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Abstract 

Background: Accurately counting maize tassels is important for monitoring the growth status of maize plants. This 

tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating 

this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer 

vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and 

increased computational resources. Naturally image-based approaches have also received much attention in plant-

related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled 

laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic 

and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond 

the ability of conventional image processing techniques. This calls for further robust computer vision approaches to 

address in-field variations.

Results: This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that 

a plant-related counting problem is considered using computer vision technologies under unconstrained field-based 

environment. With 361 field images collected in four experimental fields across China between 2010 and 2015 and 

corresponding manually-labelled dotted annotations, a novel Maize Tassels Counting (MTC) dataset is created and will 

be released with this paper. To alleviate the in-field challenges, a deep convolutional neural network-based approach 

termed TasselNet is proposed. TasselNet can achieve good adaptability to in-field variations via modelling the local 

visual characteristics of field images and regressing the local counts of maize tassels. Extensive results on the MTC 

dataset demonstrate that TasselNet outperforms other state-of-the-art approaches by large margins and achieves the 

overall best counting performance, with a mean absolute error of 6.6 and a mean squared error of 9.6 averaged over 8 

test sequences.

Conclusions: TasselNet can achieve robust in-field counting of maize tassels with a relatively high degree of accu-

racy. Our experimental evaluations also suggest several good practices for practitioners working on maize-tassel-like 

counting problems. It is worth noting that, though the counting errors have been greatly reduced by TasselNet, in-

field counting of maize tassels remains an open and unsolved problem.
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Background

We consider the problem of counting maize tassels from 

images captured in the field using computer vision. 

Maize tassels are the male flowers of maize plants. �e 

emergence of tassels indicates the arrival of the repro-

ductive stage. During this stage, the total tassel number is 

an important cue to monitor the growth status of maize 

plants. It is closely related to the growth stage [1] and 

yield potential [2]. In practice, counting maize tassels still 

mainly depends on human efforts, which is inefficient 

and fallible. Such a tedious task should be replaced by 

machines in modern plant phenotyping.

To meet the need of large-scale and high-throughput 

analysis in plant phenotyping, image-based techniques 
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provide a feasible, low-end, and efficient solution and 

have thus received much attention recently [2–5]. How-

ever, most practitioners and researchers still conduct 

experiments under controlled artificial environment. 

Although indoor experiments do simplify the process of 

image processing and advance our knowledge regarding 

the link between genotype and phenotype, ultimately 

plant phenotyping must be transferred to real-world sce-

narios, such as in the field or greenhouse [6]. Unfortu-

nately, intrinsic and extrinsic variations in the wild field 

render the understanding and processing of field-based 

images a challenging task. Such challenges become more 

serious in the problem of in-field counting of maize tas-

sels. As shown in Fig. 1, these challenges can largely boil 

down to the variations in the field-based environment:

  • Maize tassels emerge suddenly and vary significantly 

in shape and size as plants grow over time;

  • Different cultivars of maize plants exhibit different 

appearance variations, such as colour and texture;

  • Illumination changes dramatically due to different 

weather conditions, especially during the sunny day;

  • �e wind, imaging angle and perspective distortions 

cause various pose variations;

  • Occlusions occur frequently, which renders the diffi-

culty for counting even for a human expert;

  • �e cluttered background make visual patterns of 

maize tassels diverse and misleading;

  • �e quality of images degrades because of the dust or 

rain drops on the camera lens;

  • Textural patterns also change essentially due to dif-

ferent flowering status.

It is worth noting that these challenges are not only spe-

cific to maize tassels but also applicable to a wide species 

of plants. It is inevitable to face these in-field variations 

before deploying plant phenotyping systems in the wild.

�ough efforts have been made to tackle above prob-

lems and have achieved a moderate degree of success, 

the precision of the state-of-the-art tassel detection 

method is still below 50% [2]. �is may be largely due to 

the inherent limitation of the non-maximum suppression 

mechanism within object detection [7]—it cannot appro-

priately distinguish overlapping objects. Such a mecha-

nism poses problems for accurate maize tassels detection 

because overlaps between different tassels are common 

patterns in the field. We have to ask: is the object detec-

tion the best way to count maize tassels? From a point of 

view of Computer Vision, the objective of object detec-

tion is to localise individual instances and output their 

corresponding bounding boxes. Since the locations of 

objects are identified, it is easy to derive the number of 

Aug 2 Aug 3 Aug 4 Aug 5 Aug 6 Aug 7

Jundan No. 20 Nongda No.108 Wuyue No.3 Zhengdan No.958 Jidan No.32 Tianlong No.9

Cloudy Sunny 1 Sunny 2 Sunny 3 Rainy Overcast

d 

c 

b 

a e 

f 

g 

Non-flowering Partially-flowering Fully-flowering

h 

Fig. 1 Intrinsic and extrinsic variations in the maize field. These variations pose significant challenges for in-field counting of maize tassels. a Shape 

and size vary significantly as plants grow over time. b Appearance variations due to different cultivars. c Illumination variations due to different 

weather conditions. d Pose variations due to wind, imaging and perspective distortions. e Occlusions between leaves and tassels or different tassels. 

f Cluttered background caused by wires, poles and weeds. g Image degradation due to dust or rain drops on the camera lens. h Texture variations 

due to different flowering status
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instances. However, the number of instances actually has 

nothing to do with the location. If one only cares about 

estimating the total number of instances, the problem is 

another important research topic in Computer Vision—

object counting. In this paper, we show that it is better to 

formulate the task of maize tassels counting as a typical 

counting problem, rather than a detection one. In fact, 

object detection is generally more difficult to solve than 

object counting.

