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A pathological pathway leading from soluble, monomeric to insoluble, filamentous Tau, is 

believed to underlie human Tauopathies. Cases of frontotemporal dementia are caused 

by dominantly inherited mutations in MAPT, the Tau gene. They show that dysfunction 

of Tau protein is sufficient to cause neurodegeneration and dementia. Extrapolation to 

the more common sporadic Tauopathies leads one to conclude that the pathological 

pathway is central to the development of all cases of disease, even if there are multiple 

reasons for Tau assembly. These findings are conceptually similar to those reported for 

beta-amyloid, alpha-synuclein and prion protein. Here, we provide an overview of Tau 

filaments and their positron emission tomography ligands.

Keywords: tau protein, Tauopathy, tau isoform, �lamentous tau aggregate, cryo-electron microscopy, positron 

emission tomography ligand

INTRODUCTION

Neuro�brillary lesions strongly correlate with cognitive de�cits, making them an important thera-
peutic target for Alzheimer’s disease (AD) (1, 2). Dominantly inherited mutations in MAPT, the Tau 
gene, cause a form of frontotemporal dementia that can be associated with parkinsonism (FTDP-
17T), showing that dysfunction of Tau protein is su�cient to cause neurodegeneration and dementia 
(3). In FTDP-17T, abundant �lamentous Tau inclusions are present in either nerve cells or in both 
nerve cells and glial cells. Aβ deposits, a de�ning feature of AD, are not characteristic of FTDP-17T. 
However, there are many similarities between cases of FTDP-17T and other pure Tauopathies, such 
as sporadic progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), argyrophilic 
grain disease (AGD), and Pick’s disease, especially with regard to the isoform composition of Tau 
�laments.

TAU ISOFORMS

Tau is expressed predominantly in the central and peripheral nervous systems, where it is most 
abundant in nerve cell axons. It belongs to the family of Tau/MAP2/MAP4 microtubule-associated 
proteins. Tau is natively unfolded with a low content of secondary structure (4, 5). However, long-
range contacts between N- and C-termini, as well as between both termini and the repeats (i.e., 
paperclip conformation), have been described (5, 6). Using single-molecule Förster resonance 
energy transfer, it has been shown that upon tubulin binding the repeats expand and long-range 
contacts between both termini and the repeats are reduced (7).
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Tau can be divided into an N-terminal domain, a proline-
rich region, the repeat region, and a C-terminal domain (2). 
�e N-terminal domain projects away from microtubules (8). 
Residues 2–18 have been shown to be involved in a signaling 
cascade that inhibits axonal transport (9). �e N-terminal 
region also binds to the C-terminus of the p150 subunit of 
the dynactin complex (10). �e proline-rich region has seven 
PXXP motifs, which provide recognition sites for SH3 domain-
containing proteins of the Src family of non-receptor tyrosine 
kinases, such as Fyn (11). Its interaction with Tau may regulate 
the targeting of Fyn and thereby mediate beta-amyloid-induced 
toxicity (12). It has been reported that the proline-rich region 
of Tau also mediates binding to other proteins, including 
bridging integrator 1 and peptidyl-prolyl cis/trans isomerases 
(13). Interactions between Tau and microtubules are mediated 
through the repeats and some adjoining sequences (2). Less is 
known about the role of the C-terminal region. Tau belongs 
to the family of intrinsically disordered proteins, which have 
many interaction partners and are commonly implicated in 
neurodegenerative diseases (14). �eoretical calculations have 
estimated that more than 70 di�erent binding partners of tau 
may exist (14).

