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Abstract

Aim of the study: Cholestasis is a serious complication affecting other organs such as the liver and kidney. 
Oxidative stress and mitochondrial impairment are proposed as the primary mechanisms for cholestasis-induced 
organ injury. Taurine (TAU) is the most abundant free amino acid in the human body, which is not incorporated 
in the structure of proteins. Several pharmacological effects have been attributed to TAU. It has been reported 
that TAU effectively mitigated oxidative stress and modulated mitochondrial function. The current study aimed 
to evaluate the impact of TAU on oxidative stress biomarkers and mitochondrial parameters in the kidney of 
cholestatic animals.

Material and methods: Bile duct ligated (BDL) rats were used as an antioxidant model of cholestasis. Animals 
were treated with TAU (500 and 1000 mg/kg, oral) for seven consecutive days. Animals were anesthetized (thio-
pental 80 mg/kg, i.p.), and kidney and blood specimens were collected.

Results: Severe elevation in serum and urine biomarkers of renal injury was evident in the BDL group. Significant 
lipid peroxidation, reactive oxygen species (ROS) formation, and protein carbonylation were detected in the 
kidney of BDL animals. Furthermore, depleted glutathione reservoirs and a significant decrease in the antioxidant 
capacity of renal tissue were detected in cholestatic rats. Renal tubular atrophy and interstitial inflammation were 
evident in BDL animals. Cholestasis also caused significant mitochondrial dysfunction in the kidney. TAU signifi-
cantly prevented cholestasis-induced renal injury by inhibiting oxidative stress and mitochondrial impairment.

Conclusions: These data indicate TAU as a potential therapeutic agent in the management of cholestasis-induced 
renal injury. 
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Introduction

Taurine (TAU) is the most abundant free amino 
acid in the human body that does not become incor-
porated in protein structure. However, several phys-
iological roles, such as osmoregulatory effects, have 
been attributed to TAU. On the other hand, it has been 
found that TAU significantly provided a positive im-
pact on different diseases [1-7]. The impact of TAU on 

cardiovascular diseases, central nervous system (CNS) 
disorders, and liver damage has been widely investi-
gated [6, 8-16]. It has also been found that TAU also 
significantly alleviated renal disorders [17]. 

The effects of TAU on reactive oxygen species (ROS) 
formation and oxidative stress have been mentioned as 
a primary mechanism for its cytoprotective properties 
[12-14, 18-26]. It has been found that TAU significant-
ly mitigated oxidative stress in different experimental 



Clinical and Experimental Hepatology 1/2021 31

Taurine in cholemic nephropathy

models [12-14, 18-26]. On the other hand, the effects 
of TAU on mitochondrial function and mitochon-
dria-associated cell injury mechanisms are among the 
most exciting mechanisms of cytoprotection provided 
by this amino acid [12, 26-41]. It has been found that 
TAU is essential for the proper synthesis of mitochon-
drial electron chain transport components, preserving 
mitochondrial membrane matrix pH, preventing mi-
tochondrial depolarization, and decreasing mitochon-
dria-mediated ROS formation [12, 26-41].

Cholemic nephropathy (CN) is a  clinical compli-
cation associated with cholestasis/cirrhosis. CN could 
lead to renal failure or the need for organ transplan-
tation. Although the only promising option is identi-
fying the etiology of CN and its eradication, preserv-
ing renal function and protecting this organ during 
cholestasis is a critical issue. It has been evident that 
oxidative stress and mitochondrial impairment play 
a key role in the pathogenesis of renal injury in CN [32, 
42-45]. Therefore, the administration of antioxidants 
and mitochondria protecting agents could be useful.

In the current study, TAU (500 and 1000 mg/kg, 
oral) was administered to cholestatic animals. Then, 
markers of oxidative stress and mitochondrial indices 
were evaluated. As TAU is a safe amino acid and could 
be readily administered to patients, the results of this 
study could help in the development of therapeutic 
strategies against cholestasis-induced renal injury.

