Tasks: Language Support for Event-driven Programming

Jeffrey Fischer

Rupak Majumdar

Todd Millstein

Department of Computer Science, University of California, Los Angeles
{fischer,rupak,todd}@cs.ucla.edu

ABSTRACT

The event-driven programming style is pervasive as an effi-
cient method for interacting with the environment. Unfortu-
nately, the event-driven style severely complicates program
maintenance and understanding, as it requires each logical
flow of control to be fragmented across multiple independent
callbacks.

We propose tasks as a new programming model for or-
ganizing event-driven programs. Tasks are a variant of co-
operative multi-threading and allow each logical control flow
to be modularized in the traditional manner, including us-
age of standard control mechanisms like procedures and ex-
ceptions. At the same time, by using method annotations,
task-based programs can be automatically and modularly
translated into efficient event-based code, using a form of
continuation passing style (CPS) translation. A linkable
scheduler architecture permits tasks to be used in many dif-
ferent contexts.

We have instantiated our model as a backward-compatible
extension to Java, called TaskJava. We illustrate the benefits
of our language through a formalization in an extension to
Featherweight Java, and through a case study based on an
open-source web server.

1. INTRODUCTION

A wide variety of applications, from high-performance
servers to enterprise applications to GUIs to embedded sys-
tems, rely on an event-based programming style. Event-
driven programming implements a stylized programming id-
iom where programs use non-blocking I/O operations, and
the programmer breaks the computation into fine-grained
callbacks (or event handlers) that are each associated with
the completion of an 1/O call (or event). This approach per-
mits the interleaving of many simultaneous logical tasks with
minimal overhead, under the control of an application-level
cooperative scheduler. Each callback executes some useful
work and then either schedules further callbacks, contingent
upon later events, or invokes a continuation, which resumes

the control flow of its logical caller. The event-driven style
has been demonstrated to achieve high throughput in server
applications [16, 22], resource-constrained embedded devices
[8], and business applications [3].

Unfortunately, programming with events comes at a cost:
event-driven programs are extremely difficult to understand
and maintain. Each logical unit of work must be manu-
ally broken into multiple callbacks scattered throughout the
program text. This manual code decomposition is in con-
flict with higher-level program structuring. For example,
calls do not return directly to their callers, so it is difficult
to make use of procedural abstraction as well as a structured
exception mechanism.

Threads represent an alternative programming model
commonly used to interleave multiple flows of control. Since
each thread maintains its own call stack, standard program
structuring may be naturally used, unlike in the event-driven
style. However, threads have disadvantages as well, includ-
ing the potential for race conditions and deadlocks, as well
as high memory consumption [21]. Within the systems re-
search community, there is currently no agreement that one
approach is better than the other [16, 20, 21, 1]. In addi-
tion, in some contexts, threads either cannot be used at all
(such as within some operating system kernels) or can only
be used in conjunction with events (such as thread-pooled
servers for Java Servlets [3]). Thus, we believe that events
are here to stay and are an important target for program-
ming language support.

In this paper, we introduce tasks as a new programming
language construct for event-driven applications. A task,
like a thread, encapsulates an independent unit of work.
The logical control flow of each unit of work is preserved,
and standard program structures like procedures and ex-
ceptions may be naturally used. However, unlike threads,
tasks can be automatically implemented by the compiler in
an event-driven style, thereby obtaining the low-overhead
and high-throughput advantages of events. Our compila-
tion strategy is a restricted form of continuation-passing
style (CPS), a well-studied compiler transformation that is
popular for functional programming languages [2]. We have
instantiated our concept of tasks as a backward-compatible
extension to Java called TaskJava and have implemented the
TaskJava compiler in the Polyglot compiler framework [15].

Tasks are a variant of cooperative multitasking, a form
of interleaved execution where context switches only oc-
cur upon explicit yields. TaskJava provides several techni-
cal contributions over existing cooperative multitasking sys-
tems.

e First, TaskJava’s modular static type system tracks the
set of methods whose execution might yield, requiring
each to have a new async modifier. Aside from serv-
ing as useful documentation for clients, these annota-
tions tell the compiler exactly where CPS translation
is required (and where it is not). In contrast, existing
systems must allow for yields anywhere, which requires
either low-level stack manipulation (which is not possi-
ble in virtual machine-based languages), maintaining the
stack on the heap, or copying the stack onto the heap as
necessary.

e Second, TaskJava is scheduler-independent: TaskJava
programs can be “linked” against any scheduler that pro-
vides the semantics of a new wait primitive, which yields
control to the scheduler. This design permits the bene-
fits of tasks to be accrued across multiple event domains
(GUI events, web server events, etc.). Prior approaches
are tied to a specific scheduler and notion of events.

e Finally, TaskJava properly handles the interactions of
wait with Java language features including checked ex-
ceptions and method overriding, and TaskJava’s imple-
mentation adheres to the constraints imposed by the
Java virtual machine.

We evaluate TaskJava in two ways. First, we have formal-
ized the language and its compilation strategy via CoreTask-
Java (CTJ), a core language that extends Featherweight
Java [11]. We provide a direct operational semantics for
CTJ, whereby wait calls block until an appropriate event is
signaled, as well as a translation relation from CTJ to Feath-
erweight Java, which formalizes the continuation-passing
transformation performed by the TaskJava compiler. We
have proven CTJ’s type system sound, and as corollaries
of this property, we show that a well-typed CTJ program
is guaranteed to avoid two significant classes of errors that
may occur in event-driven programs, which we dub the lost
continuation and lost exception problems.

The lost continuation problem occurs when a callback has
an execution path in which the callback’s continuation is
neither invoked nor passed along to the next callback in
the event chain. A lost continuation causes the intended
sequential behavior of the program to be broken, often pro-
ducing errors that are difficult to trace to their source. The
lost exception problem occurs when an exceptional condi-
tion produced by a callback is not properly handled by the
subsequent continuation, potentially causing the program to
crash or continue executing in undefined ways.

Second, to evaluate TaskJava’s benefits in practice, we
extended Fizmez [4], an open source web server, to use in-
terleaved computation. We implemented two versions: one
using a manual event-driven style and the other using Task-
Java. The TaskJava version maintains the same structure
as the original web server, while the event-driven version
requires its logic to be fragmented across many callback
classes, obscuring the control flow. At the same time, the
TaskJava version pays only a modest performance penalty
versus the hand-coded one.