Six Tau isoforms ranging from 352 to 441 amino acids in 
length are expressed in adult human brain (Figure  1A) (15). 
�ey are produced by alternative mRNA splicing of transcripts 
from MAPT and di�er by the presence or absence of inserts of 
29 or 58 amino acids (encoded by exons 2 and 3 of MAPT, with 
exon 3 being only transcribed in conjunction with exon 2) in 
the N-terminal half, and the inclusion, or not, of the 31 amino 
acid microtubule-binding repeat, encoded by exon 10, in the 
C-terminal half. Inclusion of exon 10 results in the production of 
three Tau isoforms with four repeats each (4R) and its exclusion in 
a further three isoforms with three repeats each (3R). �e repeats 
comprise residues 244–368 of Tau, in the numbering of the 441 
amino acid isoform. �e N-terminal inserts are not believed to 
play an active role in Tau aggregation, but the insert encoded 
by exon 10 is important. In adult human brain, similar levels of 
3R and 4R Tau are expressed (16), and the �nding that a correct 
isoform ratio is essential for preventing neurodegeneration (17, 
18) came as a surprise. Inclusion of exons 2 and 3, giving rise to 
2N isoforms, is relatively underrepresented in comparison with 
inclusion of exon 2 and exclusion of exons 2 and 3, such that 2N, 
1N, and 0N Tau isoforms make up 9, 54, and 37% of the total.

Why six Tau isoforms are found in adult human brain is 
not known. Isoform expression is not conserved between spe-
cies (19–22). �us, in adult mouse brains, 4R Tau isoforms are 
almost exclusively present, whereas adult chicken brains express 
3R, 4R, and 5R Tau isoforms. However, what is conserved is the 
expression of one hyperphosphorylated 3R Tau isoform lacking 
N-terminal repeats during vertebrate development. In mice the 
switch from 3R to 4R Tau occurs between postnatal days 9 and 18, 
with Tau phosphorylation also decreasing during that time (23). 
However, isoform switching and phosphorylation are regulated 
di�erently. Adult Tau isoforms with 4R are better at promoting 
microtubule assembly and binding to microtubules than the fetal 
3R Tau isoform (16). �is is consistent with the need for a more 
dynamic cytoskeleton during the development of nerve cells.

�e repeats and some adjoining sequences constitute the 
microtubule-binding domains of Tau. Single-molecule tracking 
revealed a kiss-and-hop mechanism, with a dwell time of Tau on 
individual microtubules of only about 40  ms (24, 25). Isoform 
di�erences did not in�uence this interaction. Despite these rapid 
dynamics, Tau promoted microtubule assembly. It remains to be 
seen if microtubules were also stabilized. In brain, Tau is subject 
to a large number of posttranslational modi�cations, including 
phosphorylation, acetylation, methylation, glycation, isomeriza-
tion, O-GlcNAcylation, nitration, sumoylation, ubiquitination, 
and truncation (26–28). Big Tau, which carries an additional large 
exon in the N-terminal half, is only expressed in the peripheral 
nervous system (29, 30). Several structural models have been put 
forward for the binding of Tau to microtubules (31–33), but there 
is no consensus. Overall, it appears that the microtubule-bound 
conformation of Tau may delay aggregation. Cryogenic electron 
microscopy (cryo-EM) is bound to provide atomic structures of 
Tau bound to microtubules that were assembled from tubulin in 
di�erent ways (34).

TAU FILAMENTS

Full-length Tau assembles into �laments through its repeats, with 
the N-terminal half and the C-terminus forming the fuzzy coat 
(35–38). Tau �laments from human brain and those assembled 
from expressed protein have a cross-β structure characteristic of 
amyloid �brils, with their cores consisting of approximately 90 
amino acids (39). �e region of Tau that binds to microtubules 
also forms the core of Tau �laments, suggesting that physiological 
function and pathological assembly are mutually exclusive.

Phosphorylation of Tau negatively regulates its ability to 
interact with microtubules, and �lamentous Tau is abnormally 
hyperphosphorylated (40). However, it remains to be proved that 
phosphorylation is the trigger for aggregation in human diseases. 
Alternatively, a conformational change in Tau arising from 
assembly may cause its hyperphosphorylation. Recombinant Tau 
assembles in bulk into �laments when incubated with heparin, 
in the absence of phosphorylation (41, 42). However, it has also 
been shown that recombinant S262A 4R Tau assembled into �la-
ments following incubation with brain extracts from adult rats 
(43). Other posttranslational modi�cations may also be involved. 
Initial studies on Tau acetylation reported that it promoted 
phosphorylation and aggregation (44, 45). However, subsequent 
work has suggested that an inverse correlation exists between Tau 
acetylation and phosphorylation, with acetylation inhibiting Tau 
assembly (46, 47). Unlike phosphorylation, acetylation occurs on 
lysine residues, as do glycation, ubiquitination, and methylation.

