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Abstract

Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary

degeneration in several neurodegenerative disorders that collectively called tauopathies. Six

isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-

mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms

containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively).

Approximately equal levels of 3R-tau and 4R-tau are expressed in normal adult human brain, but

the 3R-tau/4R-tau ratio is altered in the brains in several tauopathies. Discovery of silence

mutations and intronic mutations of tau gene in some individuals with frontotemporal dementia

with Parkinsonism linked to chromosome 17 (FTDP-17), which only disrupt tau exon 10 splicing

but do not alter tau's primary sequence, demonstrates that dysregulation of tau exon 10 alternative

splicing and consequently of 3R-tau/4R-tau balance is sufficient to cause neurodegeneration and

dementia. Here, we review the gene structure, transcripts and protein isoforms of tau, followed by

the regulation of exon 10 splicing that determines the expression of 3R-tau or 4R-tau. Finally,

dysregulation of exon 10 splicing of tau in several tauopathies is discussed. Understanding the

molecular mechanisms by which tau exon 10 splicing is regulated and how it is disrupted in

tauopathies will provide new insight into the mechanisms of these tauopathies and help identify new

therapeutic targets to treat these disorders.

Introduction
Tau is a microtubule-associated protein expressed pre-
dominantly in the neuron. Its major known biological
function is to stimulate microtubule (MT) assembly and
to stabilize MT network. Thus, tau plays important roles in
morphogenesis, axonal extension, as well as axonal vesi-
cle and protein transport in neurons. The biological func-
tion of tau is regulated by the degree of its
phosphorylation. Since the discovery that abnormally
hyperphosphorylated tau makes up paired helical fila-
ments (PHFs) and straight filaments of neurofibrillary
tangles (NFTs) in brains of individuals with Alzheimer

disease (AD) [1,2], tau and the role of its abnormalities in
neurodegeneration have been a hot subject of research. In
addition to AD, aggregation of hyperphosphorylated tau
in the brain is also seen in several other neurodegenerative
diseases, such as progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD), frontotemporal demen-
tia with Parkinsonism linked to chromosome 17 (FTDP-
17), Pick's disease (PiD), Down syndrome (DS), posten-
cephalitic Parkinsonism, and Niemann-Pick disease. This
diverse set of sporadic and familial neurodegenerative dis-
orders are called collectively as "tauopathies" [3,4].
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Adult human brain expresses six isoforms of tau protein,
which are derived from a single tau gene as a result of
alternative splicing of its pre-mRNA [5]. The six tau iso-
forms differ from each other by the presence or absence of
one or two inserts (29 or 58 amino acids) in the N-termi-
nal part and by the presence of either three or four MT-
binding repeats (R) in the C-terminal half. The presence or
absence of the second MT-binding repeats is resulted from
alternative splicing of exon 10 of the tau gene, leading to
the expression of either 4R-tau or 3R-tau [6,7]. Normal
adult human brain expresses approximately equal levels
of 3R-tau and 4R-tau [8,9]. Altered 3R/4R-tau ratios have
been observed in several tauopathies [10-12]. In some
families of FTDP-17, alterations of exon 10 splicing of tau

due to silence or intronic mutations lead to the disease

[10]. These observations indicate that dysregulation of tau

exon 10 splicing can cause or contribute to neurodegener-
ation.

In this article, we first briefly describe the gene structure,
transcripts and protein isoforms of tau. Then, we review
the regulation of exon 10 splicing that determines the
expression of 3R-tau or 4R-tau. Finally, dysregulation of
exon 10 splicing of tau in several tauopathies is discussed.