While many of the ingredients of our approach have been
present in the programming languages literature, we be-
lieve that our design and implementation of TaskJava shows
how these techniques can be combined effectively to pro-
vide demonstrable benefits in an important class of systems
applications.

The rest of the paper is organized as follows. In sec-

tion 2, we informally present tasks and TaskJava by exam-
ple and contrast with event-driven programs. In section 3,
we describe the CoreTaskJava formalisms. In section 4 we
overview the implementation of the TaskJava compiler, and
in section 5 we discuss our web server case study. We then
survey related work in section 6 and conclude in section 7.

2. PROGRAMMING WITH TASKS

2.1 Event-driven Programming

The event-driven programming style is frequently used in
server programming in conjunction with non-blocking 1/0.
Non-blocking I/O libraries (such as Java’s NIO package)
permit input/output operations to be scheduled so that they
do not block inside the operating system. Thus, independent
requests can be executed in an overlapping fashion without
preemptive multi-threading.

Non-blocking 1/O libraries generally provide two types
of calls. First, a selection call permits waiting for one or
more channels/sockets to be ready for a new request. Exam-
ples include the Unix select call and the Selector.select
method in Java’s NIO package. Second, calls are provided to
initiate the actual I/O operations (e.g., read and write) once
the associated channel has become ready. Unlike a standard
blocking read or write request, non-blocking read and write
calls generally complete only the portion of a request that
can be accomplished without blocking.

Selection calls are usually incorporated into a user-defined
scheduler framework. Rather than calling the selection API
directly, clients of the scheduler register to receive notifica-
tion when the state of a given channel/socket changes. The
scheduler then calls the selection API on behalf of all clients,
notifying clients of events via callbacks. The control logic of
each client is broken across a series of these callbacks and
thus is interleaved by the scheduler with the callbacks of the
other clients. This approach permits independent activities
to cooperatively share the process’s CPU and I/O resources.

2.2 Event-driven Writer

Figure 1 shows a simple program fragment, written in an
event-driven style, which sends a buffer of data on a non-
blocking channel. Writer’s run method first obtains the
data to be written (not shown), which is stored in a buffer
buf. The method then calls Scheduler.register, which
registers a callback to be invoked upon a write-ready or er-
ror event on the channel ch. The run method returns imme-
diately after the register call — execution of this logical
control flow must be resumed by the scheduler.

When an event occurs on channel ch, the scheduler invokes
the run method of the callback it was given (an instance of
WriteReadyCB). This method performs a write on the chan-
nel and then checks to see if more data needs to be written.
If so, the callback re-registers itself with the scheduler. Oth-
erwise, it calls the continuation method restOfRun on the
original Writer object, which resumes the logical control
flow. If an error event is returned by the scheduler, the call-
back prints an error message. Since no callback is registered
or continuation method invoked, the logical control flow is
effectively terminated in that case.

Even this simple example illustrates the violence that the
event-driven style does to a program’s natural flow of con-
trol. The code in restOfRun logically follows the buffer
write, but they must be unnaturally separated because of

01 public class Writer {

35 public class WriterTask implements Task {

02 ByteChannel ch;

03 e

04 /* The main body of our task */

05 public void run() {

06 // get the data to write

o7 ByteBuffer buf = ...;

08 /* wait for channel to be ready */

09 Scheduler.register(ch, Event.WRITE_RDY_EVT,

10 Event.ERR_EVT,

11 new WriteReadyCB(ch, buf, this));
12

13 /* After the write has completed, we continue with what
14 we were doing. The event-driven style forces this
15 in a separate method. */

16 public void restOfRun() { ... }

17 /% Callback which does the write and then registers
18 itself if there still is data left */

19 class WriteReadyCB implements Callback {
20

21 public WriteReadyCB(ByteChannel ch, ByteBuffer buf,
22 WriteTask caller) {...}

23 public void run(Event e) {

24 switch (e.type()) {

25 case Event.WRITE_RDY_EVT:

26 ch.write(buf);

27 if (buf.hasRemaining())

28 Scheduler.register(ch, Event.WRITE_RDY_EVT,
29 Event.ERR_EVT, this);
30 else caller.restOfRun();

31 break;

32 default:

33 System.out.println(e.toString());

34 SRS

Figure 1: Implementation of an event-driven writer

the intervening event registration. Similarly, performing
the buffer write conceptually involves a loop that writes
to the channel until the entire buffer has been written. In
WriteReadyCB.run, this loop must be unnaturally simulated
by having the callback re-register itself repeatedly.

Without care, it is easy for a programmer to introduce
errors that go undetected. For example, if the call to
rest0fRun is accidentally omitted on line 30, then Writer’s
control flow will never be resumed after the write. If the
re-registration on line 28 is omitted, the write will not even
be completed. These are examples of lost continuation prob-
lems.

2.3 Task-based Writer

Figure 2 shows a TaskJava implementation of the same
program fragment. The class WriterTask is declared as a
task by implementing the Task interface. Tasks are the unit
of concurrency in TaskJava, serving a role similar to that
of a thread in multi-threaded systems. Instances of a task
may be created by using the spawn keyword, which is fol-
lowed by a call to one of the task’s constructors (e.g., spawn
WriterTask()). A spawn causes a new instance of the task
to be created and schedules the instance’s run method for
execution.

The logical control flow of our writer is now entirely en-
capsulated in WriterTask’s run method. The register call
from Writer is replaced with a wait call, which conceptu-
ally blocks until one of the requested events has occurred,
returning that event. In this way, explicit callback func-

36 ByteChannel ch;

37 /* The main body of our task */

38 public void run() {

39 // get the data to write

40 ByteBuffer buf = ...;

41 // write the buffer

42 do {

43 Event e =

44 Scheduler.wait(ch, Event.WRITE_RDY_EVT,
45 Event.ERR_EVT) ;

46 switch (e.type()) {

a7 case Event.WRITE_RDY_EVT:

48 ch.write(buf);

49 break;

50 default:

51 System.out.println(e.toString());
52 return;

53

54 } while (buf.hasRemaining())

55 /* the write is completed, so continue
56 with the rest of the method */

57 Ce

58)}

Figure 2: Implementation of the writer in TaskJava

tions are not needed, so the code need not be unnaturally
fragmented across multiple methods (e.g., rest0fRun). Sim-
ilarly, the logic of the buffer write can be implemented using
an ordinary do-while loop.