Many publications equate Tau phosphorylation with aggrega-
tion. �is is probably not correct. Although aggregated Tau is 
heavily phosphorylated in human brain, not all phosphorylated 
Tau is aggregated or on its way to aggregation. For instance, 
highly phosphorylated Tau forms during hibernation, in the 
absence of aggregation (48). �ere is substantial overlap between 
the phosphorylation of Tau during development and its hyper-
phosphorylation in disease. However, some Tau phosphorylation, 
such as that at T212, S214, and T217 detected by antibody AT100, 
is pathological (49). Antibody AT8 has been used to detect both 
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FIGURE 1 | Human brain Tau isoforms and disease-causing MAPT mutations. (A) MAPT and the six Tau isoforms expressed in adult human brain. MAPT consists 

of 16 exons (E). Alternative mRNA splicing of E2 (red), E3 (green), and E10 (yellow) gives rise to six Tau isoforms (352–441 amino acids). The constitutively spliced 

exons (E1, E4, E5, E7, E9, E11, E12, and E13) are shown in blue. E0, which is part of the promoter, and E14 are non-coding (white). E6 and E8 (violet) are not 

transcribed in human brain. E4a (orange) is only expressed in the peripheral nervous system. The repeats (R1–R4) are shown, with three isoforms having four 

repeats each (4R) and three isoforms having three repeats each (3R). The core sequences of the Tau filaments from Alzheimer’s disease brain (V306-F378) 

determined by cryo-EM are underlined. (B), Mutations in MAPT in cases of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). 

Forty-nine coding region mutations and 10 intronic mutations flanking E10 are shown.
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physiologically and pathologically phosphorylated Tau. It was 
recently shown that it recognizes triply phosphorylated Tau (S202, 
T205, and S208) better than doubly phosphorylated protein (S202 
andT205), raising the possibility of di�erential phosphorylation 

of pathologically and physiologically phosphorylated Tau at the 
AT8 epitope (50).

In AD, chronic traumatic encephalopathy, postencephalitic 
parkinsonism, and many other Tauopathies, all six isoforms are 
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TABLE 1 | Neurodegenerative diseases with abundant tau inclusions.

3R + 4R Tauopathies

Alzheimer’s disease

Amyotrophic lateral sclerosis/parkinsonism-dementia complex

Anti-IgLON5-related Tauopathy

Chronic traumatic encephalopathy

Diffuse neurofibrillary tangles with calcification

Down’s syndrome

Familial British dementia

Familial Danish dementia

Gerstmann–Sträussler–Scheinker disease

Niemann–Pick disease, type C

Non-Guamanian motor neuron disease with neurofibrillary tangles

Postencephalitic parkinsonism

Progressive ataxia and palatal tremor

Tangle-only dementia

Familial frontotemporal dementia and parkinsonism  

(some MAPT mutations, such as V337M and R406W)

3R Tauopathies

Pick’s disease

Familial frontotemporal dementia and parkinsonism  

(some MAPT mutations, such as G272V and Q336R)

4R Tauopathies

Argyrophilic grain disease

Corticobasal degeneration

Guadeloupean parkinsonism

Globular glial Tauopathy

Huntington’s disease

Progressive supranuclear palsy

SLC9A6-related parkinsonism

Tau astrogliopathy

Familial frontotemporal dementia and parkinsonism (some MAPT mutations, 

such as P301L and P301S, all known intronic mutations, and many coding 

region mutations in exon 10)

4

Goedert et al. Structures of Tau Filaments

Frontiers in Neurology | www.frontiersin.org February 2018 | Volume 9 | Article 70

