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We study a notion of Tauber theory for infinitely divisible natural exponential families, showing that
the variance function of the family is (bounded) regularly varying if and only if the canonical measure
of the Lévy–Khinchine representation of the family is (bounded) regularly varying. Here a variance
function V is called bounded regularly varying if V (µ) � cµ p either at zero or infinity, with a similar
definition for measures. The main tool of the proof is classical Tauber theory.
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1. Introduction

Consider a Radon measure w on R, define its cumulant function kw by

kw(θ) � log
�

exp (θx) w(dx),

and define the interval Θw by

Θw � fθ 2 R: kw(θ) ,1g:

Let M(R) denote the set of non-degenerate Radon measures on R such that int Θw is non-
empty. The natural exponential family generated by the measure w in M(R) is defined as the
set of probability measures P � fPθ: θ 2 Θwg, where, for θ in Θw,

Pθ(dx) � exp f(θx ÿ kw(θ)gw(dx):

The mean of Pθ is

µ � τ(θ) � τw(θ) � k9w(θ),

with domain Ω � τ(int Θw). We define the variance function of P as the function V :
Ω ! R� given by

V (µ) � τ9(τÿ1(µ)g:
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Here V (µ) is the variance of the probability measure Pτÿ1(µ).
The variance function and its domain, (V , Ω), characterize P within the class of natural

exponential families. This has given rise to a number of results on the characterization of
natural exponential families and their properties in terms of the variance function, an idea
that goes back to Tweedie (1947), Wedderburn (1974) and Morris (1982). Various types of
variance function were studied by Bar-Lev and Enis (1986), Mora (1986), Letac (1987),
Bar-Lev and Bshouty (1989), Letac and Mora (1990) and Bar-Lev et al. (1991a). See Letac
(1992) for a survey of recent results.

The variance function V may be considered a kind of characteristic function for natural
exponential familes. One reason for this is the continuity theorem of Mora (1990), by which
convergence of a sequence of natural exponential families may be characterized in terms of
convergence of the corresponding sequence of variance functions. This result was used by
Jørgensen et al. (1994) to prove a kind of central limit theorem for natural exponential
families, based on convergence of the variance function to the Tweedie form

V (µ) � σ 2µ p
: (1:1)

The Tweedie class of natural exponential families includes the gamma, Poisson and some
compound Poisson models, as well as families generated from extreme stable distributions.
Such models have applications in generalized linear models, cf. McCullagh and Nelder
(1989) and Jørgensen (1986; 1987; 1992).

Infinite divisibility is central to the study of variance functions, because a natural
exponential family with variance function V is infinitely divisible if and only if σ 2V is a
variance function for all σ 2 . 0 (Jørgensen 1986), and because many important natural
exponential families are infinitely divisible. Infinite divisibility for polynomial or power-
series variance functions was studied by Bar-lev (1987) and Bar-Lev and Bshouty (1990).
For a recent survey, see Bar-Lev et al. (1991b).

The main result of the present paper (Theorem 2.4) presents a kind of Tauber theory for
infinitely divisible natural exponential families. We now summarize the main results; precise
definitions and results are given in Section 2.

The Lévy–Khinchine representation of an infinitely divisible measure w is given by

kw(θ) �
�

Rnf0g
feθx

ÿ 1ÿ θγ(x)g ν(dx), (1:2)

where ν is the Lévy measure and γ a centring function. If P is the natural exponential family
generated by w, the measure Pθ in P has Lévy–Khinchine representation

k Pθ (s) � kw(θ� s)ÿ kw(θ)

�

�

Rnf0g
fesx

ÿ 1ÿ s eÿθxγ(x)g eθx ν(dx), (1:3)

with Lévy measure eθx ν(dx) and centring function eÿθx γ(x). Since the new Lévy measure is
an exponential tilting of ν, many properties of the Lévy–Khinchine representation are shared
by all members of the family. We shall hence refer to (1.2) simply as the Lévy–Khinchine
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representation of the natural exponential family P , stressing differences between members of
P only when strictly necessary.

A variance function V is said to be bounded regularly varying (at zero or infinity) if
V (µ) � cµ p for some 0 , c ,1. We define bounded regular variation of a measure in a
similar way. A Lévy measure is said to be (bounded) regularly varying if the canonical
measure x2 ν(dx) is (bounded) regularly varying.

Theorem 2.4 states that, under regularity conditions, the variance function of an infinitely
divisible natural exponential family is (bounded) regularly varying if and only if the
corresponding Lévy measure is (bounded) regularly varying. The proof is essentially an
application of classical Tauber theory to the second derivative of the cumulant function kw.