The ability to use traditional program structures to ex-
press the control flow of a task avoids the lost continua-
tion problem. The programmer need not manually ensure
that the appropriate callback is registered or continuation
method is invoked on each path. This work is done by the
TaskJava compiler, which translates the WriterTask into a
continuation-passing style that is very similar to the Writer
code in figure 1. In particular, wait calls are translated to
register calls, and the portion of the run method after the
wait call is placed in a separate continuation method.

TaskJava allows programmers to define their own sched-
uler class, their own event type and implementations, and
their own type of event “tags” (e.g., WRITE_RDY_EVT). As
long as the scheduler defines a register method for event
registrations, TaskJava allows the scheduler to be treated as
if it has a corresponding wait method. This approach al-
lows existing scheduler frameworks to obtain the benefits of
TaskJava without any modification. For example, the sched-
uler used in the manual version in figure 1 may be reused
in figure 2. This approach also allows multiple scheduler
frameworks to be used in the same program.

2.4 Asynchronous Methods

The TaskJava implementation of our writer also natu-
rally supports procedural abstraction. For example, figure 3
shows a refactoring of our task whereby the code to write
the buffer is encapsulated in its own method, allowing that
code to be easily used by multiple clients. Implementing
this write method in the manual event-driven version of the
code would be much more unwieldy, because event-driven
programming breaks the standard call-return discipline. To
return control back to caller, therefore, such a write method
would have to take an explicit continuation argument to be

59 public class WriterTask implements Task{
60 ByteChannel ch;

61 /* The main body of our task */

62 public void run() {

63 // get the data to write

64 ByteBuffer buf = ...;

65 try {

66 write(ch, buf);

67 } catch (IOException e) {

68 System.out.println(e.getMessage());

69

70}

71 public async void write(ByteChannel ch, ByteBuffer b)
72 throws IOException {

73 do {

T4 Event e = Scheduler.wait(ch, Event.WRITE_RDY_EVT,
75 Event.ERR_EVT) ;
76 switch (e.type()) {

7 case Event.WRITE_RDY_EVT:

78 ch.write(buf);

79 break;

80 default:

81 throw new IOException(e.toString());
82 } } while (buf.hasRemaining())

8 }}

Figure 3: Use of asynchronous methods in TaskJava

called upon completion of the write.

Figure 3 also shows that tasks are compatible with regu-
lar Java exception handling. The write method throws an
I0Exception when an error event is signaled, allowing its
caller to handle the error as appropriate. As in Java, the
TaskJava compiler ensures that all (checked) exceptions are
caught. In contrast, a manual event-driven version of the
write method would have to signal the error to its caller in
an ad hoc manner, for example by setting a flag or invoking
a special error continuation method. This approach is te-
dious and loses the static assurance that all exceptions are
caught, resulting in the potential for lost exception problems
at run time.

Methods that directly or transitively invoke wait, like
our write method, are called asynchronous methods. Such
methods (other than a task’s distinguished run method)
must have the async modifier. To programmers, this mod-
ifier indicates that the method has the potential to block.
To the TaskJava compiler, this modifier indicates that the
method must be translated into continuation-passing style.

Asynchronous methods, like regular Java methods, inter-
act naturally with inheritance. For example, a subclass of
WriterTask can override the write method to support a dif-
ferent or enhanced algorithm for writing a buffer. Making
the same change to the Writer class in figure 1 is less natural
due to the fragmentation inherent in the event-driven style.
For example, modifications to the logic for writing the buffer
would require a new subclass of the WriteReadyCB callback
class, and this modification then requires a new subclass of
Writer whose run method creates the new kind of callback.

3. FORMALIZING TASKS

We formalize TaskJava and prove our theorems in a core
calculus extending Featherweight Java (FJ) [11]. We do this
in two steps: first, we define FJT, an extension to FJ with
exceptions and a built-in set datatype; second, we define

CoreTaskJava (CTJ), which extends FJ* with support for
tasks and events. This section overviews our formalism and
associated metatheory; full details are available in a com-
panion technical report [6].

3.1 FJ°

The syntax of FJT is described in Figure 4. An FJT pro-
gram consists of a class table mapping class names to classes,
and an initial expression. As in FJ, the notation D denotes
a sequence of elements from domain D. A class consists of
a list of fields, a constructor, and a list of methods. We as-
sume there exist built-in classes Object and Throwable. The
class Throwable is a subclass of Object and both have no
fields and no methods. The metavariable C ranges over class
names, f over field names, m over method names, and x over
formal parameter names. An expression is either a formal, a
field access, a method call, an object allocation, a type cast,
a set, the throw of an exception, or a try expression. The
only values are objects (instances of classes) and set values.

Exceptions have a significant impact on the semantics of
TaskJava and our translation strategy. Thus, including them
enables us to capture more of the issues that must be ad-
dressed by a full implementation. Sets are used extensively
in our modeling of the event scheduler. The addition of first-
class set literals simplifies our notation without changing the
semantics of our formalization.

Figure 5 shows the computation rules from the small-step
operational semantics of FJT. The first three rules are taken
directly from Featherweight Java and define the evaluation
of fields, method calls, and constructors. Rule E-Set; de-
fines the computation of casts for set literals. Given a cast
to Set<T>, where T is an element type, if the type of each
element is a subtype of T', then the cast can be erased. The
next seven rules define the semantics of nested throw ex-
pressions — the entire expression is replaced by the en-
closed throw. This propagates exceptions up the dynamic
evaluation context. Finally, rules E-Try;, E-Trys, and E-
Trys define the semantics of try..catch expressions. If the
body of a try block evaluates to a non-exception value, the
catch block is dropped. If the body of the try block evalu-
ates to a caught exception, the catch block is evaluated. If
the try block evaluates to an uncaught exception, the entire
try..catch expression is replaced with a throw of the excep-
tion. The congruence rules for FJT are straightforward and
may be found in the technical report.