Material and methods

Reagents

N-chloro tosylamide (chloramine-T), trichloro-
acetic acid, sodium acetate, citric acid, n-propanol, 
meta-phosphoric acid, p-dimethyl amino benzalde-
hyde, 2,4,6-Tri(2-pyridyl)-s-triazine, thiobarbituric 
acid, sodium citrate, ethylenediamine tetra-acetic acid 
(EDTA), and 2amino2-hydroxymethyl-propane-1,3-di-
ol-hydrochloride (Tris-HCl) were obtained from Merck 
(Darmstadt, Germany). Taurine, dichlorodihydrofluo-
rescein diacetate (DFC-DA), and reduced (GSH) and 
oxidized (GSSG) glutathione were purchased from Sig-
ma-Aldrich (St. Louis, MO, USA). Kits for evaluating 
biomarkers of organ injury were purchased from Pars 
Azmun (Tehran, Iran). All salts used for making buffer 
solutions were of analytical grade and purchased from 
Merck (Darmstadt, Germany).

Animals

Male Sprague-Dawley rats (n = 60, 200-250 g weight) 
were obtained from Shiraz University of Medical Sci-

ences, Shiraz, Iran. Rats were housed in a standard en-
vironment (temperature of 23 ±1°C, a 12 light : 12 dark 
photoschedule, and 40% relative humidity). Ani mals 
had free access to a regular rat’s diet (RoyanFeed, Esfa-
han, Iran) and tap water. All experiments were per-
formed in conformity with the guidelines for care and 
use of experimental animals and approved by the ethics 
committee of Shiraz University of Medical Sciences, 
Shiraz, Iran (#97-01-36-19359).

Bile duct ligation surgery and experimental setup

Animals were anesthetized (10 mg/kg of xylazine 
and 70 mg/kg of ketamine, i.p.). A  midline incision 
was made (~2 cm), and the common bile duct was lo-
calized, doubly ligated, and cut between the ligatures 
[46, 47]. The sham operation consisted of laparotomy 
and bile duct identification and manipulation without 
ligation. Animals were equally allotted to four groups 
containing 12 rats in each. Rats were treated as follows: 
1) sham-operated (vehicle-treated); 2) bile duct ligat-
ed (BDL); 3) BDL + taurine (500 mg/kg, oral); 4) BDL 
+ taurine (1000 mg/kg, oral) [48]. TAU was adminis-
tered for seven consecutive days, and its effect on the 
cholestasis-induced renal injury was assessed [46, 49]. 

Organ weight index

Animals were weighed, and the organs’ (liver, 
spleen, and kidney) weight indices were measured 
as organ weight index = [wet organ weight (g)/body 
weight (g)] × 100.

 Urinalysis and serum biochemistry

Urine samples were collected during animal han-
dling (200 µl) and diluted with 200 µl of ice-cooled 
normal saline (0.9% NaCl, 4°C). Samples were cen-
trifuged (1000 g, 5 min 4°C), and the clear superna-
tant was used for urinalysis [50]. Then, animals were 
anesthetized (thiopental 80 mg/kg), and blood sam-
ples were collected from the abdominal aorta. Sam-
ples were centrifuged (3000 g, 15 min 4°C), and the 
separated serum was used. A  Mindray auto analyzer 
and commercial kits (Pars-Azmun, Tehran, Iran) were 
used to assess biomarkers of organ injury in urine and 
serum of cholestatic animals [51].

Renal histopathological alterations

Samples of kidney tissue were fixed in a  buffered 
formalin solution (10% formaldehyde in phosphate 
buffer, pH = 7.4). Paraffin-embedded kidney tissue  
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(5 µm sections) were prepared and stained with he-
matoxylin and eosin (H&E). Kidney and liver fibrotic 
changes were determined by Masson’s trichrome stain-
ing in BDL rats [52, 53].

Reactive oxygen species formation 

Reactive oxygen species formation in the kid-
ney was estimated based on a  previously described 
procedure [54-56]. Briefly, 200 mg of the kidney tis-
sue was homogenized in 5 ml of ice-cooled Tris-HCl 
buffer (40  mM,  pH = 7.4). Samples of the resultant 
tissue homogenate (100 µl) were mixed with 1 ml of 
Tris-HCl buffer and 2’,7’-dichlorofluorescein diacetate; 
DCF-DA (final concentration 10 µM). The mixture 
was incubated at 37°C (15 min, in the dark). Finally, 
the fluorescence intensity of samples was assessed us-
ing a  FLUOstar Omega multifunctional fluorimeter  
(λexcitation = 485 nm and λemission = 525 nm) [54, 57, 58].

