aspect in the inner loop so it is sequential 
 end loop; 
end loop; 

Dependencies and reduction can be supported by declaring local variables inside the 
loop 7,  and aggregating the result in a global variable (would need to be protected). 

Sub := ...; 
for I in 1 .. N loop  
 Sub := Sub - Buffer(I); 
end loop; 

could become: 

Sub := ...; 
for I in 1 .. N with Parallel => True,         
                     Accumulator => Sub  
loop 
 declare 
  Local_Sub : Integer := 0; 
 begin 
  for J in I’Chunk_First .. I’Chunk_Last loop  
     Local_Sub := Local_Sub – Buffer(I); 
  end loop; 
  Sub := Sub + Local_Sub; 
 end; 
end loop; 

The Sub variable can now be updated in parallel. Therefore, the Accumulator 
aspect in the loop also signals the compiler that Sub must be protected.  

A more complex case is when the code presents a loop-carried dependency, where 
subsequent iteration of a loop requires the computed value of the previous iteration: 

Cumulative(1) := Histogram(1); 
for I in 2 .. N loop  
 Cumulative (I) := Cumulative (I-1) + Histogram(I); 
end loop; 

This code cannot be automatically converted into a parallel loop. It can nevertheless 
be parallelized using a prefix-sum algorithm [25], since the operation is associative. 

The proposed approach also considers another level of abstraction, where the pro-
grammer is able to specify and control the underlying scheduling, manipulating more 
directly the operations being performed by the runtime. To support this control, an 

                                                           
7  This could also allow the compiler to optimize the placement of variables in Non Uniform 

Memory Architectures (NUMA), as these variables will only be used in one core. 



aspect Parallel_Manager is used, to specify the object that controls parallelism. 
This is presented in the next section.  

5 Interface to the Runtime  

The goal of the parallel runtime is to define an interface that provides flexibility to the 
application programmer, yet minimizes the implementation burden for the compiler 
writer. The desire is also to provide an interface that could be standardized so that a 
parallel library writer could plug in different parallelism strategies and allow the ap-
plication programmer to have fine-grained control over the parallelism. The runtime 
consists of the task pool interface and the parallelism generics. 

5.1 Task Pool Interface 

We define an interface (partly shown below) to a task pool facility that provides the 
abstraction of managing a set of tasks as general purpose workers where a worker can 
be dispatched to a tasklette. The parallelism strategy implemented by a library writer 
interacts with the task pool. The model is that the parallelism manager offers work 
(procedure Offer_Work) to the task pool in the form of a work plan object defined 
by the library writer. The task pool releases a worker which calls the Engage method 
of the plan to perform the work. The Engage call is essentially the tasklette code that 
is executed, which ultimately calls out to execute the users’ parallel algorithm. 

package Ada.Parallel.Task_Pools is    
  -- A Work Plan defines the work strategy 
   type Work_Plan is limited interface; 
 
   procedure Engage (Plan : Work_Plan) is abstract; 
   -- When a worker starts executing, it engages the  
   -- work plan. This call represents the tasklette 
   -- code. Engage executes the plan. Upon returning, 
   -- the Worker returns to the task pool 
 
   type Task_Pool_Interface is limited interface; 
 
   procedure Offer_Work 
     (Pool : in out Task_Pool_Interface; 
      Item : aliased in out Work_Plan’Class; 
      Worker_Count : Positive_Worker_Count)  
   is abstract; 
   -- Allows a work plan to request workers from the  
   -- task pool. The Work plan is offered to the task  
   -- pool, which is then engaged by each worker 
end Ada.Parallel.Task_Pools; 



The task pool interface shown above can be implemented by extending the interface 
by any number of implementations that could be provided by library writers. Some 
possible candidates are unbounded task pools, where the number of workers can dy-
namically increase to accommodate the load, bounded task pools where the number of 
worker tasks is statically defined, and Ravenscar tasks pools that are compatible with 
the Ravenscar profile tasking restrictions. 

5.2 Parallelism Control 

Having presented the task pool interface, we now consider the parallelism generics 
that interact with the task pool. We have identified a need for two forms of parallel-
ism in an application; non-recursive parallel subprograms, and divide and conquer 
parallelism, which covers both parallel loops and recursive subprograms. 