Nevertheless, object counting remains a known chal-

lenging task [8, 9], in both Plant Science and Computer 

Vision communities. �ree sessions of Leaf Counting 

Challenge have been held in conjunction with the Com-

puter Vision Problems in Plant Phenotyping workshops 

(CVPPP2014 [10]/CVPPP2015 [11]/ CVPPP2017 [12]), 

expecting to showcase visual challenges for plant phe-

notyping. Many efforts are also made in recent years in 

Computer Vision to improve the counting precision of 

crowds [13, 14], cells [15, 16], cars [17, 18], and animals 

[19]. However, little attention has been paid to plants-

related counting tasks. To our knowledge, only two pub-

lished papers considered counting problems relating to 

plants. Giuffrida et  al. [20] proposed a learning-based 

approach to count leaves in rosette plants. Rahnemoon-

far and Sheppard [21] presented a deep simulated learn-

ing approach to count tomato images. A limitation is that 

both papers only report their results on potted plants, 

which is far different from field-based scenarios. In con-

trast, our experiments use images captured exactly under 

unconstrained in-field environment, leading to a more 

challenging situation and a more reasonable experimen-

tal evaluation.

According to the taxonomy of [22], existing object 

counting approaches can be classified into three cat-

egories: counting by clustering, counting by detection, 

and counting by regression. �e counting-by-clustering 

approaches often rely on the extraction of motion fea-

tures (see [23] for example), which is not applicable to the 

plants because the motion of plants is almost unobserv-

able within limited time. In addition, the counting-by-

detection approaches [24, 25] tend to suffer in crowded 

scenes with significant occlusions, so this type of method 

is also not a good choice for our problem. In fact, the 

transductive principle suggests never to solve a harder 

problem than the target application necessitates [26]. As 

a consequence, recent counting-by-regression models 

[13, 15, 17] have demonstrated that it is indeed unneces-

sary to detect or segment individual instances when esti-

mating their counts. In particular, the key component of 

modern counting-by-regression approaches is the intro-

duction of the density map by Lempitsky and Zisser-

man [15]. Objects in an image are described by a density 

map given dot annotations. During the prediction, each 

object will be assigned a density that sums to 1, so the 

total number of objects can be reflected by summing over 

the whole density map. Overlapping objects are naturally 

taken into account in this paradigm.

Further, counting-by-regression approaches can be 

divided into two sub-categories: global regression [13, 

20, 27] and local regression [14, 15, 19, 28]. Some early 

attempts try to regress the global image count directly 

via either Gaussian regression [13] or regression for-

est [27]. Chen et al. [29] estimates the local image count 

using a multi-output ridge regression model. Lempit-

sky and Zisserman [15], however, chooses to regress the 

local density map, which is found to be more effective 

than regressing just the global/local image count. At this 

time, although a moderate degree of counting accuracy 

is achieved, the performance is limited by the power of 

the feature representation. Such a circumstance eases in 

the era of deep learning, when the feature could be learnt 

and adjusted given a specific problem. �e first deep 

counting approach can be found in [14], where the prob-

lem is addressed by regressing a local density map with 

deep networks. In fact, most subsequent deep counting 

approaches also follow this paradigm [18, 19, 30]. More 

recently, Cohen et al. [28] presents a somewhat different 

idea that regresses the local sub-image count with deep 

networks. We also take inspirations from Cohen et  al. 

[28]. Readers can refer to Sindagi and Patel [31] for a 

comprehensive survey to the recent advance of deep net-

works in counting problems.

To better address aforementioned challenges, we fol-

low the idea of counting by regression and present in 

this paper a deep convolutional neural network [32] 

(CNN)-based approach for maize tassels counting, which 

is referred to TasselNet. Deep networks are famous due 

to their excellent non-linear modelling ability and large 

model capacity, which is important for capturing diverse 

and complex visual patterns in the field. Notice that 

plants are like self-changing systems, the physical size 

of maize tassels in images vary significantly over time. 

�is is what makes the problem of maize tassels count-

ing different from other conventional counting problems 

in Computer Vision (the physical size of pedestrians, cells 

or cars in images remains unchanged or at least identi-

cal), and consequently, renders difficulties to describe the 

density map of maize tassels. To address this, in contrast 

to [15, 18] that either regress the global density map or 

the local density map, we propose to regress the local 

count computed from the density map. After merging 

and normalizing all local counts, our model outputs a 

count map similar to the ground-truth density map. �e 

final count of maize tassels is computed by summing over 

the whole count map. Figure 2 illustrates our main tech-

nical pipeline.
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To validate the effectiveness of the proposed approach, 

a novel Maize Tassel Counting (MTC) dataset is con-

structed and will be released together with this paper. 