Lipid peroxidation

The thiobarbituric acid reactive substances 
(TBARS) were measured as an index of lipid perox-
idation in cholestatic rats’ kidney tissue [59-61]. The 
reaction mixture consisted of 500 µl of tissue homog-
enate (10% w/v in KCl, 1.15% w/v), 1 ml of thiobarbi-
turic acid (0.375%, w/v), and 3 ml of phosphoric acid 
(1% w/v, pH = 2). Samples were mixed well and heat-
ed (100°C water bath, 45 min). Then, the mixture was 
cooled to room temperature, and 2 ml of n-butanol 
was added. Samples were mixed well and centrifuged 
(10,000 g for 10 min) [55, 62]. Finally, the absorbance 
of developed color in the n-butanol phase was mea-
sured at 532 nm (EPOCH plate reader, BioTek, USA) 
[59, 63, 64].

Renal glutathione content

The reduced (GSH) and oxidized (GSSG) gluta-
thione levels in the kidney of cholestatic animals were 
measured using a gradient HPLC method [65]. Briefly, 
the mobile phases consisted of buffer A (acetate buffer : 
water; 1 : 4 v : v) and buffer B (water : methanol; 1 : 4 v : v). 
There was a  steady increase of buffer B to 95% in  
30 min, and the flow rate was 1 ml/min was ap-
plied [65]. For tissue preparation, the kidney sample  
(200 mg) was homogenized in Tris-HCl buffer  
(250 mM, pH = 7.4, 4°C), and 500 µl of TCA (50% w/v) 
was added to 1 ml of the tissue homogenate. Samples 
were mixed well and incubated on ice (10 min). Sam-
ples were centrifuged (17,000 g, 30 min, 4°C), and the 
supernatant was collected in 5 ml tubes. Then, 300 µl of 

the NaOH : NaHCO3 (2 M : 2 M) was added until the 
gas production was stopped. Afterward, 100 µl of iodo-
acetic acid (1.5% w/v in deionized water) was added, 
and samples were incubated in the dark (1 h, 4°C). After 
the incubation period, DNFB (500 µl, 1.5% v : v in eth-
anol) was added, mixed well, and incubated in the dark  
(24 h, 25°C). Finally, samples were centrifuged (17,000 g, 
30 min, 4°C) and injected (50 µl) into the described 
HPLC apparatus [65, 66]. An NH2 column was used as 
the stationary phase (25 cm, Bischoff chromatography, 
Leonberg, Germany) and the UV detector was set at  
λ = 254 nm.

Ferric reducing antioxidant power of kidney 
tissue

Ferric reducing antioxidant power (FRAP) assay 
measures the formation of a blue-colored Fe2+-tripyr-
idyltriazine compound from the colorless oxidized 
Fe3+ form by the action of electron-donating antioxi-
dants [67, 68]. In the current study, the working FRAP 
reagent was freshly prepared by mixing acetate buf-
fer (10 volume of 300 mmol/l, pH = 3.6) with TPTZ  
(1 volume of 10 mmol/l in 40 mmol/l HCl) and ferric 
chloride (1 volume of 20 mmol/l FeCl3.6H2O). Kidney 
tissue (200 mg) was homogenized in an ice-cooled 
Tris-HCl buffer (250 mM Tris-HCl, pH = 7.4, 4°C). 
Afterward, 100 µl of tissue homogenate and 150 µl of 
deionized water were added to 1.5 ml of the FRAP re-
agent [69, 70]. The reaction mixture was incubated in 
the dark (37°C, 5 min). Finally, the absorbance of de-
veloped color was measured at 595 nm (EPOCH plate 
reader, BioTek, USA) [55, 71].

