
Taurus: Lightweight Parallel Logging for
In-Memory Database Management Systems

Yu Xia, Xiangyao Yu, Andrew Pavlo, Srinivas Devadas

Massachusetts Institute of Technology, University of Wisconsin–Madison, Carnegie Mellon University

yuxia@mit.edu,yxy@cs.wisc.edu,pavlo@cs.cmu.edu,devadas@mit.edu

Abstract
Existing single-stream logging schemes are unsuitable for in-memory

database management systems (DBMSs) as the single log is often

a performance bottleneck. To overcome this problem, we present

Taurus, an efficient parallel logging scheme that uses multiple log

streams, and is compatible with both data and command logging.

Taurus tracks and encodes transaction dependencies using a vector

of log sequence numbers (LSNs). These vectors ensure that the de-

pendencies are fully captured in logging and correctly enforced in

recovery. Our experimental evaluation with an in-memory DBMS

shows that Taurus’s parallel logging achieves up to 9.9× and 2.9×
speedups over single-streamed data logging and command logging,

respectively. It also enables the DBMS to recover up to 22.9× and

75.6× faster than these baselines for data and command logging,

respectively. We also compare Taurus with two state-of-the-art

parallel logging schemes and show that the DBMS achieves up to

2.8× better performance on NVMe drives and 9.2× on HDDs.

PVLDB Reference Format:
Yu Xia, Xiangyao Yu, Andrew Pavlo, Srinivas Devadas. Taurus: Lightweight

Parallel Logging for In-Memory Database Management Systems. PVLDB,

14(2): 189-201, 2021.

doi:10.14778/3425879.3425889

1 Introduction
A database management system (DBMS) guarantees that a trans-

action’s modifications to the database persist even if the system

crashes. The most common method to enforce durability is write-
ahead-logging, where each transaction sequentiallywrites its changes
to a persistent storage device (e.g., HDD, SSD, NVM) before it com-

mits [29]. With increasing parallelism in modern multicore hard-

ware and the rising trend of high-throughput in-memory DBMSs,

the scalability bottleneck caused by sequential logging [16, 35, 37,

44] is onerous, motivating the need for a parallel solution.

It is non-trivial, however, to perform parallel logging because

the system must ensure the correct recovery order of transactions.

Although this is straightforward in sequential logging because the

LSNs (the positions of transaction records in the log file) explicitly

define the order of transactions, it is not easy to efficiently recover

transactions that are distributed acrossmultiple logswithout central

LSNs. A parallel logging scheme must maintain transactions’ order

information across multiple logs to recover correctly.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.

doi:10.14778/3425879.3425889

There are several parallel logging and recovery proposals in

the literature [16, 35, 37, 44]. These previous designs, however, are

limited in their scope and applicability. Some algorithms support

only parallel data logging but not parallel command logging [14,

35, 44]; some can only parallelize the recovery process but not the

logging process [8, 30]; a few protocols assume NVM hardware but

do not work for conventional storage devices [3, 4, 6, 10, 15, 21,

22, 36]. As such, previously proposed methods are insufficient for

modern DBMSs in diverse operating environments.

To overcome these limitations, we present Taurus, a lightweight
protocol that performs both logging and recovery in parallel, sup-

ports both data and command logging, and is compatible with mul-

tiple concurrency control schemes. Taurus achieves this by tracking

the inter-transaction dependencies. The recovery algorithm uses

this information to determine the order of transactions. Taurus

encodes dependencies into a vector of LSNs, which we define as

the LSN Vector (LV). LSN Vectors are inspired by vector clocks to

enforce partial orderings in message-passing systems [11, 27]. To

reduce the overhead of maintaining LVs, Taurus compresses the

vector based on the observation that a DBMS can recover transac-

tions with no dependencies in any order. Thus, Taurus does not

need to store many LVs, thereby reducing the space overhead.

We compare the performance of Taurus to a serial logging scheme

(with and without RAID-0 setups) and state-of-the-art parallel log-

ging schemes (i.e., Silo-R [35, 44] and Plover [45]) on YCSB and

TPC-C benchmarks. Our evaluation on eight NVMe SSDs shows

that Taurus with data logging outperforms serial data logging by

9.9× at runtime, and Taurus with command logging outperforms

the serial command logging by 2.9×. During recovery, Taurus with

data logging and command logging is 22.9× and 75.6× faster than

the serial baselines, respectively. Taurus with data logging matches

the performance of the other parallel schemes, and Taurus with

command logging is 2.8× faster at both runtime and recovery. An-

other evaluation on eight HDDs shows that Taurus with command

logging is 9.2× and 6.4× faster than these parallel algorithms in

logging and recovery, respectively.

The main contributions of this paper include:

• We propose the Taurus parallel scheme that supports both

command logging and data logging. We formally prove the

correctness and liveness in the extended version [39].

• We propose optimizations to reduce the memory footprint of

the dependency information that Taurus maintains and exten-

sions for supporting multiple concurrency control algorithms.

• We evaluate Taurus against sequential and parallel logging

schemes, and demonstrate its advantages and generality.

• We open source Taurus and evaluation scripts at https://github.

com/yuxiamit/DBx1000_logging.