Our MTC dataset contains 361 images chosen from 16 

image sequences. �ese sequences are collected from 

2010 to 2015, covering 4 different experimental fields 

across China. All challenges described in Fig.  1 are 

involved in this dataset. �e number of maize tassels in 

images varies between 0 and around 100. Following the 

standard annotation used in objection counting prob-

lems [15], a single dot is manually assigned for each 

maize tassel. We hope such a dataset could be used as 

a benchmark for evaluating in-field counting approaches 

and could draw attention from practitioners work-

ing in this area to attach importance to these in-field 

challenges.

Extensive evaluations are performed on the MTC 

dataset. Experimental results demonstrate that Tas-

selNet outperforms other state-of-the-art methods and 

significantly reduces the counting errors by large mar-

gins. Moreover, based on the experimental results, we 

also suggest several good practices for in-field counting 

problems.

�e contributions of this paper are multi-fold:

  • A novel counting problem of maize tassels whose 

sizes are self-changing over time. To the best of our 

knowledge, this is the first time that a plant-related 

counting problem is considered under unconstrained 

field conditions;

  • A challenging MTC dataset with 361 field images and 

corresponding manually-labelled dotted annotations;

  • TasselNet: an effective deep CNN-based solution 

for in-field counting of maize tassels via local counts 

regression.

Methods

Experimental �elds and imaging devices

16 independent time-series image sequences are col-

lected from four different experimental fields across 

China between 2010 and 2015. Four experimental fields 

are located in Zhengzhou, Henan Province, China, Taian, 

Shandong Province, China, Gucheng, Hebei Province, 

China, and Jalaid, Sinkiang Autonomous Region, China, 

respectively. Six cultivars of maize plants are involved, 

including Jundan No. 20, Nongda No. 108, Wuyue No. 3, 

Zhengdan No. 32, Jidan No. 20, and Tianlong No. 9. Fig-

ure  3 show the experimental fields and imaging devices. 

�e main components of the imaging device include a 

high-resolution CCD digital camera (E450 Olympus), 

a low-resolution monitoring device, a 3G wireless data 

transmission system, as well as several solar panels used 

for power supply. When an image is captured, it will be 

transmitted into a remote server, and then users can access 

the image data. Readers can refer to [33] for a detailed 

introduction of our imaging device. �e focal length of 

the camera is fixed to 16mm. Images were taken every one 

hour from 9:00 to 16:00 from a five-meters-height vertical 

view (four meters for Gucheng sequences). �e original 

image resolutions are 3648 × 2736 pixels for Zhengzhou 

and Taian sequences, 4272  ×  2848 pixels for Gucheng 

sequences, and 3456 × 2304 pixels for Jalaid sequences.

Maize tassels counting dataset

Given 16 independent time series image sequences, 

images captured from the tasselling stage to the flower-

ing stage are considered in our MTC dataset. In particu-

lar, according to the variability each sequence presents, 

8–45 images are manually chosen from each sequence. 

If extrinsic conditions, such as weather conditions or the 

wind, change dramatically, more images will be chosen in 

Fig. 2 The main technical pipeline of in-field counting of maize tassels. Sub-images are first densely sampled from a raw field image. Each sub-

image will be fed into our TasselNet to regress a local count associating with the sub-image. After merging and normalizing all local counts, a count 

map for the field image can be acquired. The raw image count can thus be computed by integrating the count map
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one day, otherwise only 1 or 2 images are chosen. Such 

a sampling strategy is used with the motivation to avoid 

repetitive samples as much as possible, because images 

captured in one day usually do not exhibit many varia-

tions. However, the ability to model various data vari-

abilities is much more important than blindly fitting a 

large number of repetitive samples for an effective com-

puter vision approach. �us, 361 field images in all are 

chosen to construct the MTC dataset. �e MTC data-

set is divided into the training set, validation set and test 

set. �e training set and validation set share the same 

image sequences, while the test set uses different image 

sequences to enable a reasonable evaluation. Such an 

intentional setting is motivated by the fact that images in 

one sequence are often highly correlated, it is thus inap-

propriate to place them into both the training and test 

stages. Table 1 summarises the information of the MTC 

dataset. Overall, we have 186 images for training and val-

idation and 175 images for test.

We also follow the standard annotation paradigm that 

manually provides each tassel with a dot annotation [15]. 

Fig. 3 Image acquisition devices in the maize field. Our devices are currently set up in four different places

Table 1 Training set (train), validation set (val) and test set 

(test) settings of the MTC dataset

Num refers to the number of images in each sequence

Sequence Num Cultivar train val test

Zhengzhou2010 37 Jundan No. 20 � �

Zhengzhou2011 24 Jundan No. 20 �

Zhengzhou2012 22 Zhengdan No. 958 � �

Taian2010_1 30 Wuyue No. 3 � �

Taian2010_2 32 Wuyue No. 3 �

Taian2011_1 21 Nongda No. 108 � �

Taian2011_2 19 Nongda No. 108 �

Taian2012_1 41 Zhengdan No. 958 � �

Taian2012_2 23 Zhengdan No. 958 �

Taian2013_1 8 Zhengdan No. 958 � �

Taian2013_2 8 Zhengdan No. 958 �

Gucheng2012 15 Jidan No. 32 � �

Gucheng2014 45 Zhengdan No. 958 �

Jalaid2015_1 12 Tianlong No. 9 � �

Jalaid2015_2 12 Tianlong No. 9 �

Jalaid2015_3 12 Tianlong No. 9 �
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Indeed, dotting is regarded as a natural way to count for 

humans. It not only gives the raw counts of the image but 

also proffer the information how objects spatially distrib-

ute. Figure 4 show four example images with the dotted 

annotations.