Gene structure, transcripts and proteins of tau
The single human tau gene is located over 100 kb on the
long arm of chromosome 17 at band position 17q21.1,
which contains 16 exons (Fig 1) [13,14]. Exons 1, 4, 5, 7,
9, 11, 12, and 13 are constitutive exons, and the remain-

The gene, mRNA and protein isoforms of tauFigure 1
The gene, mRNA and protein isoforms of tau. In tau genomic structure (top panel), the black boxes represent constitu-
tive exons, and the gray and empty boxes represent alternative spliced exons. The middle panel demonstrates mRNAs of tau in 
adult human brain. A total six mRNAs are generated by alternative splicing of exons 2, 3 and 10, which is indicated by alterna-
tive lines linking these exons. The lower panel shows six isoforms of tau in adult human brain. Gray boxes represent the N-ter-
minal inserts (coded by exons 2 and 3) or MT-binding repeats (coded by exons 9, 10, 11 and 12). The second MT-binding 
repeat coded by exon 10 is highlighted by dark gray box. The commonly used terms for each tau isoform are listed at the right 
side of the isoforms.
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ing exons are subject to alternative splicing. Exon 1 is part
of the promoter and is transcribed but not translated.
Sequencing of the promoter region reveals a TATA-less
sequence. The promoter region also contains consensus
binding sites for transcription factors AP2, SP1, and GCF.
The SP1-binding sites may control neuronal specific
expression of tau [15,16]. Exons 4A, 6 and 8 are present in
mRNA of the peripheral tissue and are never present in
human brain. Exon 14 is part of the 3'untranslated region
of tau mRNA [5,6]. Restriction analysis and sequencing
show that tau gene contains two CpG islands, one associ-
ated with the promoter region and the other within exon
9.

The primary transcript of tau is processed to produce three
different transcripts of 2, 6 and 9 kb, which are differen-
tially expressed in the nervous system, depending upon
stages of neuronal maturation and neuron types
[5,6,17,18]. The MT-associated protein tau is produced
from the 6-kb mRNA expressed primarily in neurons of
the brain. The 2-kb tau mRNA produces a tau isoform that
is localized to the nucleus [19], and the 9-kb transcript is
restricted to the retina and the peripheral nervous system
[18].

In the adult human brain, exons 2, 3 and 10 are alterna-
tively spliced [14]. Exon 3 never appears independently of
exon 2 [7]. Thus, the alternative splicing of these three
exons yields to six combinations of mature mRNA and the
corresponding six isoforms of tau protein (Fig. 1) [5]. The
six tau isoforms differ from each other by the presence or
absence of one or two inserts (29 or 58 amino acid resi-
dues, coded by exon 2 or exons 2 and 3) in the N-terminal
part and the presence or absence of the second MT-bind-
ing repeat (encoded by exon 10) in the C-terminal por-
tion. The apparent molecular weight of these tau isoforms
ranges from 45 kDa to 65 kDa in SDS-PAGE. In the adult
human brain, the ratio of 3R-tau and 4R-tau isoforms is
~1. On the other hand, tau isoforms with 2 inserts (2N),
1 insert (1N) and 0 insert (0N) in the N-terminal region
comprise ~54%, ~37% and ~9%, respectively, of total tau
[8,20]. Each of this isoforms appears to have some differ-
ential physiological roles since they are differentially
expressed during development. In the fetal human brain,
only the shortest tau isoform (exons 2, 3 and 10 are
spliced out) is present [9]. In the peripheral nervous sys-
tem, inclusion of exon 4a in the N-terminal half results in
the expression of a higher molecular weight (~110 kDa)
protein termed big tau [21,22].

The presence of many serine/threonine, proline, and
arginine/lysine/histine residues in tau molecule bestows
unusual characters with potential to be hyperphosphor-
ylated, very poor secondary structure and basic protein,
which linked to its biological function and pathologic

changes in the diseases. The main biological functions of
tau known are to stimulate MT assembly and to stabilize
MT structure. Tau binds to MTs through its MT-binding
repeats. 4R-tau isoforms are more efficient at promoting
MT assembly and have a great MT-binding affinity than do
3R-tau isoforms [8] because the inter-repeat sequence
between the first and second MT-binding repeats has
more than twice the binding affinity of any other individ-
ual MT-binding repeats [23-26]. Therefore, tau from fetal
brain promotes microtubule assembly less efficiently than
tau from adult brain [27].