Mitochondria isolation from the rat kidney

The kidney was washed in normal saline (NaCl 
0.9% w/v, 4°C) and minced in an ice-cold isolation 
buffer containing 70 mM D-mannitol, 220 mM su-
crose, 2 mM HEPES, 0.5 mM EGTA and 0.1% BSA 
(pH = 7.4). Minced tissue was transported into mito-
chondria isolation buffer (5 ml buffer : 1 g tissue) and 
homogenized. The differential centrifugation method 
was used to isolate kidney mitochondria [26, 72, 73]. 
For this purpose, the kidney homogenate was centri-
fuged (1000 g, 20 min, 4°C) to pellet unbroken cells 
and nuclei. The supernatant was then further centri-
fuged (10,000 g, 20 min, 4°C) to pellet the mitochon-
dria fraction. The second centrifugation step was re-
peated four times using a fresh mitochondria isolation 
buffer medium. Finally, isolated kidney mitochondria 
were re-suspended in a buffer (5 ml buffer/1 g tissue) 
containing 70 mM D-mannitol, 2 mM HEPES, and 
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220 mM sucrose (pH = 7.4). The mitochondria frac-
tions used to assess mitochondrial permeabilization 
and mitochondrial depolarization were suspended in 
swelling buffer (125 mM sucrose, 65 mM KCl, 10 mM 
HEPES, pH = 7.2), and mitochondria membrane po-
tential assay buffer (220 mM sucrose, 10 mM KCl,  
68 mM D-mannitol, 5 mM KH2PO4, 2 mM MgCl2,  
50 μM EGTA, and 10 mM HEPES, pH = 7.2) [72, 74]. 
The protein content of the samples was determined 
based on the Bradford method.

Mitochondrial ATP levels

A method based on the luciferase-luciferin reaction 
(ENLITEN kit from Promega) was used to assess mi-
tochondrial ATP content [26, 75]. Samples and buffer 
solutions were made based on the kit instructions, and 
the luminescence intensity of samples was measured  
(λ = 560 nm using a FLUOstar Omega fluorimeter) [76].

Mitochondrial depolarization assay

Mitochondrial uptake of rhodamine 123 was used 
to assess mitochondrial depolarization [77-79]. Briefly, 
kidney isolated mitochondria (0.5 mg protein/ml; in 
the depolarization assay buffer) were incubated with 
rhodamine 123 (30 min, 37°C, in the dark). Afterward, 
samples were centrifuged (17,000 g, 5 min, 4°C), and 
the fluorescence intensity of the supernatant was mon-
itored with a fluorimeter (FLUOstar Omega, Germa-
ny; λ excitation = 485 nm and λ emission = 525 nm) [77, 80].

Lipid peroxidation in kidney mitochondria

Thiobarbituric acid-reactive substances (TBARS) 
were assessed in kidney mitochondria isolated from 

cholestatic animals. Previous studies mentioned that 
sucrose interrupts the lipid peroxidation test in isolat-
ed mitochondria [81]. Therefore, sucrose was removed 
by washing mitochondria preparation in ice-cooled 
MOPS-KCl buffer (50 mM MOPS, 10 µM Trolox, and 
100 mM KCl, 4°C, pH = 7.4). For this purpose, 1 ml 
of isolated kidney mitochondria (1 mg protein/ml) 
was suspended in 5 ml of MOPS-KCl buffer and cen-
trifuged (15,000 g, 20 min). The pellet was re-sus-
pended in 1 mM of MOPS-KCl buffer and used for 
TBARS assay [82, 83]. For this purpose, the mitochon-
drial suspension (1 mg protein/ml) was mixed with  
1 ml of TBARS assay reagent containing trichloroace-
tic acid (15% w/v), HCl (240 mM), thiobarbituric acid 
(0.375% w/v), and 10 µl of Trolox (500 µM). Samples 
were heated for 15 min at 100°C [81]. Afterward, sam-
ples were centrifuged (17,000 g, 20 min, 4°C), and the 
absorbance was measured at λ = 532 nm (EPOCH 
plate reader, BioTek Instruments, USA) [81].

Statistical methods

Data are given as mean ± SD. A comparison of data 
sets was performed by one-way analysis of variance 
(ANOVA) with Tukey’s multiple comparisons as the 
post hoc test. Values of p < 0.05 were considered statis-
tically significant.