The main result of Jørgensen et al. (1994) is, in the present terminology, that bounded
regular variation of a variance function V implies that the corresponding exponential
dispersion model, suitably standarized, converges to the Tweedie model corresponding to
(1.1). This provides a useful corollary to Theorem 2.4.

Definitions, the main result and some comments on convergence to the Tweedie model
are presented in Section 2. Section 3 contains results on regular variation, and the main
proof is given in Section 4.

2. Regular variation of Lévy measures

This section contains basic definitions regarding the Lévy measure and regular variation,
followed by the main result (Theorem 2.4).

The version of the Lévy–Khinchine representation of an infinitely divisible probability
measure that we will use is adopted from Letac (1992). In particular, we use the following
classification of Lévy measures. If the Lévy measure ν is bounded, it is said to be of type
0. If ν is unbounded but

�

Rnf0g
min (1, jxj) ν(dx) ,1,

ν is said to be of type 1. In all other cases, ν is said to be of type 2.
We now give some definitions on regular variation. Basic references for regular variation

are Feller (1971, pp. 442–447), de Haan (1975) and Bingham et al. (1987).

Definition 2.1. A function u: R� ! R� is said to be bounded regularly varying at infinity
(zero) with exponent p 2 R, if there exists a constant c 2 (0, 1) such that

u(x) � cx p
:

Definition 2.2. A function u: R� ! R� is said to vary regularly at infinity with exponent 1
(ÿ1) if there exists a function L, slowly varying at infinity, and a positive (negative) constant
c, such that

u(x) � L(x) ecx
:
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If L(1) � limx!1 L(x) is positive and finite, u is said to be bounded regularly varying with
exponent 1 (ÿ1).

We note that regular variation with infinite exponent is a special case of rapid variation
(de Haan 1975).

The ordinary definition of regular variation for (probability) measures is not immediately
applicable to a Lévy measure ν, because its integral does not necessarily converge to zero.
Instead, we use the following definition.

Definition 2.3. Let ν be a Lévy measure on (0, 1), and let �M(x) be the improper distribution
function of the canonical measure M(dx) � x2 ν(dx), defined by

�M(x) �
�

(0, x)
t2 ν(dt) �

�x

0
t2 ν(dt):

If �M is regularly varying (bounded regularly varying) at either zero or infinity with exponent
â . 0, we say that the measure ν is regularly varying (bounded regularly varying) with
exponent âÿ 2.

We now state the main result concerning Tauber theory for infinitely divisible natural
exponential families. The following terminology will be used in the theorem. Let (V , Ω) be
the variance function of a natural exponential family P and let b � inf Ω and c � sup Ω. If
b .ÿ1 (c ,1) we say that V is regularly varying at b� (cÿ) with exponent p 2 R, if
and only if V (b� :) (V (c ÿ :)) is regularly varying at zero with exponent p. If b � ÿ1,
we say that V is regularly varying at ÿ1 with exponent p 2 R [ f�1g [ fÿ1g, if and
only if V (ÿ:) is regularly varying at infinity with exponent p.

In the theorem, we use p and ÿα to denote the order of regular variation of V and ν,
respectively, where p 2 (ÿ1, 0] [ (1, 1) and α 2 (ÿ1, 1) [ (1, 2] satisfy the one-to-one
relationship

α �

pÿ 2
pÿ 1

,

with the additional convention that p � 1 corresponds to α � 1. This notation is consistent
with the notation used for the Tweedie family, where α 2 (0, 1) [ (1, 2] denotes the index of
the stable distribution generating the Tweedie models with p . 2 or p < 0.

A natural exponential family is said to be steep at b if b � inf Ω � inf S, with a similar
definition at sup Ω, where S denotes the support of the exponential family. If the family is
steep at both end-points of Ω, it is steep in the usual sense (cf. Barndorff-Nielsen 1978,
p. 142).

As noted in connection with (1.3), the Lévy measures for members of an exponential
family have the form eθx ν(dx). Hence, regular variation at zero is not affected by the value
of θ, whereas regular variation at infinity is. This is important to keep in mind when using
the theorem.
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Theorem 2.4 (Tauber theorem for variance functions). Let V , with domain Ω, be the
variance function of a natural exponential family P generated by an infinitely divisible
probability measure w with Lévy–Khinchine representation

kw(s) �
�
1

0
fesx

ÿ 1ÿ sγ(x)g ν(dx) for s 2 Θw, (2:1)

where ν is a Lévy measure concentrated on (0, 1) and γ(x) is a given centring function.
Then there are four cases to consider:

Case (i): p . 1 (α , 1). (a) Let b � inf Ω be finite. Then V is regularly varying at b�

with exponent p . 1, if and only if ν is regularly varying at zero with exponent ÿα, where
α , 1. (b) Let Θw � (ÿ1, 0] and let ν be of type 0 or 1. Then P is steep at zero and V is
regularly varying at infinity with exponent p . 1 if and only if ν is regularly varying at
infinity with exponent ÿα, where α , 1.