189

https://doi.org/10.14778/3425879.3425889
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425889
https://github.com/yuxiamit/DBx1000_logging
https://github.com/yuxiamit/DBx1000_logging

Read-after-write
dependency

…

T1

…

Log 1

Pe
rs

is
te

d
Bu

ffe
re

d
T2

…

…

Log 2

Persisted
BufferedCrash

…

…

Figure 1: Data Dependency in Parallel Logging — Transaction T2 de-
pends on T1. The two transactions write to different logs.

2 Background
We first provide an overview of conventional serial logging proto-

cols and then discuss the challenges to support parallel logging.

2.1 Serial Logging
In a serial logging protocol, the DBMS constructs a single log stream

for all transactions. The protocol maintains the ordering invariant

that, if T2 depends on T1, then the DBMS writes T2 to disk after

T1. A transaction commits only after it successfully writes the

transaction’s log records to disk. During recovery, the DBMS reads

the log and replays each transaction sequentially until it encounters

an incomplete log record or the end of the file.

Generally, there are two categories of logging schemes. The first

is data logging, where log records contain the physical modifications

that transactions made to the database. The recovery process re-

applies these changes to the database. The other category, command
logging [26], reduces the amount of log data by only recording the

high-level commands (i.e., invocations of stored procedures). The

log records for these commands are typically smaller than physical

changes. The recovery process involves more computation, as all

transactions are re-executed. If the disk bandwidth is the bottleneck,

command logging can substantially outperform data logging.

Although serial logging is inherently sequential, one can improve

its performance by using RAID disks that act as a single storage

device to increase disk bandwidth [31]. Serial logging can also

support parallel recovery if the DBMS uses data logging [33, 35, 44].

But the fundamental property that distinguishes serial logging from

parallel logging is that it relies on a single log stream that respects

all the data dependencies among transactions. On a modern in-

memory DBMS with many CPU cores, such a single log stream is a

scalability bottleneck [35]. Competing for the single atomic LSN

counter inhibits performance due to cache coherence traffic [43].

2.2 Parallel Logging Challenges
Parallel logging allows transactions to write to multiple log streams

(e.g., one stream per disk), thereby avoiding serial logging’s scal-

ability bottlenecks to satisfy the high throughput demands of in-

memory DBMSs. Multiple streams inhibit an inherent natural or-

dering of transactions. Therefore, other mechanisms are required

to track and enforce the ordering among these transactions. Fig. 1

shows an example with transactions T1 and T2, where T2 depends
on T1 with a read-after-write (RAW) data dependency. In this ex-

ample, we assume that T1 writes to Log 1 and T2 writes to Log 2
and they may be flushed in any order. If T2 is already persistent in

Log 2 while T1 is still in the log buffer (shown in Fig. 1), the DBMS

must not commit T2 since T1 has not committed. Furthermore, if

the DBMS crashes, the recovery process must be aware of such

data dependency and therefore should not recover T2. Specifically,
parallel logging faces the following three challenges.

Challenge #1 –When to Commit a Transaction: The DBMS

can only commit a transaction if it is persistent and all the transac-

tions that it depends on can commit. In serial logging, this require-

ment is satisfied if the transaction itself is persistent, indicating all

the preceding transactions are also persistent. In parallel logging,

however, a transaction must identify when other transactions that

it depends on can commit, especially those on other log streams.

Challenge #2 – Whether to Recover a Transaction: Early-
Lock-Release (ELR) prevents transactions from waiting for log per-

sistency during execution by allowing a transaction to release locks

early before the log records hit disks [8]. But this means that during

recovery, the DBMS has to determine whether transactions success-

fully committed before a crash. It ignores any transaction that fails

to complete properly. For the example in Fig. 1, if T2 is in the log

but T1 is not, the DBMS should not recover T2.

Challenge #3 – Determine the Recovery Order: The DBMS

must recover transactions in the order that respects data dependen-

cies. If both T1 and T2 in Fig. 1 are persistent and have committed

before the crash, the DBMS must recover T1 before T2.

One can resolve some of the above issues if the DBMS satisfies

certain assumptions. For example, if the concurrency control al-

gorithm enforces dependent transactions to write to disks in the

corresponding order, this solves the first and second challenges: the

persistence of one transaction implies that any transactions that it

depends on are also persistent. If the DBMS uses data logging, it

only needs to handle write-after-write (WAW) dependencies, but

not read-after-write (RAW) or write-after-read (WAR) dependen-

cies. For example, consider a transaction T1 that writes A=1, and a

transaction T2 that reads A and then writes B=A+1. Suppose the

initial value of A is 0, and the DBMS schedules T2 before T1, result-
ing in A=1 and B=1. With this schedule, T1 has a WAR dependency

on T2. If the DBMS does not track WAR dependencies and perform

command logging, running T1 before T2 will result in A=1 and B=2,

violating correctness. But if the DBMS performs data logging, T1
will have a record of A=1 and T2 will have a record of B=1. Re-

gardless of the recovery order between T1 and T2, the resulting
state is always correct. Supporting only data logging simplifies

the protocol [35, 44]. These assumptions, however, would hurt

either performance or generality of the DBMS. Our experiments in

Sec. 5 show that Taurus command logging outperforms all the data

logging baselines by up to 6.4× in both logging and recovery.