Results

A significant increase in serum biomarkers of organ 
injury [alanine transaminase (ALT), aspartate trans-
aminase (AST), and lactate dehydrogenase (LDH), 
alkaline  phosphatase (ALP), γ-glutamyltransferase 
(γ-GT), bile acids, and bilirubin) was detected in the 
BDL model of cholestasis. On the other hand, serum 

Table 1. Serum biochemical measurements in cirrhotic rats

Parameters assessed Sham-operated BDL BDL 
+ TAU 500 mg/kg

BDL 
+ TAU 1000 mg/kg

ALT (U/l) 53 ±16 232 ±90 118 ±37a 108 ±25a

AST (U/l) 107 ±17 207 ±38* 128 ±27 118 ±13a

LDH (U/l) 493 ±169 1580 ±432* 1105 ±292 950 ±76a

ALP (U/l) 1265 ±332 2676 ±652* 2781 ±569 1893 ±133a

γ-GT (U/l) 27 ±6 242 ±82* 178 ±84 204 ±77

Total bilirubin (mg/dl) 0.1 ±0.07 11.9 ±1.30* 9.89 ±1.88 11 ±1.72

Albumin (mg/dl) 3.96 ±0.14 3.22 ±0.36* 3.5 ±0.20 3.94 ±0.54a

BUN (mg/dl) 30 ±12 41 ±9 42 ±11 36 ±11

Creatinine (mg/dl) 0.22 ±0.04 0.69 ±0.17* 0.3 ±0.08a 0.28 ±0.11a

Data are given as mean ± SD (n = 8). The effect of taurine (TAU) on serum biomarkers of organ injury was not dose-dependent in the current study. 
*Indicates significantly different as compared with the sham group (p < 0.001). 
aIndicates significantly different as compared with the BDL group (p < 0.05).
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creatinine as a  renal injury marker was significant-
ly higher in BDL rats. No significant BUN changes 
were detected seven days after the BDL operation in 
the current study. It was found that TAU (500 and 
1000 mg/kg, seven consecutive days) mitigated se-
rum markers of hepatic and renal injury (Table 1). 
Hepatomegaly and splenomegaly were also evident in 
BDL rats, which confirm the occurrence of cholesta-
sis. No significant kidney weight index changes were 
detected seven days after the BDL surgery. TAU (500 
and 1000 mg/kg, oral) significantly decreased hepato-
megaly and splenomegaly in BDL rats (Fig. 1). The 
effect of TAU on serum biomarkers of organ injury 
(Table 1), as well as liver and spleen weight indices 
(Fig. 1), was not dose-dependent in the current study.

Urinalysis revealed a  significant increase in glu-
cose, ALP, γ-GT, bile acids, and bilirubin in cholestat-
ic rats. It was found that TAU treatment significantly 
alleviated urine markers of renal injury in BDL rats. 
The effects of TAU on urine biomarkers were not 
dose-dependent in the current model (Fig. 2).

Decreased mitochondrial dehydrogenase activity, 
mitochondrial depolarization, decreased ATP stores, 
lipid peroxidation, and mitochondrial permeabiliza-
tion were evident in the kidney mitochondria isolated 
from cholestatic animals. TAU (500 and 1000 mg/kg, 
oral) significantly improved mitochondrial indices in 
BDL rats. The effect of TAU on renal mitochondri-
al indices was not dose-dependent in cholestatic rats 
(Fig. 3).

Tubular atrophy and interstitial inflammation were 
the most prominent renal histopathological alterations 
even days after the BDL surgery (Fig. 4 and Table 3). 
On the other hand, it was found that TAU treatment 
significantly ameliorated cholestasis-induced renal in-
jury in BDL animals (Fig. 4 and Table 3). The effects 

of TAU on renal histopathological alterations were not 
dose-dependent (Fig. 4 and Table 2).