For the static semantics, the typing judgment for expres-
sions now has the form I' + e : T|7, where I is a type
environment as usual and T is set of exception classes that
may escape the expression. This set of exceptions is used
by the rules in order to ensure that every method has an
appropriate throws clause, as in Java. Also, the set of ex-
ception classes resulting from typechecking a program’s ini-
tial expression must be empty. These checks ensure that all
run-time exceptions are caught.

3.2 CoreTaskJava

CoreTaskJava (CTJ) is a core calculus that extends FJ™
with support for event-driven programming. The syntax
extensions for CoreTaskJava (CTJ) are shown in Figure 4: a
spawn expression for creating tasks; a wait primitive, which
accepts a set of events and blocks until one of them occurs;
and asynchronous methods via the async modifier. A task
in CTJ subclasses from a built-in class Task:

ﬁ return e;

class C extends C {T f; K M}

C(T £) { super(f); this.f= f;}

T m(T %) throws C {return e;}

C | Set<T>

x | e.f | e.m(8) | new C(&) | (Ce

| {&} | throw e | try {e} catch (C x) {e}
new C(v) | {v}

Program P =
Class List CL =
Constructor K =

FJ* | Method M =
Type T =
Expressions €hase =
Values v =

CTJ | Async methods M =
e =

... | async T m(T %) throws C {return e;}
. | spawn C(e) | wait(e)

Figure 4: Syntax of FJ™ and CTJ.

fields(C) =Tf%

(E—FDl)

mbody(m, C) = (%, eq)

c<:

(E-APpy) (E-CsT1)

(new C(¥)).f; — vy

vT; € T.T; <: T (E—SETl)
(Set < T >){v} — {¥}

OFv:T[T

v.m (3, throw v,) — throw ve (E-TH3)

(C)(throw ve) — throw ve (E-THG)

v = new C(¥) C <: Ce

try {throw v; } catch (Ce x) {e;} — [v/z]e

(new C(7)).m(ve) — [Ve /%, new C(¥)/this]eq

new C (7, throw ve,) — throw ve (E-THl)
{7, throw ve,8} —— throw ve (E-THyq)

throw throw ve —— throw ve (E-TH7)

(E-TRY2)

(C")(new C'(¥)) —> new C(3)

(throw ve).m(8) — throw ve (E-TH2)
(throw ve). f —— throw ve (E-THs)
try {v; } catch (Ce z) {e;} — v (E-TRYl)

v = new C(¥) C £: Ce

try {throw v; } catch (Ce z) {e;
throw v

— (E-TRY3)

Figure 5: Computation rules for FJ*.

class Task extends Object {
Object run(Object retVal) { return new Object(); } }

A task’s run method contains the body of the task and is
invoked after the task is spawned.

Figure 6 lists the operational rules for CoreTaskJava. The
metavariable E represents an evaluation context (i.e., an ex-
pression containing a hole), which formalizes the next subex-
pression to be evaluated. We write E[e] to represent an ex-
pression F with a subexpression e in the next evaluation
position.

The operational semantics of CTJ is given with respect to
a program state, which consists of (1) an expression repre-
senting the in-progress evaluation of the currently executing
task, and (2) a set B of (Set<Event>, E[]) pairs representing
the events that each task is blocked on and the task’s current
continuation (a CTJ evaluation context). Such a program
state is denoted e|B.

We define a two-level operational semantics for CTJ pro-
grams. First, the —. relation on expressions extends the
FJ* — relation with congruence rules to evaluate the ar-
guments of wait and spawn calls, as shown at the top of the
figure. Second, we define a new relation =, on program
states, which makes use of the —. relation. We use this
two-level approach to distinguish the evaluation steps that
have no interaction with the currently blocked tasks (the
— relation) from those that do (the =, relation).

Rule E.-Con is used to evaluate the current task as much
as possible via —.. When this rule is no longer applicable,
there are three cases. If the current task contains a wait call
to be evaluated next, rule E.-Wait adds the blocked task to
the program state and replaces the current expression with
a new dummy value. Rule E.-Spn models a spawn call simi-
larly, treating the new task’s execution (via run) as blocked
on an empty event set. Finally, if the current task has been

evaluated to a value, a blocked task is nondeterministically
selected from the program state and its continuation is re-
sumed, nondeterministically passing one of the waited-for
events (rule F.-Run). A NullEvent is passed if the task
waits for an empty set of events (rule E.-ngRun).

The key enhancement for static typechecking is the han-
dling of asynchronous methods. In particular, the static
type system ensures that any method that potentially in-
vokes wait or a method declared async is either a task’s
run method or is itself declared async. Further, if a method
m1 overrides another method ms, then either both or nei-
ther must be declared async.

3.3 Type Soundness for CoreTaskJava

We have proven type soundness for CTJ. We state the
main theorems here; full proofs are provided in [6].

THEOREM 1. [=>. Subject Reduction] If b e : Tc|7e and
B OK and e|B =>. €'|B’, then - €' : T./|Ter and B’ OK.

The above theorem is a variant of the standard “subject
reduction” theorem, which says that evaluation preserves
typing. However, in our case the type of the expression re-
sulting from a step of =, may be totally unrelated to the
type of the original expression. This can occur because the
two expressions may derive from two completely indepen-
dent tasks. For example, if the step uses rule E.-Run, then
a task that has finished evaluating is replaced by the cur-
rent continuation for one of the blocked tasks in the program
state.

The progress theorem states that well-typed CTJ pro-
grams cannot get stuck, except when a bad cast occurs.

THEOREM 2. [=>. Progress/ Suppose - e
B OK. Then one of the following must be true:

T|7 and

e ——c e

o —e <h

E.-WT
wait eq —— ¢ vait efy () wait throw v — ¢ throw v (Ee-WTT)
’ N -
e — e w = wait v
¢ (E.-Con) ©

e|B=.¢'|B

(v}, Bl eB n € {v} (Ee-RuN)
v|B =c E[n]|B\ ({7}, E[])

E[w]|B = ¢ new Object()| B U ({7}, E[])

(0, E[]) e B

’
€0 —c € . (EC—SP)

spawn ey —c spawn ey

spawn throw v ——s . throw v (EC-SPT)

E[spamn C(9)]|B =>¢

(Ec-WAIT)
Elnew C(9)]|B U (0, (new C(¥)).run([]))

(Ec-SPN)

m@ = new NullEvent() E R
- UN
B = BB @ By e RN

Figure 6: Operational Semantics of CTJ.

e ¢ is a value and B = 0.

e ¢ is of the form E[(T)v], where E[] is an evaluation con-
text and v is a value whose type is not a subtype of T'.

e There exists an expression € and set of blocked tasks
B’ such that e|B =, ¢'|B'.