Alternative splicing of tau exon 10
Alternative splicing of pre-mRNA, the differential inclu-
sion or exclusion of portions of a nascent transcript into
the final protein-coding mRNA, is widely recognized to be
a ubiquitous mechanism for controlling protein expres-
sion. More than 60% of mammalian pre-mRNA is alterna-
tively spliced, and this process is widely prevalent in the
nervous system [28,29]. Splicing is catalyzed by the spli-
ceosome, a macromolecular machine consisting of five
small nuclear RNA (snRNA) molecules (U1, U2, U4, U5
and U6 snRNA) and as much as 150 proteins [30-32].
Each of the five snRNAs assembles with proteins to form
small nuclear ribonucleoprotein particles (snRNP). A
coordinated binding of the five snRNP to pre-mRNA
results in the removal of each intron and the ligation of
the flanking exons. Alternative splicing is controlled by
multiple exonic and intronic cis-elements and trans-acting
splicing factors. The element in an exon that increases
inclusion of the alternatively spliced exon is called exonic
splicing enhancer (ESE), and that decreases inclusion is
called exonic splicing silencer (ESS). The element with
similar function located in an intron is called intronic
splicing enhancer (ISE) or intronic splicing silencer (ISS).

Cis-elements in tau exon 10 and intron 10

Most alternative spliced exons contain one weak splice
site. However, tau exon 10 has two weak splice sites, a
weak 5' splice and a weak 3' splice site [33-35]. The exon
is flanked by unusually large intron 9 (13.6 kb) and intron
10 (3.8 kb). These features of tau exon 10 lead to much
complicated regulation. Several short cis-elements in exon
10 and intron 10, which modulate the use of the weak 5'
and 3' splice sites, have been identified and extensively
characterized [10,36]. The 5' end of exon 10 contains
three ESEs: a SC35-like enhancer, a polypurine enhancer
(PPE), and an A/C-rich enhancer (ACE) (Fig. 2). Follow-
ing the ESEs region, there is an exon splicing silencer
(ESS). In addition, the 3' end of exon 10 contains another
ESE sequence between the ESS and the 5' splice site. In
intron 10, there are bipartite elements composed of the
ISS (E10+11 to E10+18) and the intronic splicing modu-
lator (ISM) (E10+19 to E10+26). Deletion assay revealed
opposite effects of the ISS and ISM on E10 splicing [35].
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The ISM is not an enhancer by itself, but functions only in
the presence of the ISS and counteracts ISS-mediated inhi-
bition of the 5' splice site. Mutation in these elements may
disrupt their function in alternative splicing of exon 10. A
total of 14 mutations within the six elements (PPE, ACE,
ESS, ESE, ISS and ISM) have now been identified in indi-
viduals with tauopathies. These mutations include N279K
and Δ280 in PPE; L284L in ACE; N296H, N296N and
Δ296N in ESS; P301S G303V in ESE; E10+11, E10+12,
E10+13, E+10+14 and E10+16 in ISS; and E10+19 in ISM
(Fig. 2). They all alter the alternative splicing of exon 10
by either promoting or inhibiting exon 10 inclusion.

The exon-intron interface at the 3' end of exon 10 displays
a high degree of self-complementarity, suggesting the

presence of a stem loop (Fig. 2). Eleven mutations causing
FTDP-17 are clustered in this stem loop region. They all
disrupt the complementarity and destabilize the stem
loop structure, leading this region of mRNA more availa-
ble for association to U1 snRNP and resulting in exon 10
inclusion. In rodents, this stem-loop structure is destabi-
lized by the replacement of a with g at position E10+13
(Fig. 2), which is also seen in FTDP-17 [35]. This replace-
ment might explain why adult mice and rats express 4R-
tau predominantly in their brains.