present in the disease �laments (Table  1) (2). �ey are either 
paired helical (PHFs) or straight (SFs) and contain both 3R and 
4R Tau isoforms in a one-to-one ratio, similar to the isoform com-
position and relative abundance of the six isoforms in soluble Tau 
from normal human brain. By cryo-EM, the cores of Tau �laments 
from AD are made of two identical proto�laments consisting 
of residues V306-F378 of Tau, which adopt a combined cross- 
β/β-helix structure, possibly de�ning the seed for Tau aggregation 
(51). �e N-terminal part of the cross-β structure is formed by 
the hexapeptide 306VQIVYK311 (PHF6), which is essential for the 
oligomerization of Tau and its assembly into �laments (52, 53). 
It packs through a heterotypic, non-staggered interface with the 
opposing residues 373–378. �e same packing interface is absent 
in the widely used K18 and K19 proteins, which span three or 
four repeat domains of recombinantly expressed Tau, and end at 
E372 (54). �erefore, �laments made of K18 and K19 proteins 
cannot represent the complete core structure of PHFs and SFs 
from the brains of individuals with AD. �e second hexapeptide 
motif 275VQIINK280 (PHF6*) that is required for �lament assem-
bly (55) does not form part of the core of Tau �laments from AD 
brain. However, inhibitors of the PHF6* motif have been shown 
to reduce the heparin-induced assembly of 4R Tau (56). Both 
hexapeptide motifs were required for the seeded aggregation 
of mutant human Tau in transfected non-neuronal cells (57). 
It remains to be seen if PHF6 and PHF6* are required for the 
assembly of Tau in human brain.

Each proto�lament contains eight β-strands, �ve of which give 
rise to two pairs of anti-parallel β-sheets, with the other three 
forming a β-helix. PHFs and SFs di�er in their inter-proto�lament 
packing, showing that they are ultrastructural polymorphs. �e 
proto�laments of PHFs are arranged base-to-base, whereas those 
of SFs are arranged back-to-base. �ese �ndings do not explain 
why all six Tau isoforms are found in PHFs and SFs. However, a 
less ordered β-sheet is present upstream of V306; it can accom-
modate an additional 16 amino acids, which probably correspond 
to a mixture of residues 259–274 (R1) from 3R Tau and 290–305 
(R2) from 4R Tau.

In other diseases, such as PSP, CBD, AGD, globular glial 
Tauopathy, and aging-related Tau astrogliopathy, isoforms with 
4R Tau are found in the �laments (Table 1) (3), but the presence 
of 3R Tau-positive neuronal inclusions has also been reported in 
PSP and CBD (58, 59). �e Pick bodies of Pick’s disease are only 
made of 3R Tau (Table 1) (60). �e morphologies of Tau �laments 
in di�erent diseases vary, even when they are made of the same 
isoforms. Silver staining can also detect these di�erences (61). 
Inclusions made of all six Tau isoforms stain with Gallyas–Braak 
and Campbell–Switzer. �ose made of 4R Tau are only positive 
with Gallyas–Braak, whereas those made of 3R Tau stain only 
with Campbell–Switzer. It remains to be seen if the cores of �la-
ments made of 3R or 4R Tau di�er structurally from those of AD, 
which are made of 3R + 4R Tau isoforms.

�e speci�city of antibodies Alz50 and MC-1 for assembled 
Tau relies on a conformation that all isoforms can undergo and 
which requires two discontinuous intramolecular epitopes sepa-
rated by almost 300 amino acids (62, 63). �ey are 7EFE9 in the 
N-terminus and 313VDLSKVTSKC322 in R3. MC-1 staining is one 
of the earliest markers of misfolded Tau. NMR experiments using 
heparin-induced �laments of 4R Tau also provided evidence for 
an interaction between the N-terminus and residues 313–322 of 
the structured core (64). Moreover, the cryo-EM structures of 
Tau �laments from AD brain showed a density consistent with 
7EFE9 contacting K317 and K321 in the proto�lament core (51). 
�ese electrostatic interactions may be essential for Tau �lament 
formation, implying that acetylation of K317 and/or K321 might 
protect against aggregation. �e only known disease-causing 
mutations in MAPT that are located outside the repeats and the 
C-terminus (R5H and R5L) (3) are close to 7EFE9.

Fi�y-nine di�erent mutations in MAPT have been identi�ed 
in FTDP-17T (Figure 1B) (3). �e �laments consist of 3R, 4R, 
or 3R + 4R Tau (Figure 2) (65). MAPT mutations account for 
approximately 5% of cases of frontotemporal dementia and are 
concentrated in exons 9–12 (encoding R1–R4) and the introns 
�anking exon 10. �ey can be divided into those with a primary 
e�ect at the protein level and those a�ecting the alternative 
splicing of Tau pre-mRNA. �ere is no obvious correlation 
between known mutations and posttranslational modi�cations 
of Tau.