Now we can state the main result for this section, namely
type soundness for CTJ. Let =} denote the reflexive, tran-
sitive closure of the = relation.

THEOREM 3. [Type Soundness] If P. = C'L return e is a
CTJ program and ¢ P. OK, then one of the following must
be true:

o cld =7 v[d

o ¢|() diverges

e ¢l =} E[(T)v]|B, where the type of v is not a subtype
of T.

As corollaries of this theorem, it is easy to show that CTJ
avoids the lost exception and lost continuation problems.
First, the only way a well-typed program terminates is via
either reduction to a value or via a bad cast. Therefore, a
well-typed program cannot terminate with an uncaught ex-
ception. Second, a well-typed program continues execution
unless it terminates or encounters a cast error (it does not
get “stuck”). From this, it can be shown that, if program
execution reaches an asynchronous method call or wait call,
either evaluation of the calling expression is eventually re-
sumed (with the results of the call), execution stops due
to a runtime cast error, or the program diverges. In other
words, asynchronous calls always complete, unless the entire
program fails to complete.

3.4 Translating CoreTaskJava

A CTJ program is translated to FJ* by rewriting tasks
and asynchronous methods to use a continuation-passing
style. We describe this translation formally using a set of
syntax transformation rules. Our technical report has the
full details on the formal translation and its properties. The
next section informally describes the translation performed
by our implementation.

4. IMPLEMENTATION

4.1 Compiling TaskJava Programs to Java
The TaskJava compiler implements a source-to-source

translation of TaskJava programs to (event-driven) Java pro-

grams. We refer to invocations of wait and async methods

collectively as asynchronous calls. Note that this translation
is only needed for methods containing asynchronous calls —
all other methods are left unchanged.

In this section, we provide a high level overview of our
compiler’s implementation, using a series of small examples.
A more complete example of the translation output may be
found in the companion technical report [6].

CPS transformation of Tasks. The compiler uses
continuation-passing style to break up the run methods of
tasks into a part that is executed up to an asynchronous
call and a continuation. Rather than implement the contin-
uation as a separate class, we keep the continuation within
the original method. The body of a task’s run is now en-
closed within a switch statement, with a case for the initial
code leading up to the first asynchronous call and a case
for each continuation. Thus, the switch statement acts as
a kind of structured goto. We use this approach instead of
separate methods to avoid building up the call stack when a
loop’s body contains an asynchronous call, since Java does
not optimize tail-recursive calls.

Task state. Any state which must be kept across asyn-
chronous calls (e.g., the next step of the switch statement)
is stored in a new _state field of the task. An inner class is
defined to include these new fields.

If local variables are declared in a block that becomes bro-
ken across continuations, they must be declared in a scope
accessible to both the original code and the continuation.
Currently, we solve this problem by changing all local vari-
ables to be fields of the _state object.

Calls to spawn. The spawning of a new task is implemented
by creating a new task object and then registering this ob-
ject with the scheduler, which will then call the task’s run
method.

Calls to asynchronous methods. When an asyn-
chronous method is called, a callback object is created and
passed to the callee. The run method of this callback should
be invoked upon completion of the callee method. The caller
returns immediately upon return from the callee, to be re-
sumed later by the callback. For example, consider the
following asynchronous call which returns a concatenated
string:

x = concat(‘‘abc’’, ‘‘xyz’’);
This would be translated to:

case 1:

concat(‘‘abc’’, ‘‘xyz’’, new run_callback(this, 2));
return;

case 2:
x = (String)this._state._retVal;

Here, concat is passed a third parameter, a new callback
object. The callback is initialized with a reference to the
calling task (this) and the switch step to resume upon
completion of the call. The actual assignment of x now
occurs in the following switch step.

Callback classes are created by the compiler. To resume a
task, the callback simply assigns to two compiler-generated
fields in the task and re-invokes the task’s run method. The
first compiler-generated field, _state._step, indicates the
switch case to resume (2 in our example). The second field,
_state._retVal, contains the result of the asynchronous call
(the concatenated string, in our example).

We introduce temporary variables in situations where
breaking up an expression at asynchronous calls becomes
difficult. For example, a nested asynchronous call, such as
in concat(concat(x, y), z), is first assigned to a tempo-
rary variable, which is passed to the outer call. Temporaries
are also used when an asynchronous call occurs inside an if
or loop condition.

Calls to wait. Calls to wait may be translated in a similar
manner to asynchronous method calls, replacing the wait
call itself with a scheduler event registration. In our imple-
mentation, we take a slightly different approach, described
in section 4.2.

Asynchronous methods. The signature of an asyn-
chronous method is changed to include an additional call-
back parameter. This callback is called upon completion of
the method. Any return value is passed to the callback, in-
stead of being returned to the asynchronous method’s caller.

The bodies of async methods are translated in a simi-
lar manner to tasks. However, since simultaneous calls of
a given method are possible, the _state object is passed as
a parameter to the method, rather than added as a field
to the containing class. To achieve this, the main body
of the method is moved to a separate (private) continua-
tion method. The original (externally callable) method just
constructs a state object, stores the method arguments in
this state, and then calls the continuation method. As with
tasks, asynchronous methods return immediately after call-
ing an asynchronous method or register, and are resumed
through a callback.