Case (ii): p , 0 (1 , α , 2). (a) V is regularly varying at ÿ1 with exponent p , 0 if
and only if ν is regularly varying at zero with exponent ÿα, where 1 , α , 2. (b) Let ν be
of type 2 and let lims!0 τ(s) � 0. Then V is regularly varying at 0ÿ with exponent p , 0, if
and only if ν is regularly varying at 1 with exponent ÿα, where 1 , α , 2.

Case (iii): p � 0 (α � 2). (a) V is slowly varying at ÿ1 if and only if ν is regularly
varying at zero with exponent ÿ2. (b) Let ν be of type 2 and let lims!0 τ(s) � 0. Then V is
bounded regularly varying at 0ÿ with exponent zero if and only if ν is bounded regularly
varying at 1 with exponent ÿ2.

Case (iv): p � 1 (α � 1). (a) V is bounded regularly varying at ÿ1 with exponent
ÿ1 if and only if ν is bounded regularly varying at 0 with exponent ÿ1. (b) Let ν be of
type 2. Then V is bounded regularly varying at 1 with exponent 1 if and only if ν is
bounded regularly varying at 1 with exponent ÿ1.

In all cases, V is bounded regularly varying if and only if ν is bounded regularly
varying, under the hypotheses stated.

The theorem is proved in Section 4. A number of examples of regularly varying variance
functions may be found in Jørgensen et al. (1994). The following example illustrates case
(i) (a) of the theorem.

Example 2.5. Let w be the infinitely divisible measure defined by

w(dx) � δ0(dx)� 1(0,1)(x) dx,

where δ0 denotes the Dirac delta measure in 0 (cf. Letac 1992, p. 15). By Theorem 6.2 of
Letac (1992, p. 12) the measure r 2 M(R) given by

r(dx) � x(1ÿ eÿx)1(0,1)(x) dx

is such that

k 0w(θ) �
�
1

ÿ1

exp (θx) r(dx):

If θ0 is in Θw, then the Lévy measure of
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w0(dx) � exp fθ0x ÿ kw(θ0)gw(dx)

is

ν0(dx) � xÿ1 exp (θ0x)(1ÿ eÿx)1(0,1)(x) dx:

The measure ν0 is regularly varying at 0 with exponent 1, corresponding to α � ÿ1. The
natural exponential family generated by the measure w0 has variance function V (µ) �
µ(µ2

� 4µ)1=2. This function is regularly varying at 0 with exponent p � 1:5.

Remark 2.6. Theorem 4.2 of Jørgensen et al. (1994) provides, with the appropriate
reformulation in terms of regular variation, an easy corollary to the Tauber theorem for
variance functions. Thus, if the measure w generating the exponential dispersion model
ED(µ, σ 2) is infinitely divisible with Lévy–Khinchine representation (2.1), then under the
appropiate conditions of the Tauber theorem for variance functions, bounded regular variation
of the Lévy measure implies bounded regular variation of the variance function, and hence
convergence of one of the forms (22) or (2) of Jørgensen et al. (1994).

The Tauber theorem for variance functions is limited to the case where the Lévy–
Khinchine representation does not have a Gaussian component. The following example
illustrates convergence to the normal distribution when such a component is present.

Example 2.7. Consider a measure wc with Lévy–Khinchine representation

kwc (s) � cs2
�

�
1

0
fesx

ÿ 1ÿ sγ(x)g ν(dx) for s 2 Θw

with Gaussian component cs2. Let us suppose that the support of w0 is contained in [0, 1),
that Ω0 � (0, 1) and that Θ0 � (ÿ1, 0), where subscripts refer to c. Straightforward
analysis shows that when c . 0, we have that Ωc � R and

Vc(µ) � c as µ ! ÿ1, Vc(µ) � c � V0(µ) as µ !1:

This shows that the distribution is locally normal at ÿ1 (in the sense of Jørgensen et al.
1994), whereas the local behaviour at infinity depends on the relative orders of c and V0. This
result should be compared with Example 5.1 of Jørgensen et al. (1994), the half-normal
distribution, whose variance function is asymptotically constant at infinity, but where our
result does not apply because the distribution is not infinitely divisible.