In addition to the regulatory sequences (cis-elements)
within exon 10 and intron 10, distal exonic sequences
appear to affect exon 10 splicing of tau as well. Disease-
related mutations within exon 9 and exon 12 are reported

Structure of exon 10 and intron 10 of tau geneFigure 2
Structure of exon 10 and intron 10 of tau gene. Exon 10 is shown in capital letters and part of the franking intron 9 and 
intron 10 are shown in lowercase. The first half of exon 10 has three exonic splicing enhancers (SC35-like, PPE and ACE). A 
central exon splicing silencer (ESS) separates the 5' ESE elements from a less characterized ESE at the 3'-end of exon 10. Intron 
10 elements include a bipartile intronic splicing silencer (ISS) and an adjacent intronic splicing modulator (ISM). In the interface 
between exon 10 and intron 10, there is a stem-loop structure. Mutations that cause an increase (red), decrease (dark green) 
or not yet known change (black) in the ratio of 4R/3R-tau are indicated. Triangles indicate deletion mutations.
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to alter exon 10 splicing [37,38]. However, how and by
which mechanism these distal sequences regulate exon 10
splicing remain to be elucidated.

Regulation of tau exon 10 splicing by Trans-acting factors

Alternative splicing is highly regulated by trans-acting fac-
tors in addition to cis-elements. These splicing factors are
divided into two major groups, hnRNPs (heterogeneous
nuclear ribonucleoproteins) and SR (serine/arginine-
rich)/SR-like proteins. Both of them are involved in alter-
native splicing [39,40]. SR/SR-like proteins are compo-
nents of spliceosome. In addition, hnRNPs are also
involved in pre-mRNA transport, RNA stability and trans-
lational regulation.

SR proteins are highly conserved in eukaryotes. They are
characterized by containing one or two RNA-recognition
motifs at the N-terminus, which determine RNA binding
specificity, and an arginine-serine-rich (RS) domain at the
C-terminus, which promotes protein-protein interactions
within the splicing complex [41,42]. They are essential for
both constitutive splicing and alternative splicing. For
constitutive splicing, SR proteins are required for the for-
mation of the early prespliceosomal complex to stabilized
U1 snRNP article and U2AF [43,44]. In alternative splic-
ing, SR proteins function in modulating 5' splice site in a
concentration-dependent manner.

SF2/ASF (splicing factor 2/alternative splicing factor) is a
well-studied SR protein. It binds to PPE enhancer of exon
10 (Fig. 2.) and plays essential and regulatory role in tau
exon 10 splicing [45]. FTDP-17 mutations N279K and
Δ280 K alter the normal PPE sequence by adding or
removing an AAG copy and lead to increase or decrease in
the binding ability of SF2/ASF, resulting in exon 10 inclu-
sion and exclusion, respectively. In addition to SF2/ASF,
roles of other SR proteins in exon 10 splicing are summa-
rized in Table 1. All these studies were carried in cultured
cells, and some observations are contradictory. Variations
in the minigene size used, various types of cells with dif-

ferent compositions and levels of endogenous splicing
factors as well as SR protein kinases and phosphatases,
and different stages of cells may contribute to the incon-
sistent results among studies.

Phosphorylation of SR proteins

The RS domain of SR proteins is extensively phosphor-
ylated on serine residues, and phosphorylation plays an
important role in regulating their nuclear activities. To
date, multiple kinases, including SR protein kinase 1
(SRPK1) [46], SRPK2 [47], cdc like kinase (Clk/Sty) [48],
DNA topoisomerase I [49], cAMP-dependent protein
kinase (PKA) and AKT [50,51], have been shown to phos-
phorylate the RS domain. Phosphorylation of the RS
domain of ASF/SF2 promotes its interaction with pre-
mRNA and other splicing factors and regulates the shut-
tling crossing nuclear membrane [48,52,53]. It has been
shown that phosphorylation of ASF by SRPK1 drives it
from cytosol into the nucleus and by Clk/Sty causes its
release from speckles, the storage compartment of inactive
SR proteins [52,54]. Thus, both SRPK1 and Clk/Sty help
recruit ASF into nascent transcripts, resulting in enhance-
ment of its role in regulation of alternative splicing. In the
case of tau exon 10 splicing, activation of SRPK1 and Clk/
Sty could increase the nuclear concentration of active ASF/
SF2 that might result in an increase in exon 10 inclusion.
Recently, we have found that dual-specificity tyrosine-
phosphorylated and regulated kinase 1A (Dyrk1A), a crit-
ical kinase linked with DS, also phosphorylates ASF/SF2
at sites rather than those by SRPK and Clk/Sty and drives
ASF/SF2 into speckles, resulting in suppression of its pro-
motion in exon 10 inclusion (Shi J et al., unpublished
observations).