Loops. If an asynchronous call occurs within a loop, the ex-
plicit loop statement is removed and replaced with a “branch
and goto” style of control flow, simulated using steps of
the switch statement. The entire switch statement is then

placed within a while loop.
For example, consider the following call to concat:

String s = ‘“’’; int i = O;
while (i<5) {
s = concat(s, ’a’); i =1+ 1;

}

This would be translated as follows:

while (true) {
switch (_state._step) {
case 1:
_state.s = ‘“’’; _state.i = 0;
case 2:

if (!(_state.i < 5)) { _state._step = 4; break; }
concat(_state.s, ’a’, new run_callback(this, 3));
return;

case 3:
_state.s = (String)_state._retVal;
_state.i = _state.i + 1;
_state._step = 2; break;

case 4:

In the first case, we see the translated initialization assign-
ments. The local variables have been made into fields of the
the task’s _state member. We fall through to the second
case, which implements the “top” of the original while loop.
If the original loop condition is false, we simulate a goto to
step 4 by setting the step variable to 4 and breaking out to
the enclosing while loop. Otherwise, we call concat, passing
a new callback object, and then return. Upon completion
of concat, the callback will set the step to 3 and invoke the
task’s run method. This gets us back to case 3 of our switch
statement. At the end of this case, we simulate a goto back
to the top of the loop by setting the step variable to 2 and
breaking out of the enclosing switch.

Exceptions. Due to the CPS translation, asynchronous
methods cannot simply throw exceptions to their callers.
Instead, exceptions are passed from callee to caller via a
separate error method on the callback. The body of an
asynchronous method which may throw exceptions is en-
closed in a try..catch block. If an exception is thrown, the
error method of the callback is called (instead of the nor-
mal control flow’s run method), with the exception passed
as a parameter.

The callback’s error method assigns its exception to a
compiler-generated _error field of the _state object and
then resumes the associated caller. When an asynchronous
call may have thrown an exception, the continuation code of
the task or asynchronous method then checks whether the

_error field has been set. If so, it re-throws the exception.
Consider the following example:

try {
x = concat(‘‘abc’’, ‘‘xyz’’);
} catch (IOException e) {
System.out.println(‘‘error!’’);

}

This would be translated as:

case 1:
concat(‘‘abc’’, ‘‘xyz’’, new run_callback(this, 2));
return;
case 2:
try {
if (_state._error!=null) throw _state._error;
x = (String)_state._retVal;
} catch (IOException e) {
System.out.println(‘‘error!’’);

}

We initiate the concat asynchronous call as before. How-
ever, upon resumption of the caller, we check the _error
field to see if an exception occurred. If so, we re-throw
the exception. The continuation block is enclosed in a try
statement. Thus, if the callee throws an IOException, the
appropriate catch block is invoked.

4.2 The scheduler

An important design goal for TaskJava is to avoid making
the language dependent on a specific scheduler implementa-
tion and its definition of events. One approach (used in the
examples of section 2) is to specify one or more schedulers
to the compiler, perhaps as a command-line option. The
compiler then replaces wait calls with event registrations
for this scheduler.

We chose a more flexible approach in our implementation.
We do not include a wait call at all, but instead provide a
second type of asynchronous method — asyncdirect. From
the caller’s perspective, an asyncdirect method looks like
an asynchronous method with an implicit (rather than ex-
plicit) callback. However, the declaration of an asyncdirect
method must contain an explicit callback. No translation of
the code in the method’s body is performed — it is the
method’s responsibility to call the callback upon comple-
tion. Typically, an asyncdirect method registers an event,
stores a mapping between the event and the callback, and
then returns. Upon completion of the event, the mapping is
retrieved and the callback invoked.

This approach easily permits more than one scheduler to
be used within the same program. Also, existing scheduler
implementations can be easily wrapped with asyncdirect
methods and used by TaskJava.

For our experiments, we implemented a single-threaded
scheduler on top of Java’s nonblocking I/O package
(java.nio). Clients may register a callback to be associ-
ated with events on a given channel (socket). The scheduler
then registers interest in the requested events with the Java
nio layer and stores an association between the events and
callbacks in a map. The scheduler’s main loop blocks in the
nio layer, waiting for an event to occur. Upon waking up,
the scheduler iterates through the returned events and calls
each associated client callback.

We have also implemented a thread-pooled scheduler
which can concurrently process events. Event registrations
are transparently mapped to threads by hashing on the as-
sociated channel. This scheduler provides the same API as
our single-threaded scheduler, permitting applications which
do not share data across tasks to take advantage of thread-
pooling without any code changes.

5. CASE STUDY

Fizmez. As a proof-of-concept for TaskJava, we modified
an existing program to use interleaved computation. We
chose Fizmez [4], a simple, open source web server, which
originally processed one client request at a time. We first ex-
tended the server to interleave request processing by spawn-
ing a new task for each accepted client connection. To pro-
vide a basis for comparison, we also implemented an event-
driven version of Fizmez.

Task version. In this version, each iteration of the server’s
main loop accepts a socket and spawns a new WsRequest
task. This task reads HT'TP requests from the new socket,
retrieves the requested file and writes the contents of the file
to the socket.

The original Fizmez server used standard blocking sockets
provided by the java.io package. To port Fizmez to Task-
Java, we needed to convert the server to use our event sched-
uler. We used TaskJava’s asynchronous methods to build an
abstraction on top of our scheduler with an API that mir-

Client Latency(ms) Throughput(req/sec)
threads || Event | Task || Event Task
1 33.0 31.1 30.2 32.1
25 76.8 79.2 322.1 306.3
50 112.4 | 120.0 443.4 413.5
100 187.6 | 197.0 || 351.0 262.2
200 317.3 | 345.8 || 403.5 225.8
300 455.8 | 462.4 || 324.2 328.6
400 601.4 | 695.9 || 216.0 212.0

Table 1: Web server performance test results

rors that of the java.io package. This approach allowed us
to convert I/O calls to TaskJava simply by changing class
names in field and method argument declarations.

Overall, we were able to maintain the same organization
of the web server’s code as was used in the original imple-
mentation. The main change we made was to refactor the
request-processing code out of the main web server class and
into a new class. This change was necessary since requests
are now processed concurrently, so each request must main-
tain its own state.

Explicit event version. The event-driven implementation
required major changes to the original Fizmez code. The
web server no longer has an explicit main loop. Instead, a
callback re-registers itself with the scheduler to process the
next connection request. More seriously, the processing of
each client request, which is implemented in a single method
in the original and TaskJava implementations, is split across
six callback classes and a shared state class in the explicit
event implementation.