Local counts regression network

In this section we describe our proposed local counts 

regression network and show how to use it to address 

effectively the in-field counting problem of maize tassels.

�e high-level idea of counting by regression is simple: 

given an image I and a regression target T, the goal is to 

seek some kind of regression function F so that T ≈ F(I). 

Standard solutions are to regress explicitly the raw counts 

in an image [13] (T is the global counts) or to regress 

implicitly the density map of an image [15] (T becomes 

a density map, and the counts can be acquired by inte-

grating over the entire density map). However, as what 

we will show in our experiments, both solutions are not 

effective for maize tassels counting. �e reason may boil 

down to the heterogeneity of maize tassels. As shown in 

Fig. 4, maize tassels exhibit uncertain poses and varying 

sizes, making them hard to be described by only a global 

image representation or a density map given only dot-

ted annotations. Indeed, this is what makes maize tas-

sels counting different from other standard counting 

problems.

Inspired by a recent idea of redundant counting [28], 

we propose to regress the local counts Tl to address the 

counting problem of maize tassels. Tl refers to the object 

count within a small sub-image Is. �e proposed local 

regression has several benefits: (1) local characteristics 

are easier to be modelled than the global ones; (2) by 

regressing the local counts, we avoid the hard problem 

of dense per-pixel learning (compared to estimating the 

local density map); (3) by sampling small image patches, 

we can have access to a large number of training data, 

allowing us to train a high-capacity model. In particular, 

we consider the regression function F should be power-

ful enough so that it can appropriately capture those 

heterogeneous in-field variations. Inspired by the recent 

success of deep convolutional neural networks (CNNs) in 

visual recognition [32, 34], we choose to formulate F in a 

deep CNN-based framework. �e goal is thus to recover 

Fig. 4 Example images in the MTC dataset with dotted annotations. Images are from the a Zhengzhou2010, b Gucheng2012, c Taian2011_1 and d 

Jalaid2015_1 sequences, respectively
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Tl with a set of non-linear transformations F given Is, 

i.e., Tl ≈ F(Is). Figure  5 compares the conceptual differ-

ence of different regression goals. During the prediction, 

sub-images are densely sampled from a test image, and 

F will assign a local count to each sub-image patch. �e 

final count of the image can be recovered by aggregating 

all sub-image counts into a count map with the same size 

of the test image, and a per-pixel normalisation step is 

performed to each pixel by dividing the number of sub-

images that cast a prediction in it.

Regression target

Different regression targets imply different regression 

strategies, so how to define the regression target is the 

first and the most important step. In this paper, we first 

follow the standard way that generates the ground truth 

density by placing a Gaussian at each dot annotation [15]. 

Formally, given a ground-truth dot image Y, a density 

map D can be defined as D = G ∗ Y , where G denotes a 

two-dimensional Gaussian kernel parametrised by σ, and 

∗ indicates the convolution operation. Obviously, D is 

generated by performing Gaussian smoothing on Y. Fig-

ure 6 show an example of D given corresponding dotted 

annotations. It is worth noting that the summation of the 

density map is a decimal. �e reason is that, when dots 

are close to the image boundary, their Gaussian prob-

ability will be partly outside the image, but this definition 

naturally takes a fraction of an objection into account.

However, in contrast to [15, 18], we do not regard D as 

our regression target (we will show later in our experi-

ments that the density map is too harsh as the regression 

target) but use the local counts integrated from the den-

sity map. In other words, some approaches produce a 2D 

network output, e.g., [18] outputs an 18 × 18 result, while 

TasselNet produces specifically an 1 × 1 output. �e final 

count map is generated by scanning and combining scans 

at each location. If let D(x, y) be the pixel-level count of 

D at the location (x, y), then the regression target of local 

counts T i

l
 for the i-th sub-image I is can be defined:

where Si denotes the set of pixel locations of I is .

Network architecture

�e network architecture closely relates to the model 

capacity, and the model capacity is also a key factor 

that affects the counting performance. Motivated by the 

leading role of CNNs in Computer Vision, in this paper 

we evaluate three typical network architectures: a low-

capacity 4-layer model identical to the seminal LeNet 

architecture [35], a medium-capacity 7-layer model 

similar to the AlexNet architecture [32], as well as a 

(1)
T i
l =

∑

(x,y)∈Si

D(x, y),

high-capacity 16-layer model sharing the same spirit of 

the VGG-VG16-Net [34].

We follow the modern CNN design principle used in 

[34]: adopting only small 3 × 3 convolution kernels with 

1-pixel padding to preserve the size of the tensor, dou-

bling the number of feature maps in the higher layers to 

compensate the loss of the spatial information after the 

max pooling operation, synthesizing learnt features with 

two extra fully-connected layers, and using the ReLU 

function after each convolutional/full-connected layer. 