3 Taurus Parallel Logging
We now present the Taurus protocol in detail. The core idea of

Taurus is to use a lightweight dependency tracking mechanism

called LSN Vector. After first describing LSN Vectors, we then ex-

plain how Taurus uses them in Sec. 3.2 and Sec. 3.3 during runtime

and recovery operations, respectively. Although Taurus supports

multiple concurrency control schemes (see Sec. 4.3), for the sake

of simplicity, we assume strict two-phase locking (S2PL) in this

section. We also assume that the DBMS uses multiple disks with

190

…

LSN = 9

…

Log 1

T1

LSN = 4

…

LSN = 7

Log 2

…

LSN = 5

LSN = 6

…

Log 3

…

LSN = 4

…

LSN = 8

Log 4

…LSN = 2

9 7 6 8T.LV

Figure 2: LSN Vector (LV) example — The 𝑖𝑡ℎ element of transaction
T ’s LV is an LSN of the 𝑖-th log, indicating that T depends on one or
more transactions (rendered in dark blue) in the 𝑖-th log before that
LSN.

each log file residing on one disk. Each transaction writes only a

single log entry to one log file at commit time. This simplifies the

protocol and is used by other in-memory DBMSs [9, 19, 35, 44].

3.1 LSN Vector
An LSN Vector (LV) is a vector of LSNs that encodes the dependen-
cies between transactions. The DBMS assigns it to either (1) a trans-

action to track its dependency information or (2) a data item to cap-

ture the dependencies between transactions accessing it. The dimen-

sion of an LV is the same as the number of logs. Each element of LV
indicates that a transaction T may depend on transactions before a

certain position in the corresponding log. Specifically, given a trans-

action T and its assigned LV: T.LV = (𝐿𝑉 [1], 𝐿𝑉 [2], . . . , 𝐿𝑉 [𝑛]),
for any 1 ≤ 𝑖 ≤ 𝑛, the following property holds:

Property 1. Transaction T does not depend on any transaction
T′ that maps to the 𝑖-th log with LSN > 𝐿𝑉 [𝑖].

Fig. 2 shows the LV of an example transaction T with T .LV [2]=7.

It means that T may depend on any transaction that maps to Log 2
with an LSN ≤ 7 but no transaction with an LSN > 7. The semantics

of LV is similar to vector clocks [11, 27]. The following two opera-

tions will be frequently used on LVs: ElemWiseMax and comparison.
The ElemWiseMax is the element-wise maximum function:

𝐿𝑉 = ElemWiseMax(𝐿𝑉 ′, 𝐿𝑉 ′′) ⇒ ∀𝑖, 𝐿𝑉 [𝑖] = max(𝐿𝑉 ′ [𝑖], 𝐿𝑉 ′′ [𝑖])

For comparison, the relationships are defined as follows:

𝐿𝑉 ≤ 𝐿𝑉 ′ ⇐⇒ ∀𝑖, LV[𝑖] ≤ LV′ [𝑖] .

Following the semantics of vector clocks, LV captures an approxi-

mation of the partial order among transactions — LVs of dependent

transactions are always ordered and LVs of independent transac-

tions may or may not be ordered. An LV of a transaction is written

to the log together with the rest of the log entry. The dependency

information captured by the LV s is sufficient to resolve the chal-

lenges in Sec. 2.2: (1) A transaction T can commit if it is persistent

and each log has flushed to the point specified by T .LV , indicating
that all transactions that T depends on are persistent. (2) During

recovery, the DBMS determines that a transaction T has committed

before the crash if each log has flushed to the point of T .LV . (3)
The recovery order follows the partial order specified by LVs.

3.2 Logging Operations
The Taurus protocol runs on worker threads and log manager
threads (denoted as 𝐿1, 𝐿2, . . . , 𝐿𝑛). Each log manager writes to a

unique log file. Each worker is assigned to a log manager and we

assume every log manager has exactly 𝑝 workers. We first describe

the protocol’s data structures and then explain its algorithms.

Data Structures: On top of a conventional 2PL protocol, Taurus

adds the following data structures to the system.

• T .LV – Each transaction T contains a T .LV tracking its depen-

dency as in Sec. 3.1. Initially, T .LV is a vector of zeroes.

• Tuple.readLV /writeLV – Each tuple contains two LVs that serve

as a medium for transaction LV s to propagate between transac-
tions. Intuitively, these vectors are the maximum LV of trans-

actions that have read/written the tuple. Initially, all elements

are zeroes. This does not necessarily incur extra linear storage

because Taurus maintains them in the lock table (cf. Sec. 4.1).

• L.logLSN – The highest position that has not been allocated in

the log file of L. It is initialized as zero. Workers reserve space

for log records by incrementing L.logLSN.
• L.allocatedLSN – A vector of length 𝑝 that stores the last LSN

allocated by each worker of L. Initially, all elements are∞.

• L.filledLSN – A vector of length 𝑝 , storing the last LSN filled

by each worker of L. Initially, all elements are zeroes.