3. Some results on regular variation

This section contains some results regarding regular variation needed for the proof of
Theorem 2.4.
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Proposition 3.1. Let ν be a Lévy measure of regular variation at zero with exponent âÿ 2,
â . 0. Then the following statements hold:

(a) If â . 2, ν is of type 0.
(b) If 1 , â , 2, ν is of type 1.
(c) If 0 , â , 1, ν is of type 2.
(d) If ν is bounded regularly varying at 0 with exponent â � 1 (â � 2), then ν is of

type 2 (type 1).

In the cases â � 1 and â � 2 it is not possible to state anything about the type of the
measure based on regular variation of ν alone, as the following example illustrates.

Example 3.2. For a fixed 0 , a , 1, we consider the Lévy measures νk on (0, 1) given by

νk(dx) �
1(0,α)(x)

x logk x
dx,

where k 2 N. Straightforward arguments show that νk is regularly varying in 0 with exponent
0, corresponding to â � 2. But νk is of type 0 if k > 2 and of type 1 if k � 1. Similarly, the
Lévy measures xÿ1νk(dx) are regularly varying with exponent ÿ1 in zero for all k,
corresponding to â � 1. But for k � 1 the measure is of type 2, and for k . 1 of type 1.

Proof of Proposition 3.1(a). Let x . 0. To show that ν is of type 0, we have to show that
�x

0
ν(dt) ,1:

First, note that

x2

4

�x

x=2
ν(dt) <

�x

x=2
t2ν(dt) <

�x

0
t2 ν(dt): (3:1)

Since ν is regularly varying at zero with exponent âÿ 2, it follows that
�x

0
t2 ν(dt) � xâ L(x), (3:2)

where L is slowly varying at zero. Hence, from (3.1) and (3.2) we obtain, for any x . 0,
�x

x=2
ν(dx) < 4xâÿ2 L(x): (3:3)

Now observe that
�x

0
ν(dt) �

X1

j�0

�2ÿ j x

2ÿ jÿ1 x
ν(dt):

So, from (3.3),
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�x

0
ν(dt) < 4xâÿ2

X1

j�0

2ÿ j(âÿ2) L(2ÿ jx): (3:4)

Now, since L is slowly varying at 0, it follows that for all ε . 0, there exists a σ � σ (ε) such
that

1ÿ ε <
L(2ÿkÿ1x)
L(2ÿk�1x)

< 1� ε

for 0 , 2ÿkÿ1x , σ and k > ÿ1. Since

L(2ÿ jx) � L(x)
L(2ÿ1x)

L(x)
. L(2ÿ2x)

L(2ÿ1x)
. . .

L(2ÿ jx)
L(2ÿ jÿ1x)

,

we find

L(2ÿ jx) < L(x)(1� ε) j < L(x) e j, (3:5)

for ε small enough. Hence, for 0 , x , σ , we obtain from (3.4) and (3.5),
�x

0
ν(dt) < 4xâÿ2 L(x)

X1

j�0

eÿ jf(âÿ2)log 2ÿεg
:

By assumption â . 2, so we may choose ε such that (âÿ 2) log 2 . ε. Defining

c �
X1

j�0

eÿ jf(âÿ2)log 2ÿεg,

we obtain for 0 , x , σ ,
�x

0
ν(dt) < 4cxâÿ2 L(x) ,1,

which shows that ν is of type 0. u

Similar reasoning can be used to prove the remaining three cases of Proposition 3.1.

Proposition 3.3. Let ν be a Lévy measure that is bounded regularly varying at infinity with
exponent âÿ 2, â . 0. Then the integral

�
1

1
x ν(dt)

is convergent for 0 , â , 1 and divergent for â > 1.

Proof. Let 0 , â , 1. Then we obtain
�
1

1
x ν(dx) <

X1

j�0

2ÿ j
�2 j�1

2 j

x2 ν(x) <
X1

j�0

2ÿ j
�2 j�1

0
x2 ν(dx):
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Since ν is bounded regularly varying at infinity with exponent âÿ 2, it follows that

�2 j�1

0
x2 ν(dx) � 2â( j�1) L(2 j�1),

and hence,
�
1

1
x ν(dx) < 2â

X1

j�0

2ÿ j(1ÿâ) L(2 j�1) ,1:

Now consider â > 1. Then for k . 0,

�
1

1
x ν(dx) >

X1

j�k

2ÿ jÿ1
�2 j�1

2 j

x2 ν(dx) (3:6)

and

�2 j�1

2 j

x2 ν(dx) � 2( j�1)â L(2 j�1)ÿ 2 jâ L(2 j): (3:7)

From (3.6) and (3.7) we obtain
�
1

1
x ν(dx) >

1
2

X1

j�k

2 j(âÿ1)
f2â L(2 j�1)ÿ L(2 j)g:

Since 0 , L(1) ,1, we may choose ε . 0 such that

a � L(1)f(1ÿ ε)2â
ÿ 1 ÿ εg. 0:

Thus,
�
1

1
x ν(dx) >

a

2

X1

j�k0

2 j(âÿ1)
� 1,

provided k0 2 N is such that

(1ÿ ε)L(1) < L(2 j) < (1� ε)L(1) 8 j > k0:

This completes the proof. u

4. Proof of the Tauber theorem for variance functions

We now prove case (i) (a) of Theorem 2.4. The proofs of the remaining cases are fairly
similar to this case. Note that Propositions 3.1 and 3.3 are not needed in this case, but are
used in the proof of other cases. A complete proof is given in Jørgensen and Martı́nez (1993).
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Proof of case (i) (a) of Theorem 2.4. We first assume that ν is regularly varying at zero with
exponent ÿα, with α , 1. It is easy to see that we can assume that the measure w has Lévy–
Khinchine representation given by

kw(s) �
�
1

0
(esx

ÿ 1) ν(dx):

We now show that V is regularly varying at 0 with exponent p . 1. We define τÿ: ÿΘw ! Ω
by

τÿ(s) � τ(ÿs) � k9w(ÿs): (4:1)

By the monotone convergence theorem, we obtain that

τÿ(s) ! 0 as s !1: (4:2)

On the other hand, from (4.1) we obtain that

ÿτ9ÿ(s) �
�
1

0
eÿsxx2 ν(dx), s 2 ÿΘw, (4:3)

which is defined on (0, 1), allowing us to use the Tauber theorem.
By assumption, ν is regularly varying at 0 with exponent ÿα, with α , 1, so from (4.3)

we find that ÿτ9ÿ is regularly varying at 1 with exponent αÿ 2 ,ÿ1. Then τÿ is regularly
varying at 1 with exponent αÿ 1, because, for given s . 0, using (4.2) and L’Hôpital’s
rule, we find

lim
t!1

τÿ(st)
τÿ(t)

� s lim
t!1

τ9ÿ(st)
τ9ÿ(t)

� sαÿ1, (4:4)

where the last equality of (4.4) follows because τ9ÿ is regularly varying at 1 with exponent
αÿ 2. Now τÿ is positive in (0, 1) and decreasing, so using (4.2), τÿ1

ÿ
is regularly varying at

0 with exponent (α ÿ 1)ÿ1 (de Haan 1975, p. 22).
Now define the functions

f (ψ) � ÿτ9ÿ
1

ψ

� �
, g(µ) �

1

τÿ1
ÿ

(µ)
:

Then f is regularly varying at 0 with exponent 2ÿ α and g is regularly varying at 0 with
exponent (1ÿ α)ÿ1. Using that g(µ) ! 0 as µ ! 0, it follows that f fg(µ)g � ÿτ9ÿ(τÿ1

ÿ
(µ))

� V (µ) is regularly varying at 0 with exponent p � (αÿ 2)=(αÿ 1), where p . 1.
Assume now that V is regularly varying at 0 with exponent p, with p . 1. This implies

that 1=V is regularly varying at 0 with exponent ÿ p. Using the fact that

@

@µ
τÿ1
ÿ

(µ) �
1

ÿV (µ)
,

together with L’Hôpital’s rule, we fine that τÿ1
ÿ

is regularly varying at zero with exponent
ÿp� 1. Since τÿ1

ÿ
(µ) !1 as µ ! 0, we find that τÿ is regularly varying at infinity with

exponent (ÿ p� 1)ÿ1.
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Observe now that ÿτ9ÿ(s) � Vfτÿ(s)g, that is, the composition of the functions V (1=:)
and 1=τÿ, which are both regularly varying at 1 with exponents ÿ p and ( pÿ 1)ÿ1,
respectively. Thus ÿτ9ÿ is regularly varying at 1 with exponent p=(1ÿ p). Hence, from
(4.3) and the Tauber theorem it follows that ν is regularly varying at zero with exponent
ÿα � (2ÿ p)=( pÿ 1), where α , 1. This completes the proof. u
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