5.2.1 Non-Recursive subprograms 

The non-recursive subprogram case is perhaps the simplest, since there is only one 
call involved and thus there is no need for a parallelism strategy such as work-sharing, 
work-seeking, or work-stealing 8, nor is there a need for reduction. In addition, there 
are no specific restrictions on the parameter profile of the subprogram, and the com-
piler writer can implement the calls without the need for library support 9. For exam-
ple, the compiler can create a wrapper for each non-recursive subprogram to be called 
in parallel. The wrapper declares a tasklette which obtains a worker task from a task 
pool, and then invokes the real call from the context of the worker task. Since the 
tasklette is declared within the stack frame of the wrapper, it can issue the call to the 
real subprogram simply passing the parameters passed to the wrapper straight through 
to the real subprogram. The parallel non-recursive call is simple enough that it war-
rants no further discussion. 

5.2.2 Divide and Conquer Parallelism 

The other types of parallelism in our proposal are parallel loops and parallel recur-
sion. These apply parallelism by utilizing a divide and conquer strategy. There are 
several possible sub-strategies. For instance, a load balancing sub-strategy might be 
utilized if the effort to process items in the loop varies through the iteration or if the 
recursion is unbalanced. Work-sharing might be chosen if the work can be divided 
more evenly. Regardless of the sub-strategy chosen, reduction may be needed if the 
parallelism produces a result. For these forms of parallelism, a library approach is 
proposed. Such a library implemented in Ada would involve generics, since the data 
types, loop iteration index types, and result types are user-defined and may range 
from simple elementary types such as Integer and Float, to complex user-defined 
record structures and tagged types.  
                                                           
8  More details on these strategies can be found in [26]. 
9  If a library for this strategy is provided, the compiler will implement the calls to this library. 



The runtime library model for divide and conquer parallelism consists of a hierar-
chy of packages that can be selected for specific purposes. These libraries provide the 
parallelism, while the compiler performs a transformation from the syntax features 
described above. 

The run time interface consists of a three stage generic instantiation (shown later): 
⎯ Stage 1   =>   Reduction primitives 
⎯ Stage 2  =>  Work type + Strategy Interface 
⎯ Stage 3  =>  Parallelism Strategy 

The first instantiation allows the application programmer to specify the result type, 
the reducing function, and the identity value for the result type. 

The second instantiation defines the data type describing the work to be processed 
in parallel, and defines the interface to be implemented by library writers for the third 
level instantiation. There are two possibilities here. If the parallelism is a parallel 
loop, then the work type is the iteration index type.  This may be any user-defined 
scalar type. If the parallelism is for a recursive subprogram, then the work type is the 
data type that represents the work to be performed. 

The third instantiation defines the parallelism strategy and how the work is to be 
performed in parallel. While the first two stages establish the parallelism framework 
and are proposed for standardization, the third level libraries implement the level 2 
interface and may be provided by third-party library writers. 
 
Level one Instantiation Interface 

generic 
 type Result_Type is private; 
 with function Reducer (Left, Right : Result_Type) 
             return Result_Type; 
 Identity_Value : Result_Type; 
 
package Ada.Parallel.Functional_Reduction is 
end Ada.Parallel.Functional_Reduction; 

As can be seen, the first instantiation is trivial, defines no operations, and requires no 
body 10. This instantiation is only used if a result is to be generated, and allows a pro-
grammer to specify the reducing operation needed for the parallelism opportunity. 
 