The purpose of L.allocatedLSN and L.filledLSN is to determine

the point to which the log manager L can safely flush its log.

• Global.PLV – PLV stands for Persistent LSN Vector. It is a global
vector of length 𝑛. The element PLV 𝑖 denotes the LSN that log

manager 𝐿𝑖 has successfully flushed up to.

Worker Threads: Worker threads track dependencies by en-

forcing partial orders on the LSN Vectors. The logic of a worker

thread is contained in the Lock and Commit functions shown in

Alg. 1. The 2PL locking logic is in the FetchLock function (Line 2);

Taurus supports any variant of 2PL (e.g., no-wait). After a worker

thread acquires a lock, it runs Lines 3–5 to update the LV of the

transaction: It first updates T.LV to be no less than the LV of previ-

ous writing transactions to reflect WAW and RAW dependencies. If

the access is a write, it also updates T.LV using the tuple’s readLV .
The DBMS calls the Commit function when the transaction fin-

ishes. At this moment, T has locked the tuples it accessed. Since

Taurus updates T.LV for each access, it already captures T’s de-
pendency information. It checks if T is read-only, and skips gen-

erating log records if so. Otherwise, it creates the log record for T
(Line 8). The record contains two parts: the redo log and a copy of

T’s current LV. The contents of the redo log depends on the logging

scheme: the keys and values (for data logging), or the high-level

command (for command logging). The DBMS writes the record into

the corresponding log manager’s buffer byWriteLogBuffer (Line 10).
The algorithm then updates T.LV[𝑖] to the returned LSN (Line 11),

thereby allowing future transactions to capture their dependencies

on T. This update only changes T .LV , while the copy of T .LV in

the buffer stays the same. Lines 13–17 update the metadata of the

tuples before releasing the locks. If T reads (writes) a tuple, it up-

dates the tuple’s readLV (writeLV) using T .LV , indicating that the
tuple was read (written) by T and future transactions must respect

this dependency. Updating the LVs and releasing the lock must be

executed atomically, otherwise multiple transactions concurrently

updating the readLV can cause race conditions leading to incorrect

dependencies. As most 2PL schemes use latches to protect lock

release, updating LVs can be piggybacked within those latches.

191

Algorithm 1: Worker Thread with index 𝑗 for log 𝐿𝑖

1 Function Lock(key, type, T)
Lock the tuple following the 2PL protocol.

2 FetchLock(key, type, T);
3 T.LV = ElemWiseMax(T.LV, DB[key].writeLV);
4 if type is write then
5 T.LV = ElemWiseMax(T.LV, DB[key].readLV);

6 Function Commit(T)
7 if T is not read-only then

Include T’s LV into the log record.
8 logRecord = {CreateLogRecord(T), copy(T.LV)};
9 recordSize = GetSize(logRecord);

10 LSN = WriteLogBuffer(logRecord, recordSize);
11 T.LV[𝑖] = LSN# Update T.LV[𝑖] in the memory.;

12 for key ∈ T’s access set do
13 if T reads DB[key] then # Atomic Section
14 DB[key].readLV = ElemWiseMax(T.LV, DB[key].readLV);

15 if T writes DB[key] then
T.LV is always no less than DB[key].writeLV

16 DB[key].writeLV = T.LV ;

17 Release(key)

18 Asynchronously commit T if PLV ≥ T.LV and all transactions in
𝐿𝑖 with smaller LSNs have committed;

19 FunctionWriteLogBuffer(logRecord, recordSize)
20 𝐿𝑖 .allocatedLSN[𝑗] = 𝐿𝑖 .logLSN ;

21 lsn = AtomicFetchAndAdd(𝐿𝑖 .logLSN, recordSize);
22 memcpy(𝐿𝑖 .logBuffer + lsn, logRecord, recordSize);
23 L𝑖 .filledlSN[𝑗] = lsn + recordSize;
24 return lsn + recordSize

After the DBMS releases transaction T’s locks, it has to wait for

PLV to catch up such that PLV ≥ T.LV (indicating T is durable).

All transactions within the same log manager commit sequentially.

Since each log manager flushes records sequentially, this does not

introduce a scalability bottleneck. We employ the ELR optimiza-

tion [8] to reduce lock contention by allowing transactions to re-

lease locks before they are durable.

The Commit function callsWriteLogBuffer (Lines 19–24) to write
an entry into the log buffer. It allocates space in the log manager’s

(𝐿𝑖) buffer by atomically incrementing its LSN by the size of the log

record (Line 21). It then copies the log record into the log buffer

(Line 22). Lines 20 and 23 are indicators for the logmanager to decide

up to which point it can flush the buffer to disk. Specifically, before

a transaction increments the LSN, it notifies the log manager (𝐿𝑖)

that its allocated space is no earlier than its current LSN (Line 20).

This leads to allocatedLSN[𝑗] ≥ filledLSN[𝑗], which instructs 𝐿𝑖
that the contents after allocatedLSN[𝑗] are unstable and should

not be flushed to the disk. After the log buffer is filled, the transac-

tion updates 𝐿𝑖 .filledLSN[𝑗] so that allocatedLSN[𝑗] < filledLSN[𝑗],
indicating that the worker thread has no ongoing operations.