Figure 7 shows three architectures with a basic input size 

of 32 × 32 sub-image. �e number of parameters within 

the LeNet-like, AlexNet-like and VGG-VD16-Net-like 

architectures are about 1.4 × 10
5, 2.5 × 10

5 and 2.4 × 10
6 , 

respectively.

Loss function

�e learning of the regression network should be driven 

by a loss function. In this paper, we evaluate three typical 

loss functions used in regression problems. �ey are ℓ1 

loss, ℓ2 loss, and Huber loss. ℓ1 loss and ℓ2 loss take the 

form

(2)L1 =
1

M

M∑

i=1

�ai�1,

Fig. 5 Conceptual differences of different regression targets. The 

global count regression directly regresses the number of image 

counts in an image. (Local) density map regression treats the 

two-dimensional (local) density map as the regression target. Our 

proposed local count regression regresses the local count computed 

from the local density map (best viewed in colour)

Fig. 6 An example of manually-annotated dot image (left) and its 

corresponding ground truth density map (right)
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where L1 and L2 denote the ℓ1 and ℓ2 loss functions, 

respectively, M is the number of training sub-images, and 

ai is the residual that measures the difference between 

the regressed count and the ground truth count for the 

i-th sub-image, i.e., ai = F(I is) − T
i

l
. Empirically, ℓ1 loss is 

considered more robust to noise than ℓ2 loss. Apart from 

these two standard choices, another widely-used loss 

function in robust regression is the Huber loss, which is 

defined as

where

and δ is a user-defined constant. Huber loss can be viewed 

as an integration of ℓ1 and ℓ2 losses. We will show later in 

our experiments that ℓ1 loss is the most effective one for 

maize tassels counting.

Merging and normalizing sub‑image counts

During the prediction, TasselNet will scan the image in a 

sliding window manner with a stride of se. Each window 

corresponds to a sub-image with size of r × r. For each 

(3)L2 =
1

M

M∑

i=1

�ai�
2
2,

(4)LH =

1

M

M∑

i=1

Lδ(ai),

(5)Lδ(ai) =

{

1
2
�ai�

2
2, if |ai| ≤ δ

δ|ai| − 1
2
δ2, otherwise

,

sub-image, TasselNet regresses a local count indicating 

the number of tassels within the sub-image. Assume that 

K sub-images in all are processed. Since each sub-image 

may be counted multiple times due to the densely-sam-

pled mechanism, the final count of maize tassels cannot 

be directly computed by simply summing over all K local 

counts. To address this, here we develop a merging strategy 

to map K local counts back to the original test image. �e 

normalization strategy is similar to the procedures intro-

duced in [18, 28]. Assume that the k-th sub-image count is 

ck, we average ck into every pixel of the k-th sub-image, so 

the count of each pixel takes up ck
r2

 (the sum of pixel-level 

counts still equals to ck). In this way, a count map C with 

the same resolution of the test image can be consequently 

constructed by mapping the r × r local count map back to 

the same location where the sub-image is sampled. Figure 2 

illustrates this process. Finally, by constructing a normali-

sation image P that records how many times each pixel is 

counted, the final count of the image c can be computed as

where C(x, y) and P(x, y) denote the value of C and P at the 

location (x, y).

Implementation and learning details

We implement TasselNet based on MatConvNet [36]. 

Original high-resolution images are resized to their 1/8 

sizes to reduce computational burden. During training, 

(6)c =

∑

x,y

C(x, y)

P(x, y)
,

Fig. 7 Three typical CNN architectures used in TasselNet
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we densely crop r × r sub-images with a stride of sr from 

186 images belonging to the training and validation 

sequences of MTC dataset. We perform a random shuf-

fling of these sub-images, 90% sub-images are used for 

training, and the rest for validation. Before feeding the 

image samples into the network, each sub-image is pre-

processed by mean subtraction (the mean is computed 

from the training subset).

Note that, no data augmentation is performed when 

reporting the results, because we consider field-based 

conditions already cover various scenarios (the diversity 

of training data can be guaranteed). One may further 

improve the network performance with random rotation, 

flipping and cropping of training images. It also should be 

kept in mind that the ground truth counts may change 

accordingly.

�e parameters of the convolution kernels are initial-

ised with the improved Xavier method [37]. �e stand-

ard stochastic gradient descent is used to optimise the 

network parameters. �e learning rate is initially set to 

0.01, and is decreased by a factor of 10 after 5 epochs 

and further decreased by a factor of 10 after another 10 

epochs. �us, we train TasselNet for 25 epochs in all. 

To allow the gradient to back-propagate easily from the 

output layer to the input layer, we add a batch normali-

sation layer [38] after each convolutional layer before 

ReLU. �e training time of TasselNet varies from half 

a day to 2 days depending on the number of training 

samples and the network architecture used. �e predic-

tion time for each image takes about 2.5 seconds (Mat-

lab 2016a, OS: Ubuntu 14.04 64-bit, CPU: Intel E5-2630 

2.40GHz, GPU: Nvidia GeForce GTX TITAN X, RAM: 

64 GB).

Table  2 summarises the default parameters used in 

our experiments. When sr = 8, 355,473 and 31,167 sub-

images are densely sampled and ready for training and 

validation, respectively.