It has been suggested that patients with AD-type neuro�-
brillary degeneration restricted to hippocampus and medial 
temporal lobe, who lack Aβ deposits, su�er from primary age-
related Tauopathy (PART), a condition that di�ers from AD (70). 
Tangle-only dementia, a rare form of dementia, may represent 
a severe form of PART (71). However, the view that PART is 
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FIGURE 2 | Tau filaments from FTDP-17T. [1,2] Neuronal Tau filaments from a case with abundant Pick body-like inclusions and a G389R mutation in MAPT (66). 

[1] Straight filaments form the majority species and [2] strongly stranded twisted filaments are in the minority. [3–5] Tau filaments from cases with neuronal and 

glial inclusions and a P301L mutation in MAPT or an intronic mutation [from Ref. (67, 68)]. [3] Narrow twisted ribbons and [4] occasional rope-like filaments. [5] 

Familial multiple system Tauopathy with presenile dementia and other cases caused by MAPT mutations in the intron after E10 are characterized by wide twisted 

ribbons and neuronal and glial Tau inclusions. The filaments in [3–5] are made of 4R Tau. [6,7] Tau filaments from a case with a V337M mutation in MAPT [from 

Ref. (69)]. [6] Paired helical and [7] straight filaments are present as in Alzheimer’s disease. Tau inclusions are largely neuronal, and filaments in [6] and [7] are 

made of 3R and 4R Tau.
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di�erent from AD has been challenged, because it is clinically 
and neuropathologically similar to what appear to be the early 
stages of the Tau pathology of AD (72).

In AD, following the death of tangle-bearing cells, Tau 
�laments can remain in the extracellular space as ghost tangles, 
which consist largely of Tau repeats that have lost their fuzzy coat 
through proteolysis. In Pick’s disease, PSP, CBD, and most cases 
caused by MAPT mutations, Tau �laments do not accumulate to a 
signi�cant extent in the extracellular space following the death of 
aggregate-bearing cells. �e reasons why Tau �laments from AD 
brain are less soluble remain to be established (2).

TAU AGGREGATE-BINDING LIGANDS  

AND THE DEVELOPMENT OF POSITRON 

EMISSION TOMOGRAPHY (PET) 

TRACERS

Monomeric Tau assembles into �laments through oligomeriza-
tion (1, 2). In tissue sections, �lamentous Tau aggregates are 
labeled by amyloid-binding dyes, such as Congo red, thio�avins, 
and some luminescent conjugated oligothiophenes (2, 73). �ese 
dyes appear to bind to both intra- and extracellular Tau deposits. 
�ey are useful for cross-sectional studies but require the avail-
ability of brain tissue.

To perform longitudinal studies and to assess the e�ects of 
treatments on the level of aggregates, one needs to be able to 
visualize Tau inclusions repeatedly in the living human nervous 
system. �e �eld of PET imaging of brain inclusions characteristic 
of human neurodegenerative diseases started with the develop-
ment of [11C]Pittsburgh compound B ([11C]PIB), a derivative of 