To show how Taurus tracks dependencies, we use the example in

Fig. 3 with three transactions (T1, T2, T3) and two rows A,B. WLOG,

we assume T1 and T2 are assigned to Log 1 and T3 is assigned to

Log 2. In the beginning, A has a writeLV [4,2] and a readLV [3,7]

while object B has [8,6] and [5,11]. 1 The DBMS initializes the

A B T1 T2 T3

4 2 3 7 8 6 5 11 0 0 0 0 0 0
write A

4 7

writeLV readLV writeLV readLV

read B

8 7
write log buffer

16 7
update & release A
update & release B

commit

16 7 3 7

Exclusive lock by T1

8 6 16 11

Shared lock by T1

...

wait for the lock

read A

read A

16 7

...

wait for the lock

write B

write B

16 11

①

②

④

③

⑥

⑦

⑩

⑧

⑤

⑨

write log buffer
Exclusive lock by T3 16 21

update & release B

commit

commit

16 21 16 11

PLV ≥ [16, 7]

PLV ≥ [16, 21]Time

⑪

⑫

⑬

Data Txn
Time

Figure 3: Worker Thread Example. Three transactions (T1, T2, and
T3) are accessing two objects A and B. Transactions are logged to
two files. The diagram is drawn in the time order.

transactions’ LV s as [0,0]. 2 T1 acquires an exclusive lock on A

and writes to it. Then, T1 updates T1.LV to be the element-wise

maximum among A.writeLV , A.readLV , and T1.LV . In this example,

T1.LV=[max(4,3,0), max(2,7,0)] = [4,7]. Any previous transactions

that ever read or wrote A should have an LV no greater than T1.LV.
3 T1 acquires a shared lock on B and then reads it. Then, T1 up-
dates T1.LV to be the element-wise maximum among 𝐵.writeLV
and T1.LV. Now T1.LV= [8,7]. 4 T2 wants to read A but has to

wait for T1 to release the lock. 5 T3 wants to write B but has to

wait as well. 6 After T1 finishes, T1 writes its redo record and

a copy of T1.LV into the log buffer. After successfully writing to

the buffer, T1 learns its LSN in Log 1 is 16. Then, T1 updates the
first dimension of T1.LV to be 16. Now, T1.LV=[16,7]. 7 T1 updates
𝐴.writeLV = ElemWiseMax(𝐴.writeLV, T1.LV) = T1.𝐿𝑉 = [16,7],

and 𝐵.readLV = ElemWiseMax(𝐵.readLV, T1.LV) = [16,11]. Then,

T1 releases the locks. After this, T1waits for itself and all the transac-
tions it depends on to become persistent, equivalently, PLV ≥ T1.LV.
The thread can process other transactions, and periodically check if

T1 should be marked as committed. 8 T2 acquires the shared lock

on A. T2 then updates T2.LV=ElemWiseMax (T2.LV , A.writeLV) =
[16,7]. This update enforces the partial order that T1.LV ≤ T2.LV
because T2 depends on T1. Since T2 is read-only, it does not create
a log record. It enters the asynchronous commit by waiting for

PLV ≥ T2.LV. 9 T3 acquires an exclusive lock on B and updates

T3.LV = ElemWiseMax(T3.LV, 𝐵.readLV, 𝐵.writeLV) = [16,11]. The

fact that T3 depends on T1 reflects on T3.LV ≥ T1.LV. 10 The log-

ging threads have flushed all transactions before T1.LV = T2.LV =

[16,7] and updated PLV . Observing PLV ≥ [16,7], Taurus marks T1
and T2 as committed. 11 T3 writes its redo record and a copy of

T3.LV to the buffer of Log 2, and gets its LSN as 21. T3.LV increases

to [16,21]. 12 T3 sets B.writeLV to [16, 21] and releases the lock. 13

When PLV achieves T3.LV = [16, 21], Taurus commits T3.

Log Manager Threads: We use a dedicated thread serving as

the log manager for each log file. The main job of the log manager

is to flush the contents in the log buffer into the file on disk. It

periodically invokes Alg. 2. The algorithm identifies up to which

point of the buffer that no active worker threads are processing.

192

Algorithm 2: Log Manager Thread 𝐿𝑖

1 readyLSN = 𝐿𝑖 .logLSN ;

2 foreach worker thread j that maps to 𝐿𝑖 do
We assume 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [𝑗] and 𝑓 𝑖𝑙𝑙𝑒𝑑𝐿𝑆𝑁 [𝑗] are fetched
together atomically;

3 if 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [𝑗] ≥ 𝑓 𝑖𝑙𝑙𝑒𝑑𝐿𝑆𝑁 [𝑗] then
4 readyLSN = min(readyLSN, 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [𝑗])

5 flush the buffer up to readyLSN ;

6 PLV[𝑖] = readyLSN ;

Taurus uses allocatedLSN and filledLSN to achieve this goal.