The activity of SC35, which promotes tau exon inclusion,
is regulated by phosphorylation with glycogen synthase
kinase-3β (GSK-3β), a protein kinase that may be
involved in the pathogenesis of AD [55]. Inhibition of
GSK-3β activity in cultured neurons caused an increase in
tau exon 10 inclusion [56]. However, the splicing compe-

Table 1: Roles of SR/SR-like proteins in tau exon 10 splicing.

SR Protein Target cis-element Effect on exon 10 splicing References

SRp20 ND Exclusion [68]

ASF (SRp30a) PPE Inclusion [45,69]

SC35 (SRp30b) SC35-like Inclusion [56]

SRp30c ND Inclusion [69]

SRp40 ND No Effect [68]

9G8 ISS Exclusion [70]

SRp54 (SFRS11) PPE Exclusion [71]

SRp55 ND Exclusion [68]

SRp75 ND Exclusion [72]

Tra2β PPE Inclusion [73]

ND, not determined
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tency of GSK-3β-phosphorylated SC35 in general or on
tau is unknown. This issue is especially relevant because
GSK-3β might be up-regulated in AD brain [57] and a
SC35-like ESE at the 5' end of tau exon 10 appears essen-
tial for exon 10 splicing [35].

Disruption of tau exon 10 splicing in tauopathies
Discovery of tau mutations in subjects with FTDP-17, a
group of clinically heterogeneous syndromes with over-
lapping behavioral, cognitive and motor abnormalities,
established that dysregulation of the tau gene or abnor-
malities of tau protein can trigger neurodegeneration
[33,34,58]. In FTDP-17, at least 39 different mutations in
the human tau gene have now been reported (Table 2).
These mutations may be divided into two groups: (1) mis-
sense or deletion mutations that commonly modify tau

interaction with microtubules, and (2) splicing mutations
that affect the alternative splicing of exon 10, leading to
changes of the ratio of 3R-tau/4R-tau. The 24 missense
mutations are located in coding-region in exon 1 (R5H
and R5L), exon 9 (K257T, I260V, L266V and G272V),
exon 10 (N279K, N296H, P301L, P310S, G303V, S305N
and S305I), exon 11 (L315R, L315L, S320F and S320Y),
exon 12 (Q336R, V337M, E342V, S352V and K369I) and
exon 13 (G389R and R406W). The two deletion muta-
tions (Δ280K and Δ296N) are located in exon 10. The four
silent mutations (L284L, N296N and S305S, L315L) are
located in exons 10 and 11. There are eight intronic muta-
tions in the splicing region of intron 10 (E10+3, E10+11,
E10+12, E10+13, E10+14, E10+16, E10+19, E10+29) and
one of intron 9 (E9+33).