thio�avin T, which detects β-amyloid deposits in the living brain 
(74). Subsequently, several PET tracers for aggregated Tau, such 
as [11C]PBB3, [18F]PM-PBB3, [18F]AV-1451, [18F]THK5351, [18F]
MK-6240, [18F]R06958948, [18F]GTP-1, and [18F]PI-2620, were 
developed and are currently being tested in humans (75–81). 
Most tracers show a high a�nity for Tau inclusions and recognize 
β-amyloid deposits less well (79, 81). However, some o�-target 
e�ects have also been described. �us, non-speci�c retention 
of [11C]PBB3 was seen in the dural venous sinuses (75). In vitro 
studies have shown that [18F]AV-1451 can bind to monoamine 
oxidase (MAO)-A, as well as to pigmented and mineralized vas-
cular structures (82). Retention of [18F]AV-1451 in the choroid 
plexus of control individuals also re�ected o�-target binding 
(83). Age-related, o�-target e�ects of [18F]AV-1451 binding in 
the basal ganglia closely correlated with iron accumulation (84). 
Selegiline, a MAO-B inhibitor, reduced [18F]THK5351 signal in 
basal ganglia and neocortex (85). Moreover, an in  vitro study 
con�rmed that MAO-B was an o�-target binding substrate for 
[18F]THK5351 (86). Perhaps most worryingly, elevated bind-
ing of [18F]AV-1451 and [18F]THK5351 has been described in 
the semantic variant of primary progressive aphasia, a form of 
frontotemporal dementia that is consistently associated with 
assembled TDP-43, but not with Tau inclusions (87–89). Where 
studied, second generation Tau PET tracers ([18F]PM-PBB3, [18F]
MK-6240, [18F]R06958948, [18F]GTP-1, and [18F]Pl-2620) have 
shown less o�-target binding than the �rst generation of tracers. 
Future autopsy studies are needed to identify the binding targets 
of these ligands. On the other hand, the distribution of [18F]
AV-1451 binding, a �rst generation tracer, recapitulated Braak 
staging in AD brain (90). Moreover, a combination of PET imag-
ing with [18F]AV-1451 and graph theory supported the view that 
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FIGURE 3 | Molecular docking of PBB3 to paired helical Tau filaments (PHFs) from Alzheimer’s disease brain. (A) Schematic representation of the docking process 

using Pymol and AutoDock Vina. The PHF core structure was from Ref. (51) (PDB ID: 503L). Out of 100 docking conformations, the top 20 were selected for further 

analysis. (B) Molecular docking of PBB3 into the PHF protofilament core structure. The top 20 conformations distributed into three clusters (S1, S2, and S3). S1 had 

the highest affinity for the Tau filament, followed by S2 and S3.
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tau pathology can undergo transneuronal spread (91), consistent 
with experimental studies (92, 93).

To develop more speci�c and selective ligands, it is important 
to determine where in the structured cores of Tau �laments PET 
ligands bind. Recent advances in cryo-EM, which have resulted 
in the determination of the high-resolution structures of Tau �la-
ments from AD brain (51), have made this possible in principle. 
We used this information, together with molecular docking (94), 
to study the binding of PBB3 to the proto�lament core of Tau 
�laments from AD (Figure  3A). As shown in Figure  3, PBB3 
bound in a perpendicular manner to a high-a�nity site (S1) in 
the C-shaped part of the proto�lament, which includes residues 
349–351 (RVQ) of Tau (Figure 3B). Two lower a�nity binding 
sites were also detected, at residues 364–369 (PGGGNK) (S2) and 
351–353 (QSK) (S3) (Figure 3B).

PBB3 visualizes the Tau pathologies of AD and non-AD 
Tauopathies (75, 95, 96). Unlike PBB3, previous in  vitro and 
in vivo studies have shown that AV-1451 binds only with low-
a�nity to �laments from non-AD Tauopathies (95, 97, 98). It 
has been reported that AV-1451 and its lead compound failed 
to visualize Tau inclusions in a mouse line transgenic for human 
P301L Tau (76). However, using [11C]PBB3, it was possible to 
image Tau inclusions in mouse models of Tauopathy (lines PS19 

and Tg4510) (75, 99). �ese �ndings further support the view 
that AV-1451 recognizes Tau inclusions made of 3R or 4R Tau 
with lower a�nity than those made of 3R + 4R Tau. It will be 
interesting to obtain cryo-EM structures of the cores of Tau 
�laments from AD and other Tauopathies with bound PET 
ligands. One cannot exclude that high-a�nity binding sites exist 
in the “fuzzy coat” of human brain Tau �laments. However, both 
AV-1451 and PBB3 have been shown to detect extracellular Tau 
inclusions in AD brain (95). We believe that the aggregated Tau 
in extracellular tangles corresponds closely to the structured 
�lament cores.

CONCLUSION

�e determination of high-resolution structures of Tau �laments 
by cryo-EM has opened the way for elucidating the structures 
of other amyloid �laments from human brain. Future work will 
tell what the di�erences between morphotypes of amyloid �la-
ments are, which will in turn inform the mechanisms underlying 
the prion-like propagation of protein aggregates. Perhaps most 
importantly, cryo-EM will make it possible to relate mechanisms 
of amyloid formation of recombinant proteins to those in human 
brain.
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