readyLSN is the log buffer position up to which the DBMS can safely

flush; its initial value is 𝐿𝑖 .logLSN (Line 1). For each worker thread 𝑗

that belongs to 𝐿𝑖 , if allocatedLSN[𝑗] ≥ filledLSN[𝑗], the transaction
in thread 𝑗 is filling the buffer at a position after allocatedLSN[𝑗]
(Alg. 1, Line 20 and Line 23), so readyLSN should not be greater than

allocatedLSN[𝑗]. Otherwise, no transaction in worker 𝑗 is filling

the log buffer, so readyLSN is not changed (Lines 2–4). Lastly, the

log manager flushes the buffer up to readyLSN and updates PLV[𝑖].
The frequency that the DBMS flushes log records to disk is based

on the performance profile of the storage devices. Although each

flush might enable a number of transactions to commit, transac-

tions in the same log file still commit in a sequential order. This

removes ambiguity of transaction dependency during recovery. Se-

quential committing will not affect scalability because ELR prevents

transactions waiting on the critical path.

3.3 Recovery Operations
Taurus’ recovery algorithm replays transactions following the par-

tial orders between their LV s, sufficient to respect all the data

dependencies. Resolving the recovery order is equivalent to per-

forming topological sorting in parallel on a dependency graph.

Data Structures: The recovery process contains the following:

• L.pool – For each log manager, pool is a queue containing

transactions that are read from the log but not recovered.

• L.maxLSN – For each log manager, maxLSN is the LSN of the

latest transaction that has been read from the log file.

• Global.RLV – RLV is a vector of length 𝑛 (the number of log

managers). An element RLV 𝑖 means that all transactions map-

ping to 𝐿𝑖 with LSN ≤ RLV𝑖 have been successfully recovered.

Therefore, a transaction T can start its recovery if T.LV ≤ RLV,
at which point all transactions that T depends on have been

recovered. Initially, RLV is a vector of zeroes.

• Global.ELV – ELV is a vector of length 𝑛. An element ELV 𝑖 is

the number of bytes in Log i. The DBMS uses this vector to

determine if a transaction committed before the crash. Before

the recovery starts, Taurus fetches the sizes of the log files to

initialize ELV , namely, ELV[𝑖] is the size of Log i.
Log Manager Threads: In Alg. 3, the thread reads the log file

and decodes records into transactions (Line 1). A transaction T
committed before the crash if T.𝐿𝑉 ≤ ELV. Otherwise, T and trans-

actions after it are ignored for recovery. The transaction is enqueued

into the tail of 𝑝𝑜𝑜𝑙 and the value of maxLSN is updated to be the

LSN of T (Lines 2–3). It is crucial that the update ofmaxLSN occurs

Algorithm 3: Log Manager Recovery for Thread 𝐿𝑖 .

1 while T = 𝐿𝑖 .DecodeNext() and T.LV ≤ ELV do
2 pool.Enqueue(T);
3 pool.maxLSN = T.LSN ;

Algorithm 4: Worker Recovery Thread

1 while not IsRecoveryDone() do
FetchNext atomically dequeues a transaction T such that
T.LV ≤ RLV;

2 T = pool.FetchNext(RLV);
3 Recover(T);
4 if pool is empty then # Atomic Section
5 RLV[𝑖] = Max(RLV[𝑖], pool.maxLSN);
6 else
7 RLV[𝑖] = Max(RLV[𝑖], pool.head.LSN - 1)

after it runs Enqueue, otherwise the transactions may recover in

an incorrect order. If the pool is empty after the DBMS updates

maxLSN but before it enqueues T, then it sets RLV [i]=T.𝐿𝑆𝑁 to

indicate that T is recovered; a worker might recover a transaction

that depends on T before T itself is recovered.

Worker Threads: In Alg. 4, the worker threads keep executing

until the log manager finishes decoding all the transactions and the

pool is empty. A worker thread tries to get a transaction T from 𝑝𝑜𝑜𝑙

such that T.LV ≤ RLV (Line 2). Then, the worker thread recovers

T (Line 3). For data logging, the data elements in the log record

are copied to the database; for command logging, the transaction

is re-executed. During the re-execution, no concurrency control

algorithm is needed, since no conflicts will occur during recovery.

Then, RLV[𝑖] is updated (Lines 4-7). If pool is empty, the thread sets

RLV[𝑖] to pool.maxLSN, the largest LSN of any transaction added to

pool; otherwise, RLV[𝑖] is set to one less than the first transaction’s

LSN, indicating that the previous transaction has been recovered

but not the one blocking the head of pool. In the pseudo-code,

the code for RLV update is protected with an atomic section for

correctness. We use a lock-free design to avoid this critical section

in our implementation. The pool data structure described above

can become a potential scalability bottleneck if a large number of

workers are mapped to a single log manager. There are additional

optimizations that address this issue. For example, we partition

each 𝑝𝑜𝑜𝑙 into multiple queues. We also split RLV into local copies

and add delegations to reduce false sharing in CPU caches.

3.4 Supporting Index Operations
Although our discussion has focused on read and update operations,
Taurus can also support scan, insert, and delete operations with an

additional index locking protocol. For a range scan, the transaction

(atomically) fetches a shared lock on each of the result rows using

the Lock function in Alg. 1. When the transaction commits, it goes

through the Commit function and updates the readLV ’s of the rows.
To avoid phantoms, the transaction performs the same scan again

before releasing the locks in Commit. If the result rows are different,
we abort the transaction. This scan-twice trick is from Silo [35].