Results and discussion

We evaluate the effectiveness of TasselNet on the test 

sequences of MTC dataset. It is worth noting that 

Jalaid2015_2 and Jalaid2015_3 are two very challenging 

sequences. As shown in Fig. 8, images in the Jalaid2015_2 

sequence suffer from dramatic illumination variations 

(Jalaid locates in a high-latitude area), and maize tassels 

in the Jalaid2015_2 sequence exhibit extremely crowded 

distributions. Extensive experiments are conducted to 

investigate key factors that affect the counting perfor-

mance and to compare TasselNet against other state-of-

the-art approaches. Based on the experimental results, 

we also suggest several good practices for practitioners 

working on in-filed counting problems.

Evaluation metric

�e mean absolute error (MAE) and the mean squared 

error (MSE) are used as the evaluation metrics to assess 

the counting performance. �ey take the form

where N denotes the number of test images, ti is the 

ground truth count for the i-th image (computed by sum-

ming over the whole density map), and ci is the inferred 

image count for the i-th image (computed as per Eq. (6)). 

MAE quantifies the accuracy of the estimates, and MSE 

assesses the robustness of the estimates. �e lower these 

two measures are, the better the counting performance 

is.

Choices of di�erent network architectures, number 

of training samples, loss functions, Gaussian kernel 

parameters, and sub-image sizes

Here we perform extensive evaluations to justify our 

design choices. Notice that, in a principal way, the inclu-

sion of specific design choices should be justified on the 

validation set. However, since we enforce the test set to 

be different sequences, the validation set thus exhibits a 

substantially different data distribution. Validating our 

design choices based on the validation set seems subop-

timal. Instead, as a preliminary study, we direct report 

the counting performance on the test set to see how the 

variations of these design choices affect the final count-

ing performance. Although with a little abuse, we dem-

onstrate later that the performance of TasselNet with any 

design choice shows a notable improvement over other 

baseline approaches by large margins. Below we follow 

the default parameters setting when reporting experi-

mental results unless a specific design choice is declared.

(7)MAE =
1

N

N∑

1

|ti − ci|,

(8)MSE =

√

√

√

√

1

N

N
∑

1

(ti − ci)
2,

Table 2 Default parameters setting used in  our experi-

ments

Parameter Remark Value

Network architecture AlexNet-like

Loss function ℓ1

r Sub-image size 32

sr Sampling stride during training r/4

se Sampling stride during prediction r/4

σ Gaussian kernel parameter 8
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Network architecture

We first evaluate how the model capacity influences the 

results. As aforementioned, three network architectures 

of LeNet-like, AlexNet-like and VGG-VD16-Net-like 

TasselNet are considered. �e learning curves of three 

models are shown in Fig.  9. It is clear that, the deeper 

the model uses, the lower the training error achieves. 

However, a lower training error does not imply a lower 

validation error for our problem—the validation error 

of VGG-VD16-Net-like model shows obvious fluctua-

tions and is also higher than the AlexNet-like model. 

Numerical results on the test set are shown in Table  3. 

Experimental results demonstrate that the AlexNet-like 

architecture achieves the overall best counting perfor-

mance, with a MAE of 6.6 and a MSE of 9.6. �e infe-

riority of LeNet and VGG-VD16-Net may boil down to 

the low model capacity and the over-fitting on the train-

ing data. �is can be clearly observed in Fig. 9. �e low 

model capacity of LeNet-like architecture shows a rela-

tively high training error, which implies the data may 

be in the state of under-fitting. Figure  9 show that the 

VGG-VD16-Net-like architecture fits the training data 

well while exhibits a higher validation error (compared to 

the AlexNet-like architecture), which suggests the model 

may not generalize well. Based on these results, a mod-

erately complex model seems sufficient for maize tas-

sels counting. In following evaluations, the AlexNet-like 

architecture is used in TasselNet.

Further, it is worth noting that there exists some 

recent network architectures, such as ResNets [39] and 

DenseNets [40], that exhibit more powerful modelling 

ability than the three baseline architectures presented in 

this paper. One may find better counting performance 

using advanced architectures. We leave these explora-

tions open at present.

Number of training samples

Here we investigate how the number of training samples 

affects the counting performance. We vary the sampling 

stride sr using the range of values 2n, n = 5, 4, 3, 2, leading 

to 2.37 × 10
4, 9.13 × 10

4, 3.56 × 10
5, and 1.41 × 10

6 train-

ing sub-images, respectively. Experimental results are 

listed in Table 4. We observe that the number of training 

samples indeed plays a vital role: MAE decreases from 

9.5 to 6.5 with increased training number of sub-images. 

In addition, the overall performance between sr = 8 and 

sr = 4 is almost identical, implying that a moderate num-

ber of training sub-images can already capture well the 

in-field variations.