Table 2: Tau mutations associated with FTDP-17

Mutation Location E10 inclusion MT-binding Insoluble tau Phenotype

R5L Exon 1 Mainly 4R PSP-like

R5H R Exon 1 4R+1N3 AD-like

K257T Exon 9 ↓ 3R > 4R PiD-like

I260V Exon 9 Mainly 4R

L266V Exon 9 ↓ ↓ Mainly 3R PiD-like

G272V Exon 9 → ↓ Mainly 3R PiD-like

E9+33 Intron 9 ↓
N279K Exon 10 ↑ Variable Mainly 4R PSP-like

Δ280K Exon 10 ↓ ↓ 3R>>4R FTDP-17

L284L Exon 10 ↑ → 4R? AD-like

N296N Exon 10 ↑ → Mainly 4R CBD-like

N296H Exon 10 ↑ Mainly 4R FTDP-17

Δ296N Exon 10 ↓ PSP-like

P301L Exon 10 → ↓ Mainly 4R FTDP-17

P301S Exon 10 ↑ Mainly 4R FTDP-17, CBD-like

G303V Exon 10 ↑ Mainly 4R PSP-like

S305N Exon 10 ↑ → Mainly 4R CBD-like

S305S Exon 10 ↑ Mainly 4R PSP-like

S305I Exon 10 ↑ Mainly 4R AGD

E10+3 Intron 10 ↑ → FTDP-17

E10+11 Intron 10 ↑ → FTDP-17

E10+12 Intron 10 ↑ → Mainly 4R FTDP-17

E10+13 Intron 10 ↑ → FTDP-17

E10+14 Intron 10 ↑ → Mainly 4R FTDP-17, PSP-like

E10+16 Intron 10 ↑ → Mainly 4R PSP/CBD-like

E10+19 Intron 10 ↓ →
E10+29 Intron 10 ↓ →
L315 R Exon 11 → ↓ PiD-like

L315L Exon 11 →
S320F Exon 11 → ↓ PiD-like

S320Y Exon 11 PiD-like

Q336R Exon 12 → ↑ PiD-like

V337M Exon 12 → ↓ FTDP-17

E342V Exon 12 ↑ Mainly 4R FTDP-17, PiD-like

S352V Exon 12

K369I Exon 12 3R + 4R PiD-like

G389R Exon 13 → ↓ 4R > 3R PiD-like

R406W Exon 13 → 3R + 4R PSP-like

↑, increased; ↓, decreased; →, unchanged.
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Majority of the missense and deletion mutations of tau
also disrupt normal tau exon 10 splicing. The splicing
mutations may cause FTDP-17 solely by disrupting the
alternative splicing of exon 10 and consequently changing
the ratio of 3R-tau/4R-Tau. Majority of the disease-causing
tau mutations promote tau exon 10 inclusion, resulting in
increase expression in 4R-tau (Table 2). However, there
are a few mutations, such as L266V, G272V, Δ280K,
E10+19 and E10+29, promote exon 10 exclusion and
cause an increase expression in 3R-tau. Normally, adult
human brain expresses approximately equal levels of 3R-
tau and 4R-tau. Discovery of the splicing mutations in
FTDP-17 demonstrates that disruption of 3R-tau/4R-tau
balance is sufficient to causes neurodegeneration and
dementia. A balanced 3R-tau/4R-tau ratio appears to be
critical for maintaining normal brain functions.

In addition to FTDP-17, dysregulation of tau exon 10
splicing in both familiar and sporadic cases may also con-
tribute to other human neurodegenerative disorders, such
as PiD, PSP, and corticobasal degeneration. Some tau
gene mutations can cause hereditary PiD and PSP [59-62].
Only 3R-tau inclusions were previously found in the
brains of both familial and sporadic cases of PiD. How-
ever, several groups recently observed 4R-tau inclusions as
well [63], suggesting that a disruption of 3R-tau/4R-tau
ratio at either directions may contribute to PiD. Changes
of 3R-tau/4R-tau ratio are also seen in PSP and corticoba-
sal degeneration, in which 4R-tau is up-regulated in
majority of the cases [63]. DS cases always develop tau
pathology about 20 years earlier than sporadic AD. We
recently found that the 3R-tau/4R-tau ratio increases in
DS brain, suggesting that an imbalanced tau isoforms may
also contribute to the early-onset tau pathology (Shi J et
al., unpublished observations).

Altered ratio of 3R-tau/4R-tau was also reported in AD
brain, but the observations from different reports are con-
tradictory [64-66]. AD can be caused by multiple etiolog-
ical factors. It is possible that there are several subtypes of
AD, in which the 3R-tau/4R-tau ratio is differentially
deregulated.