Discussion

Cholestasis-induced renal injury (also known as 
cholemic nephropathy, CN) is a  severe clinical com-
plication that could lead to renal failure or the need for 
organ transplantation. Although the only promising 
option is identifying the etiology of CN and its eradi-
cation (e.g., gall stones), preserving renal function and 
protecting this organ during cholestasis is a critical is-
sue. In the current study, we found that administration 
of TAU (500 and 1000 mg/kg, oral, seven consecutive 
days) to cholestatic animals could significantly pre-
serve renal function and prevent cholestasis-induced 
renal injury. The effects of TAU on oxidative stress 
markers and mitochondrial indices seem to be the 
fundamental mechanisms for this amino acid’s ne-
phroprotective effects in the current model.

Oxidative stress and its associated events such as 
lipid peroxidation, protein carbonylation, and defect 
in enzymatic and non-enzymatic antioxidant systems 
have been mentioned as key mechanisms involved in 
the pathogenesis of CN [42-45]. Several studies have 
mentioned the positive effects of antioxidants against 
cholestasis [84-86]. N-acetyl cysteine, proline, α-lipo-
ic acid, betaine, selenium, glycine, boldine, agmatine, 
and several other agents have been used to ameliorate 
cholestasis-induced organ injury [42, 62, 73, 87-92].

It has repeatedly been mentioned that TAU could 
alleviate oxidative stress status in various experimental 
models [12-14, 18-26]. The effects of TAU on enzymat-
ic and non-enzymatic antioxidant systems have been 
noted as a  cytoprotective mechanism for this amino 
acid [12-14, 18-26]. On the other hand, it has been 

Fig. 1. Organ weight index in cirrhotic rats. Data are given as mean ± SD (n = 8). **Indicates significantly different as compared with the BDL group (p < 0.01)
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found that TAU is not an excellent radical scavenger. 
Hence several studies mention other mechanisms for 
the cytoprotection provided by this amino acid. 

The effect of TAU on cellular mitochondria is 
a new and exciting mechanism of action provided by 
this amino acid [12, 26-41]. Recent studies mentioned 
that the most crucial antioxidant mechanism of TAU is 
mediated through its effects on cellular mitochondria 
[12, 26-41, 93]. It has been found that TAU effective-
ly mitigated mitochondria-mediated ROS formation 

[26, 29, 35, 94-96]. TAU also regulates the synthesis 
of mitochondria electron transport chain components 
and enhances mitochondrial ATP [26, 29, 35, 94-97]. 
Our data are in agreement with investigations indicat-
ing the occurrence of oxidative stress in the kidney of 
cholestatic animals. On the other hand, we found that 
mitochondrial impairment in renal tissue of cholestat-
ic rats could act as a significant source of ROS and ox-
idative stress in this disease. We found that TAU miti-
gated oxidative stress in the renal tissue of cholestatic 
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Fig. 3. Mitochondrial indices in the kidney of cholestatic animals. TAU – taurine, TBARS – thiobarbituric acid reactive substances. Data are given as mean ± SD 
(n = 8). Asterisks indicate significantly different as compared with the BDL group (*p < 0.05 and ***p < 0.001)

Fig. 4. Taurine (TAU) treatment mitigates renal histopathological changes in cholestatic rats. BDL – bile duct ligated. H&E staining (scale bar 100 µm). Tubular 
atrophy and interstitial inflammation were the prominent histopathological alterations in the BDL animals (7 days after BDL surgery) (Table 3). It was found that 
taurine (500 and 1000 mg/kg, oral) mitigated renal histopathological changes in BDL rats (Table 3)
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animals. The antioxidative mechanism of TAU in this 
study might be mediated through its effects on renal 
mitochondrial function.

TAU is a safe compound [98]. On the other hand, 
this amino acid is under clinical trials for the manage-
ment of several diseases [99]. Previous studies men-
tioned the positive effects of TAU on cholestasis/cir-
rhosis [14, 78, 84, 86, 99-105]. Therefore, TAU might 
be readily administered in cholestatic patients to pre-
vent renal injury. Finally, our results suggest the poten-
tial protective effects of taurine on cirrhosis-associated 
renal injury. Nevertheless, the precise impact of TAU 
on the renal function in cholestasis and the clinical 
relevance of these data require further studies for clar-
ification.
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