Level two Generic Interface for Parallel Loops 

generic 
   type Iteration_Index_Type is (<>); 
package Ada.Parallel.Functional_Reduction.Loops 
 
    type Parallelism_Manager is limited interface; 

                                                           
10   More complex situations, such as where the reducers are of different type from the result 

value, can be handled by other generics, with more parameters. 



    procedure Execute_Parallel_Loop 
       (Manager : Parallelism_Manager; 
        From    : Iteration_Index_Type  
            := Iteration_Index_Type'First; 
        To      : Iteration_Index_Type 
            := Iteration_Index_Type'Last;   
        Process : not null access procedure 
            (Start, Finish : Iteration_Index_Type; 
             Item : in out Result_Type); 
        Result : in out Result_Type) 
    is abstract; 
 
end Ada.Parallel.Functional_Reduction.Loops; 

The level two instantiation for parallel loops is a child package of the Function-
al_Reduction package of level 1. This package allows the programmer to specify 
the data type associated with the loop index as the Iteration_Index_Type. The 
manager type defines the interface to be implemented by the library writer for the 
level 3 instantiation. The library writer must also provide a constructor function called 
Create (with defaulted parameters) that returns a Manager object 11.  
 
Level two Generic Interface for Recursive Subprograms 

generic  
   type Work_Type is private;  
   --  Data type to be processed recursively  
  
package Parallel.Functional_Reduction.Recursion is  
  
   type Parallelism_Manager is limited interface;  
  
   function Execute_Parallel_Subprogram  
     (Manager : in out Parallelism_Manager;  
      Item : Work_Type;  
      Worker_Count : Worker_Count_Type :=  
                            Default_Worker_Count;  
      --  Top level item to process recursively  
      Process : not null access function ( 
          Item : Work_Type) return Result_Type)  
      return Result_Type  
   is abstract;  
end Parallel.Functional_Reduction.Recursion; 

                                                           
11  This function is to be used by the compiler to create a manager object for each parallelism 

opportunity. The function must provide the parameters to match the aspects specified at the 
parallelism opportunity. 



Similarly, the level 2 instantiation for recursive subprograms defines the interface that 
the library writer needs to implement and is proposed for standardization. The Exe-
cute_Parallel_Subprogram is invoked by a wrapper function generated by 
the compiler, which manages the parallelism opportunity. As before, a Create 
constructor function returns a manager object, which is called by compiler generated 
code to initialize an object declared in the declaration section of the wrapper function 
for the programmers’ code. 

5.3 Example: Parallel Loops  

To demonstrate the 3 stage process, consider the earlier example to calculate the sum 
of integers from 1 to N. 

The first stage generic instantiation sets up the reduction needed for Integer addi-
tion. 

with Ada.Parallel.Functional_Reduction; 
package Integer_Addition is new  
   Ada.Parallel.Functional_Reduction  
      (Result_Type => Integer, 
       Reducer => “+”, 
       Identity_Value => 0); 

For the second phase instantiation, we need to decide if the parallelism applies to a 
loop or to a recursive subprogram. In this case, we are interested in a loop. The pack-
age instantiation from the first phase is used to create the parallel loop generic. 

with Integer_Addition; 
with Ada.Parallel.Functional_Reduction.Loops; 
package Integer_Addition_Loops is new  
     Integer_Addition.Loops  
        (Iteration_Index_Type => Integer); 

For the third and final phase instantiation, we need to specify the parallelism strategy. 
For this phase, we can instantiate a generic library provided by a library writer, which 
may be a third party developer, a library provided by the compiler vendor, or a library 
written by the application programmer.  

Assuming that a work sharing library is of interest for this loop, one might instanti-
ate the third phase at library level to look something like: 

with Integer_Addition_Loops; 
with Ada.Parallel.Functional_Reduction.Loops. 
                                         Work_Sharing; 
package Work_Sharing_Integer_Addition_Loops is new 
   Integer_Addition_Loops.Work_Sharing; 

Now that the parallelism package has been fully instantiated, it can be used in an ap-
plication program, to generate the parallelism. 



with Work_Sharing_Integer_Addition_Loops; 
with Ada.Parallel.Task_Pools.Bounded; 
use Ada.Parallel; 
package WSIA renames  
                 Work_Sharing_Integer_Addition_Loops; 
-- ... 
 declare 
    Sum : Integer := 0; 
 begin 
 for I in 1 .. N  
  with Parallel => True, Worker_Count => 4, 
      Task_Pool => Task_Pools.Bounded.Default_Pool, 
     Parallel_Manager => WSIA.Parallelism_Manager, 
     Accumulator => Sum 

   loop 
       Sum := Sum + I; 
   end loop; 
  -- ... 