193

We notice that, assuming 2PL, the transaction only needs to record

the number of rows returned. In the second scan, the rows in the

previous scan still exist because of the shared locks. Therefore, if

the row count remains the same, the result rows are not changed.

If a transaction T inserts a row with primary key key, it initializes
DB[key].readLV and DB[key].writeLV to be 0. Because the index for

DB[key] is not updated yet, other transactions will not see the new

row. In the Commit function after T releases the locks, it updates

DB[key].writeLV = T.LV. Finally, T inserts key into the index.

When a transaction T deletes a row with primary key key, it first
grabs an exclusive lock of the row and updates T.LV = 𝐸𝑙𝑒𝑚𝑊𝑖𝑠𝑒𝑀𝑎𝑥

(T.LV, 𝐷𝐵 [𝑘𝑒𝑦] .𝑟𝑒𝑎𝑑𝐿𝑉 , 𝐷𝐵 [𝑘𝑒𝑦] .𝑤𝑟𝑖𝑡𝑒𝐿𝑉). Other transaction try-

ing to access this row will abort due to lock conflicts. In the Commit
function before T releases the locks, it removes key from the index.

3.5 Limitations of Taurus
One potential issue is that the size of LV is linear to the number of

log managers. For a large number of log managers, the computa-

tion and storage overhead of LV will increase. In contrast, serial

logging maintains a single LSN and therefore avoids this problem.

Although we believe most DBMSs use a relatively small number of

log files and thus this overhead is acceptable, Taurus can leverage

LV compression (Sec. 4.1) and SIMD (Sec. 5.6) to mitigate this issue.

Another limitation of Taurus is the latency during recovery for

workloads with high contention. For these workloads, the inherent

recovery parallelism can be lower than the number of log managers.

A large number of inter-log dependencies will exist. In Taurus, the

dependencies propagate through RLV (Alg. 4), incurring relatively

long latency between the recovery of dependent transactions. In

contrast, a serial recovery scheme has no delay between consecu-

tive transactions and may deliver better performance. To address

this, when the contention is high, Taurus will degrade to serial

recovery. Specifically, a single worker recovers all the transactions

sequentially. The worker checks every pool and recovers the trans-

action that satisfies T.LV ≤ RLV; this approach incurs no delay

between two consecutive transactions. We evaluate this in Sec. 5.6.

Lastly, to exploit parallelism in recovery, workers might need to

scan the whole pool to find the next transaction ready to recover.

Heuristic optimizations like zig-zag scans could help. We defer

developing a data structure for Taurus recovery to future work.

4 Optimizations and Extensions
We now discuss optimizations to reduce overhead, and extensions

to support Optimistic Concurrency Control (OCC) and MVCC.

4.1 Optimization: LV Compression
The design of Taurus as described in Sec. 3 has two issues: (1) the

DBMS stores readLV and writeLV for every tuple, which changes

the data layout and incurs extra storage overhead; (2) the transac-

tion’s LV is stored for each log record, potentially increasing the

log size especially for command logging where each entry is rela-

tively small.We describe optimizations that address these problems.

Tuple LV Compression: Keeping LV s for tuples accessed a

long time ago is unnecessary. Their LV s are too small to affect

active transactions. This optimization thus stores LV s only for

active tuples in the lock table. Transactions operate on their LV s

Algorithm 5: LV Compression for Log Records

1 Function FlushPLV()
2 currentPLV = Global.PLV ;
3 logBuffer.append(currentPLV);
4 LPLV = currentPLV ;

5 Function Compress(LV)
6 compressedLV = LV ;
7 foreach LV[𝑗] ∈ LV do
8 if LV[𝑗] ≤ 𝐿𝑖 .LPLV[𝑗] then
9 compressedLV[𝑗] = NaN ;

10 return compressedLV ;

11 Function Decompress(compressedLV)
12 LV = compressedLV ;
13 foreach LV[𝑗] ∈ LV do
14 if LV[𝑗] = NaN then
15 LV[𝑗] = 𝐿𝑖 .LPLV[𝑗];

16 return LV ;

…

7 16 2 4

8 22 17

Log Meta-data

Most Recent Flushed PLV

4 45 1 245

Compression…

T.LV

(a) Logging

…

7 16 2 4

8 22 17

Log Meta-data

Most Recent Flushed PLV

7 45 2 445

Decoding…

T.LV

(b) Recovery

Figure 4: LV Compression. Example of Taurus’s LV compression.

following Alg. 1. If the DBMS inserts a tuple into the lock table, it

assigns its readLV and writeLV to be the current PLV . The system
can evict a tuple from the lock table if no transactions hold locks

on it and both its readLV and writeLV are not greater than PLV .
For the tuples previously evicted from the lock table and later

inserted back, the optimization increases the readLV andwriteLV of

these tuples and also the LV s of transactions accessing them. This

causes unnecessary dependencies. To make the trade-off between

higher compression ratio and fewer artificial dependencies, we in-

troduce a parameter 𝛿 and evict a tuple from the lock table only if

∀𝑖, PLV[𝑖] − LV[𝑖] ≥ 𝛿 is true for both readLV and writeLV . Accord-
ingly, a newly inserted tuple will have readLV[𝑖] = writeLV[𝑖] =
PLV[𝑖] − 𝛿 . Larger 𝛿 means fewer artificial dependencies, but more

tuples will stay in the lock table, and vice versa.