5.1 Performance Experiments.

We compared the performance of the TaskJava and ex-
plicit event-driven web server implementations using a
multi-threaded driver program that submits 25 requests per
thread for a 100 kilobyte file (stored in the web server’s
cache). Latency is measured as the average time per request
and throughput as the total number of requests divided by
the total test time (not including client thread initializa-
tion).

The performance tests were run on a Dell PowerEdge 1800
with two 3.6Ghz Xeon processors and 5 GB of memory. Ta-
ble 1 shows the experimental results. The columns labeled
“Event” and “Task” represent results for the event-driven
server and the TaskJava server, respectively.

The overhead that TaskJava contributes to latency is
within 10%, except at 400 client threads, where it reaches
16%. The throughput penalty for TaskJava is low up
through 50 threads, but then becomes more significant,
reaching 44% at 200 threads. Above 200 threads, the total
throughput of both implementations drops, and the over-
head becomes insignificant.

These results are not surprising, as we have not yet made
any efforts to optimize the continuation-passing code gen-
erated by our compiler. There are two main differences be-
tween the TaskJava compiler-generated code and the hand-
optimized event code. First, compared to the event version,
each TaskJava asynchronous call involves one extra method
call, extra assignments (for the _step, _retVal, and _error
fields), and an extra switch statement. Second, the event-
driven server pre-allocates and reuses callbacks. For exam-
ple, in the event-driven implementation, we associate reused

callbacks with each connection, as we know that, by de-
sign, there will be only one read or write request pending
on a given connection at a time. In contrast, the TaskJava
compiler currently allocates a new callback for each asyn-
chronous call.

We are investigating approaches to reduce this overhead
for a future version of the TaskJava compiler. To reduce the
cost of the switch statement and extra assignments, we can
embed the continuation code directly in a callback, except
when it occurs within a loop. Alternatively, we may achieve
more flexibility in structuring control flow by compiling di-
rectly to JVM bytecode. Without an interprocedural anal-
ysis, we cannot remove all extra callback allocations. How-
ever, we can allocate a single callback per enclosing method
rather than per called method. This will eliminate the ma-
jority of runtime allocations that occur in our web server.

6. RELATED WORK

Event-driven programming is pervasive in many applica-
tions, including servers [16, 22], GUIs, and sensor networks
applications [8, 10]. In [1], event-based and thread-based
styles are broken into two distinct differences: manual vs.
automatic stack management and manual vs. automatic task
management. Threads provide automatic stack and task
management, while events provide manual stack and task
management. By this classification, TaskJava provides man-
ual task management and automatic stack management. A
hybrid cooperative/preemptive approach to task manage-
ment is also possible in TaskJava by using a thread-pooled
scheduler. Asynchronous methods in TaskJava make explicit
when a method may yield control, addressing the key disad-
vantage of automatic stack management cited by [1].

Cooperative multitasking. The introduction compared
TaskJava’s approach with the concept of cooperative multi-
tasking. Many implementations exist for cooperative mul-
titasking in C and C++. In fact, [5] lists twenty such
implementations. Aside from the differences discussed in
the introduction, context switching in these systems is typ-
ically implemented through C or assembly-level stack ma-
nipulation. Stack manipulation is not possible for virtual
machine-based languages, like Java, so TaskJava uses the
CPS approach instead. While this approach is more compli-
cated, it can be advantageous. In particular, the stack-based
approach requires a contiguous stack space to be allocated
per thread, which may result in a significant overhead when
many tasks are created.

The C library and source-to-source compiler Capriccio [21]
provides cooperative threading, implemented using stack
manipulation. It avoids the memory consumption problems
common to most cooperative and operating system thread
implementations by using a whole-program analysis and dy-
namic checks to reduce the stack memory consumed by each
thread. This downside of this approach is the loss of modu-
lar compilation. Capriccio also suffers from the other weak-
nesses of cooperative threading — difficulty implementing
on top of a VM architecture and lack of scheduler flexibility.

Functional Programming Languages. The functional
programming community has explored the use of continua-
tions to preserve control flow in the context of concurrent
programming. [9] and [18] describe the use of Scheme’s first-
class continuations to avoid the inversion of control in web
programs. Concurrent ML [19] builds pre-emptive threads

on top of continuations. Concurrent ML also adds first-class
events to the SML language, including a choose primitive,
which can be used to build constructs equivalent to Task-
Java’s wait.

TaskJava’s asynchronous methods can be viewed as a lim-
ited form of continuation. Although asynchronous meth-
ods do not support some programming styles possible with
continuations, providing a more limited construct enables
the TaskJava compiler to statically and modularly determine
which calls may be saved and later resumed. This limits the
performance penalty for supporting continuations (such as
storing call state on the heap) to those calls which actually
use this construct.

The functional programming community has also worked
to extend the Continuation Passing Style transformation to
better serve the needs of concurrent programs. [7] describes
trampolined style, a programming style and transformation
which permits the interleaving of tail recursive functions.
[14] describes a sequence of code transformations which
avoid inversion of control issues in web programs, without
requiring language support for continuations. Neither ap-
proach provides a limited, modular translation which can
coexist with existing codebases. In addition, both papers
describe translations in the context of late-bound, functional
languages, as opposed to a statically-typed, object-oriented,
non-tail-recursive language like Java.

In [17], a transformation for Scheme programs is de-
scribed, which permits the implementation of first class
continuations on top of a non-cooperating virtual machine.
The transformation installs an exception handler around the
body of each function. When the current continuation is to
be captured, a special exception is thrown. The handler for
each function saves the current function’s state to a con-
tinuation. This approach avoids changing function signa-
tures, permitting some interoperability between translated
and non-translated code. However, if a non-translated func-
tion appears on the stack when a continuation is captured,
a runtime error is thrown. By using method annotations
to direct the translation, TaskJava avoids this issue while
still permitting interoperability between translated and non-
translated code.

Languages and Tools for Embedded Systems. nesC
[8] is a language for embedded systems with direct language
support for writing in a continuation passing style. As such,
it suffers from the lost continuation problem — there is no
guarantee that a completion event will actually be called.
This approach was chosen by the designers of nesC because
it can be implemented with a fixed-size stack and without
any dynamic memory allocation.