In FTDP-17, the altered tau exon 10 splicing is the result
of tau mutations at the cis-elements that regulate the splic-
ing, though the detailed mechanisms might be different in
different mutations. Much less is known about the mech-
anisms by which the 3R-tau/4R-tau ratio is altered in
other tauopathies. Further investigation on the mecha-
nisms will help identify new therapeutic targets for the
treatment of those tauopathies caused or contributed by
disruptions of 3R-tau/4R-tau balance.

How the imbalance of 3R-tau/4R-tau causes or contrib-
utes to neurofibrillary degeneration and dementia is cur-

rently not understood. Since equal levels of 3R-tau and
4R-tau appear to be essential for normal function of the
mature human brain, it is possible that the 1:1 ratio of 3R-
tau/4R-tau bound to MTs is required for maintaining the
normal dynamics of MTs in mature neurons. Because the
MT-binding and MT assembly activity of 3R-tau is smaller
than that of 4R-tau [23-26], any changes of the 3R-tau/4R-
tau ratio could alter the MT dynamics and cause problems
in the neuron. It is also possible that in the mature neu-
ron, 3R-tau/4R-tau only at an 1:1 ratio bind to MTs. Access
amounts of either 3R-tau or 4R-tau due to disrupted tau
exon 10 splicing could resulted in increased concentration
of free 3R-tau or 4R-tau in the cytoplasm. Compared to
MT-bound tau, free tau is more vulnerable for hyperphos-
phorylation and aggregation into NFTs [67].

Concluding Remarks
Tau is an important MT-associated protein in the neuron.
Tau transcripts undergo alternative splicing of exons 2, 3
and 10, which produce six tau isoforms in the adult
human brain. Alternative splicing of exon 10 is especially
important because not only it determines whether 3 or 4
MT-binding repeats of tau are expressed, but also deregu-
lation of this splicing causes or contributes to neurode-
generation and dementia. Regulation of tau exon 10
splicing is governed by at least 7 cis-elements located at
exon 10 and intron 10 as well as many trans-acting splic-
ing factors. Discovery of intronic mutations of tau gene in
FTDP-17, which result in altered exon 10 splicing and
neurodegeneration, had led to studies on the regulation of
splicing at this site. To date, nearly two dozens of muta-
tions of tau gene and one dozen of splicing factors have
been shown to participate in regulation of tau exon 10
splicing. Nevertheless, the molecular mechanism of regu-
lation of tau exon 10 splicing is still poorly understood.

Disruption of tau exon 10 splicing causes altered the
expression ratio of 3R/4R-tau in several tauopathies. In
FTDP-17, the altered 3R/4R-tau ratios are caused by muta-
tions of tau gene. In other tauopathies such as PiD, PSP,
corticobasal degeneration and DS, the exact mechanisms
leading to the altered 3R/4R-tau ratios remain to be eluci-
dated. The fact that the intronic tau mutations, which only
disrupt tau exon 10 mutations but do not change the pri-
mary sequence of tau protein, result in FTDP-17 indicates
that disruption of tau exon 10 splicing and/or altered 3R/
4R-tau ratio are sufficient to induce neurodegeneration
and dementia. Further understanding of the molecular
mechanisms by which 3R/4R-tau ratio is disrupted and
how the disruption induces neurodegeneration in some
tauopathies will provide new insight into the mechanisms
of these tauopathies and help identify new therapeutic tar-
gets to treat these disorders.



Molecular Neurodegeneration 2008, 3:8 http://www.molecularneurodegeneration.com/content/3/1/8

Page 8 of 10

(page number not for citation purposes)

Abbreviations
3R-tau: tau with three-microtubule-binding repeats; 4R-
tau: tau with four-microtubule-binding repeats; ACE: A/C-
rich enhancer; AD: Alzheimer disease; AGD: argyrophilic
grain dementia; CBD: corticobasal degeneration; DS:
Down syndrome; Dyrk1A: dual-specificity tyrosine-phos-
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