Another example is provided in Appendix, illustrating how one might instantiate 
the parallelism generics to solve the parallel fibonacci problem recursively in parallel. 

6 Conclusion and Future Work 

We have shown a powerful model that permits fine grained concurrency to be added 
to Ada and is consistent with the Ada tasking model, which we intend to propose to 
the Ada standardization committee as an extension of Ada.  

Our research indicates that we can not only add a fine-grained concurrency mecha-
nism to Ada, as shown in this paper, but this fine grained concurrency can be special-
ized to behave correctly in situations where Ada must meet difficult constraints, such 
as in hard real-time systems. These additional capabilities are being refined and will 
be presented in other works (an initial model is provided in [27]). 

The programmer should also have the ability to control execution of parallel 
tasklettes, aborting loop iterations that are no longer necessary (e.g. in a search opera-
tion). This will be further investigated. Other constructs that can be provided with 
parallelism annotations are select statements, which are identified as future work. 
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Appendix - Parallel Recursive Subprogram Example 

In the main part of the paper, an example was provided that illustrated the approach 
for fine grained parallelism control for parallel loops. This appendix provides a simi-
lar example that is intended to show the recursive subprogram case. 

Once again a three state generic instantiation can be applied if the recursion needs 
to generate a result.  Here we consider the recursive Fibonacci example. 
  As with the parallel loop example, the reducing operation is integer addition, there-
fore the first stage instantiation from the loop example can be reused. 

For the second stage instantiation, the recursive subprogram generic needs to be in-
stantiated. In this case, the work type, Integer, is the type of the top level work 
item to be processed, which corresponds to the Value parameter of the Fibonacci 
function. We can then provide the following instantiation for the second phase. 

with Integer_Addition; -- from Section 5 
with Ada.Parallel.Functional_Reduction.Recursion; 
package Integer_Addition_Recursion is new  
     Integer_Addition.Recursion (Work_Type => Integer); 

For the third phase, we will assume that a parallel library writer has provided a work-
seeking library for recursion. As with the parallel loop case, the instantiation is 
straightforward, since there are no formal parameters to the generic. 

with Integer_Addition_Recursion; 
with Ada.Parallel.Functional_Reduction. 
                            Recursion.Work_Seeking; 
package Work_Seeking_Integer_Addition_Recursion is new 
   Integer_Addition_Recursion.Work_Seeking; 

Now that the third phase instantiation exists, the application programmer can rewrite 
the Fibonacci example as follows to obtain a parallel result with fine-grained control 
of the parallelism. 

with Work_Seeking_Integer_Addition_Recursion; 
with Ada.Parallel.Task_Pools.Bounded; 
package WSeIA renames 
               Work_Seeking_Integer_Addition_Recursion; 
 



function Fibonacci (Value : Natural) return Natural  
   with Parallel => True, Worker_Count => 4,  
    Parallel_Manager => WSeIA.Parallelism_Manager, 
        Task_Pool => Parallel.Task_Pools.Default_Pool; 
         

As seen, the Parallel_Manager aspect can be provided in the spec (or body) of 
the subprogram, but can be overridden by the caller code. It specifies a manager to be 
used when the subprogram is called with Parallel => True. 

The body of Fibonacci can be written in very much the same style as it would have 
been for the sequential case. In this case, the implementer of the Work-seeking ab-
straction declares an atomic boolean variable [26], Seeking_Work, which is refer-
enced from the users’ code to see if there are idle workers looking for more work. 
Note that an attribute must be provided that permits access to the parallelism manager 
object for the local scope. 

function Fibonacci (Value : Natural) return Natural is 
Sequential_Cutoff : constant Integer := 22; 

begin 
   if Value < 2 then 
      return Value; 
   elsif  Parallel’Manager.Seeking_Work and then 
        Value > Sequential_Cutoff then 
      return 
        Parallel_Fibonacci (Value - 2)  
           with Parallel => True  
     + Parallel_Fibonacci (Value – 1); 
   else 
      return  Fibonacci (Value - 2) + 
         Fibonacci (Value - 1); 
   end if; 
end Fibonacci; 