Loss function

Here we compare the effect of different loss functions. As 

aforementioned, ℓ1 loss, ℓ2 loss, and Huber loss are evalu-

ated. Huber loss contains a free parameter δ, so we further 

add three variants of Huber loss when δ = 0.1, δ = 1 , and 

δ = 10. �e lower δ is, the more Huber loss looks like ℓ1 

loss. �e higher δ is, the more it looks like ℓ2 loss. Results 

are shown in Table 5. We observe that, there is no single 

loss can achieve consistently better results than other com-

petitors over all test sequences. �is may have something 

to do with the problem nature of maize tassels counting 

and specific data distributions of test sequences. Huber 

loss with delta = 10 shows better performance on the 

two challenging sequences, which suggests that Huber 

loss is indeed robust to noise but at a cost of sacrificing 

the ability to fit normal data samples (poor performance 

on the Taian2013_2 and Gucheng2014 sequences). Huber 

loss also has a problem that there is no principal way to 

choose an appropriate δ (the performance degrades when 

delta = 0.1). �e counting performance of ℓ1 loss and ℓ2 

loss is comparable, but ℓ1 is generally more stable.

Fig. 8 Two example images from the Jalaid2015_2 (a) and Jalaid2015_3 (b) sequences. Images in two sequences exhibit dramatic illumination 

variations, dazzling visual characteristics, as well as extremely crowded distributions, which renders great difficulties for counting even for a human 

expert
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Gaussian kernel parameter

�e sensitivity of Gaussian kernel parameter σ is further 

evaluated. Concretely, we set σ = 4, σ = 8, and σ = 12, 

respectively. �e results are listed in Table 6. We observe 

that the optimal σ for each test sequence is different. 

�e reason perhaps is that a fixed σ cannot describe 

appropriately maize tassels of different sizes (due to dif-

ferent cultivars). Although the optimal counting perfor-

mance cannot be achieved with a specific σ, the counting 

performance with different σ does not vary significantly, 

which suggests that the mechanism of local counts 

regression is not that sensitive to specific choices of σ.  

Empirically, one can set an appropriate σ by observing 

the Gaussian smoothing responses on the training set. 

�e responses should fit the median size of maize tassels.

Sub‑image sizes

�e influence of different sub-image sizes is also ana-

lysed. We compare the performance of four settings, 

including r = 16, r = 32, r = 64, and r = 96. Table 7 lists 

the results. According to the results, we again observe 

that the optimal performance for each test sequence 

does not correlate well with sub-image sizes. We think 

this has something to do with specific tassel sizes in each 

sequences. In practice, drawing upon a relatively small 

(but not too small) sub-image sizes is preferable. �is 

is not just because one can densely sample a sufficient 

number of training samples but also because the varia-

tions within a small receptive field are easily modelled.

Comparison with the state of the art

To place TasselNet in the context of the state of the art, 

several well-established baseline approaches are chosen 

for comparison, they are:

  • JointSeg [41]: JointSeg is the state-of-the-art tassel 

segmentation method. �e number of object counts 

can be easily inferred from the segmentation results. 

We further perform some morphological operations 

as post-correction to reduce the segmentation noises. 

�is approach can be viewed as a counting-by-seg-

mentation baseline. It is not specially designed for a 

counting problem, but the comparison somewhat 

justify whether our problem could be addressed by a 

simple image processing technique.

  • mTASSEL [2]: mTASSEL is the state-of-the-art tassel 

detection approach designed specifically for maize 

tassels. mTASSEL uses multi-view representations 

to characterise the visual characteristics of tassels 

to achieve robust detection. �is is a counting-by-

detection baseline.

epochs

0 5 10 15 20 25

M
A

E

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

LeNet-train

LeNet-val

AlexNet-train

AlexNet-val

VGG-VD16-Net-train

VGG-VD16-Net-val

Fig. 9 Training (train) and validation (val) errors in terms of MAE ver-

sus the number of epochs on LeNet-like, AlexNet-like and VGG-VD16-

like TasselNet architectures

Table 4 Counting performance with  di�erent number 

of training samples (Ntrain) on the MTC dataset

The performance is averaged over 8 test sequences, and the lowest error is 

italicised

Ntrain MAE MSE

2.37 × 10
4 9.5 14.2

9.13 × 10
4 8.5 13.4

3.56 × 10
5 6.6 9.6

1.41 × 10
6 6.5 10.8

Table 5 Comparison of  di�erent loss functions for  maize 

tassels counting on the MTC dataset

The performance is averaged over 8 test sequences, and the lowest error is 

italicised

Loss MAE MSE

Huber (δ = 0.1) 8.5 12.2

Huber (δ = 1) 7.5 10.5

Huber (δ = 10) 7.3 10.0

ℓ2 7.3 10.3

ℓ1 6.6 9.6

Table 6 Comparison of  di�erent Gaussian kernel param-

eter σ for maize tassels counting on the MTC dataset

The performance is averaged over 8 test sequences, and the lowest error is 

italicised

σ MAE MSE

σ = 4 7.0 11.3

σ = 8 6.6 9.6

σ = 12 7.6 10.9
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  • GlobalReg [42]: GlobalReg directly regresses the 

global count of images. Off-the-shelf fully-connected 

deep activations extracted from a pre-trained model 

are used as a holistic image representation. �en the 

global image feature is linearly mapped into a global 

object count by ridge regression. �is is a global 

counting-by-regression baseline.