[13] describes a source-to-source translator for Java Card
applications. It uses a whole-program translation to convert
code interacting with a host computer to a single large state
machine. Like TaskJava, it must break methods up at block-
ing calls (limited to the Java Card communication API) and
must handle classes and exceptions. However, the translator
does not support concurrent tasks or recursive method calls.
In addition, rather than use method annotations, method
bodies are split at each method call, regardless of whether
they contain blocking calls. These limitations, appropri-
ate to an embedded environment, significantly simplify the
translation algorithm. Tasks in TaskJava are more general
and thus useful in a wider range of applications.

Simplifying event systems through meta-

programming. The Tame framework [12] implements
a limited form of CPS transformation through C++
templates and macros. The goal of Tame, like TaskJava,
is to reuse existing event infrastructure without obscuring
the program’s control flow. Continuations are passed
explicitly between functions. However, the code for these
continuations is generated automatically and the calling
function rewritten into case blocks of a switch statement,
similar to the transformation performed by the TaskJava
compiler. Thus, Tame programs can have the benefits of
events without the software engineering challenges of an
explicit continuation passing style.

By using templates and macros, Tame can be delivered
as a library, rather than requiring a new compiler front-end.
However, this approach does have disadvantages: the syn-
tax of asynchronous calls is more limited, exceptions are not
supported, template error messages can be cryptic, and the
implementation only works against a specific event sched-
uler. Tame favors flexibility and explicit continuation man-
agement over safety. As such, it does not prevent either the
lost continuation or the lost exception problems.

7. CONCLUSION

We have described the task programming model and its
instantiation in the TaskJava extension to Java. Our ap-
proach provides three advances over prior work: 1) a modu-
lar translation enabled by method annotations, 2) the idea
of a linkable scheduler, which has been formalized through
a two-level operational semantics and implemented in our
TaskJava compiler, and 3) the design of a CPS translation
that works with Java language features including exceptions
and subclassing.

TaskJava is the first step toward our goal of writing robust
and reliable programs for large-scale asynchronous systems.
We plan to improve our compiler implementation and extend
the TaskJava language. For example, we would like to add
Tame’s fork and join constructs to TaskJava, in a manner
that is compatible with exceptions, and supports the static
guarantees currently provided by our language.

We also plan to investigate how the explicit control flow of
TaskJava programs can improve static analysis tools. We ex-
pect analyses for TaskJava programs to be more precise when
compared to analyses of general event-driven programs,
which must reason about event flow through function point-
ers and objects. In addition, our translation approach may
also yield insights about how event-programming frame-
works may better support analysis tools. For example, a
TaskJava program interacts with the scheduler in two ways:
through spawn and through wait. These interactions are
both translated into event registrations. In a program writ-
ten directly using callbacks, making the distinction between
these cases explicit yields more information about the pro-
grammer’s intent, which may help static analyses.

8. REFERENCES

[1] A. Adya, J. Howell, M. Theimer, W.J. Bolosky, and J.R.
Douceur. Cooperative task management without manual
stack management. In Proc. Usenix Tech. Conf., 2002.

[2] A. Appel. Compiling with continuations. Cambridge
University Press, 1991.

[3] Enterprise Java Beans. http://java.sun.com/products/ejb/.

[4] David Bond. Fizmez web server.
http://sourceforge.net/projects/fizmezwebserver.

[5]

[6]

[7]

[10]

11]

12]

(13]

(14]

(15]

[16]

(17)

(18]

(19]
20]

(21]

(22]

R. Engelschall. Portable multithreading - the signal stack
trick for user-space thread creation. In Proc. USENIX
Tech. Conf., June 2000.

J. Fischer, R. Majumdar, and T. Millstein. Preventing lost
messages in event-driven programming, January 2006.
http://www.cs.ucla.edu/tech-report/2006-
reports/060001.pdf.

S. Ganz, D. Friedman, and M. Wand. Trampolined style. In
ICFP ’99, pages 18-27, 1999.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to
Network Embedded Systems. In PLDI ’03, pages 1-11,
June 2003.

P. Graunke, S. Krishnamurthi, S. Van Der Hoeven, and

M. Felleisen. Programming the web with high-level
programming languages. LNCS, 2028:122—-137, 2001.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked
sensors. In ASPLOS 00, pages 93-104. ACM, 2000.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight java:
a minimal core calculus for java and gj. ACM Trans.
Program. Lang. Syst., 23(3):396-450, 2001.

M. Krohn, E. Kohler, F. Kaashoek, and D. Mazieres. The
Tame event-driven framework.
http://www.okws.org/doku.php?id=okws:tame.

P. Li and S. Zdancewic. Advanced control flow in java card
programming. In LCTES ’04, pages 165-174. ACM Press,
2004.

J. Matthews, R. Findler, P. Graunke, S. Krishnamurthi,
and M. Felleisen. Automatically restructuring programs for
the web. Automated Software Eng., 11(4):337-364, October
2004.

N. Nystrom, M.R. Clarkson, and A.C. Myers. Polyglot: An
extensible compiler framework for java. In CC ’03, LNCS
2622, pages 138—152. Springer, 2003.

V.S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable web server. In Proc. USENIX Tech.
Conf., pages 199-212. Usenix, 1999.

G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamurthi,
and M. Felleisen. Continuations from generalized stack
inspection. In ICFP ’05, pages 216-227, 2005.

C. Queinnec. Inverting back the inversion of control or,
continuations versus page-centric programming. SIGPLAN
Not., 38(2):57-64, 2003.

J. Reppy. Cml: A higher concurrent language. In PLDI 91,
pages 293-305, New York, NY, USA, 1991. ACM Press.

R. von Behren, J. Condit, and E. Brewer. Why events are a
bad idea (for high-concurrency servers). In HotOS IX, 2003.
R. von Behren, J. Condit, F. Zhou, G. Necula, and

E. Brewer. Capriccio: scalable threads for internet services.
In SOSP 08, pages 268-281. ACM, 2003.

M. Welsh, D. Culler, and E. Brewer. SEDA: An
architecture for well-conditioned, scalable Internet services.
In SOSP ’01. ACM, 2001.