  • DensityReg [15]: DensityReg is the seminal work that 

proposes the idea of density map regression. It pre-

dicts a count density for every pixel by optimising 

a so-called MESA distance. �is is a global density-

based counting-by-regression baseline.

  • Counting-CNN (CCNN) [18]: CCNN is a state-of-

the-art object counting approach. It treats the local 

density map as the regression target and also uses a 

AlexNet-like CNN architecture. �is is a local den-

sity-based counting-by-regression baseline.

Qualitative and quantitative results are shown in Fig. 10 

and Table  8, respectively. Results of TasselNet are 

reported using the default parameters setting, i.e., with 

the AlexNet-like architecture and suggested parameters. 

According to the results, we can make the following 

observations:

  • TasselNet outperforms other baseline approaches in 

7 out of 8 test sequences and achieves the overall best 

counting performance—MAE and MSE are signifi-

cantly lower than other competitors.

  • �e poor performance of JointSeg and mTASSEL 

implies that the problem of in-field counting of maize 

tassels cannot be solved by simple colour-cue-based 

image segmentation or standard object detection.

  • Even a simple global regression can achieve com-

parable counting performance against mTASSEL 

in which the bounding-box-level annotations are 

utilized. �is suggests it is better to formulate the 

problem of maize tassels counting in a counting-by-

regression manner.

  • Regressing the global density map can also reduce 

the counting error effectively. However, it is hard to 

extend this idea to the deep CNN-based paradigm, 

because there is currently no dataset with thousands 

of labelled images samples to make the learning of 

deep networks tractable, especially in the plant-

related scenarios. Hence, DensityReg cannot enjoy 

the bonus brought by deep CNN, and the perfor-

mance may be limited by the power of feature repre-

sentation.

  • �e performance of CCNN even falls behind the 

global regression baseline. In experiments we observe 

that CCNN performs poorly when given an image 

with just a few tassels of different types. Compared to 

regressing local counts as in TasselNet, CCNN needs 

to fit harsher pixel-level ground truth density, so it 

likely suffers in the vague definition of density map 

due to different tassel sizes. �is may explain why 

local density regression does not work when given 

varying object sizes like maize tassels.

  • Qualitative results in Fig.  10 show that TasselNet 

can give reasonable approximations to the ground 

truth density maps. In most cases, the estimated 

counts are similar to the ground truth counts. How-

ever, there also exists some circumstances that Tas-

selNet cannot give an accurate prediction. �e last 

row in Fig. 10 show three failure cases: (1) when the 

image is captured under extremely strong illumina-

tions, highlight regions of leaves will contribute to 

several fake responses; (2) if maize tassels present 

long-tailed shapes in images, the long-tailed parts 

only receive partial local counts, resulting in a under-

estimate situation; (3) the extremely crowded scene 

is also beyond the ability of TasselNet. To alleviate 

these issues, one may consider to add extra training 

data that contain the extremely crowded scenarios. 

Alternatively, since the training sequences and test 

sequences exhibit more or less different data distri-

butions, it may be possible to use domain adaptation 

[43] to fill the last few percent of difference between 

sequences. We leave these as the future explorations 

of this work.

As a summary of our evaluations, we suggest the follow-

ing good practices for maize-tassel-like in-field counting 

problems:

1. Try the idea of counting by regression if the objects 

exhibit significant occlusions.

2. Try local counts regression if the physical size of 

objects varies dramatically.

3. Use a relatively small sub-image size so that a suffi-

cient number of training samples could be sampled.

4. It is safe to use a moderately complex deep model.

5. Try ℓ1 loss first to achieve a robust regression.

Table 7 Comparison of di�erent sub-image sizes for maize 

tassels counting on the MTC dataset

The performance is averaged over 8 test sequences, and the lowest error is 

italicised

r × r MAE MSE

16 × 16 9.9 13.4

32 × 32 6.6 9.6

64 × 64 6.8 10.8

96 × 96 6.9 11.5
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Conclusions

In this paper, we rethink the problem nature of in-field 

counting of maize tassels and novelly formulates the prob-

lem as an object counting task. A tailored MTC data-

set with 361 field images captured during 6 years and 

corresponding manually-labelled dotted annotations is 

constructed. An effective deep CNN-based solution, Tas-

selNet, is also presented to count effectively maize tassels 

via local counts regression. We show that local counts 

regression is particularly suitable for counting problems 

whose ground truth density maps cannot be precisely 

defined. Extensive experiments are conducted to justify 

the effectiveness of our proposition. Results show that Tas-

selNet achieves the state-of-the-art performance and out-

performs previous baseline approaches by large margins.

For future work, we will continue to enrich the MTC 

dataset, because the training data are always the key to 

the good performance, especially the data diversity. In 

addition, we will explore the feasibility to improve the 

counting performance in the context of domain adapta-

tion, because the adaptation of object counting problems 

still remains an open question. In-field counting of maize 

tassels is a challenging problem, not only because the 

unconstrained natural environment but also because the 

self-changing rule of plants growth. We hope this paper 

could attract interests of both Plant Science and Com-

puter Vision communities and inspires further studies to 

advance our knowledge and understanding towards the 

problem.
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