Log Record LV Compression:We next reduce the log storage.

We let each log record store only a part of the transaction’s LV .
The motivating insight is that for workloads with low to medium

contention, most dimensions of a log record’s LV are too small to be

interesting. For example, suppose that a transaction T depends on

a committed transaction T′. It is not critical to remember precisely

which T′ that T depends on, but only that T depends on some

transaction that happened before a specific point. Therefore, we

can set anchor points (in the form of LV s) into logs and let T only

store the elements in LV beyond the latest anchor point.

In Alg. 5, we introduce a variable LPLV as the anchor point.

L.LPLV is an LSN Vector that is maintained by each log manager 𝐿.

194

It keeps a copy of the most recent PLV written into 𝐿’s log buffer.

Periodically, the log manager calls FlushPLV to append PLV into

the log buffer and updates 𝐿.LPLV (Lines 1–4).

To compress a transaction T’s LV , we check for every dimension

if T.LV is no greater than 𝐿𝑖 .LPLV. If T.LV[𝑗] ≤ 𝐿𝑖 .LPLV[𝑗], we
can increase T.LV[𝑗] to 𝐿𝑖 .LPLV[𝑗]. Since 𝐿𝑖 .LPLV is already in the

buffer, the DBMS no longer needs to store T.LV[𝑗] (Lines 6–9).
During recovery, the DBMS performs the opposite operation; if the

𝑗-th dimension of an LV was compressed, it replaces it with the

value of LPLV[𝑗] (Lines 12–15). If it reads an anchor from the log,

it updates LPLV . Fig. 4 shows an example of LV compression. In

Fig. 4a, transaction T’s LV = [4, 45, 1, 2] is written to the log. The

system compares it against LPLV and finds that T.LV has only one

dimension (the 2nd dimension with value 45) greater than LPLV .
Only the 2nd dimension is written into the log. During recovery,

Fig. 4b shows that Taurus fills in the blanks with the most recently

seen anchor, LPLV = [7, 16, 2, 4]. The compressed LV is decoded

into [7, 45, 2, 4]. Note that the 1
𝑠𝑡
, 3

𝑟𝑑
, and 4

𝑡ℎ
dimension of the

decompressed LV are greater than the original T.LV.
The frequency of LPLV flushing makes a trade-off between paral-

lelism in recovery and LV compression ratio. When the frequency is

high, more dimensions of LV are smaller than LPLV and thus it en-

ables better compression, but some amount of recovery parallelism

is sacrificed since the decompressed LV s have larger values.

4.2 Optimization: Vectorization
The logging overhead mainly consists of: (1) the overhead intro-

duced by Taurus where we calculate LV s and move them around;

(2) the overhead of creating the log records and writing them to

the in-memory log buffer; (3) for lock-based concurrency control

algorithms, the latency due to (1) and (2) will result in extra lock

contention; (4) the time cost in persisting the log records to the

disk. All these overheads will not block the DBMS from scaling

up. Among them, (2) and (3) are shared by essentially all the write-

ahead logging algorithms; (4) is moved off the critical path by ELR.

Overhead (1) is linear in the number of log files. In our evaluation

with 16 log files, it is up to 13.8% of the total execution time if imple-

mented naively. We can exploit the data parallelism in LSN Vectors

as the values in a single vector are processed independently. Mod-

ern CPUs provide SIMD extensions that allow processing multiple

vector elements in a single instruction. For example, the instruction

_mm512_max_epu32 can compute the element-wise maximum of

two vectors of 16 32-bit integers. In Sec. 5.6, we show that vectorized

operations reduce Taurus’ overhead by 89.5%.

4.3 Extension: Support for OCC
Our overview of Taurus so far assumes that the DBMS uses 2PL.

Taurus is also compatible with other schemes. We next discuss how

Taurus can support Optimistic Concurrency Control (OCC) [24].

Alg. 6 shows the protocol. Different from a 2PL protocol (Alg. 1), an

OCC transaction calls Access when accessing a tuple and Commit
after finishing execution. The readSet and writeSet are maintained

by the read/write functions in the conventional OCC algorithm,

from which Access is called. In the Access function, the transaction
atomically reads the value, readLV , writeLV , and potentially other

metadata. Common in OCC algorithms, the ValidateSuccess function

Algorithm 6: OCC Logging for Worker Threads

1 Function Access(key, T)
2 value, readLV, writeLV = load(key) # load atomically;
3 T.LV = ElemWiseMax (T.LV, writeLV);
4 return value

5 Function Commit(T)
6 for key ∈ sorted(T.writeSet) do
7 DB[key].lock();

8 for key ∈ T.readSet do
9 foreach dimension i of LV do
10 if 𝐷𝐵 [𝑘𝑒𝑦] .readLV[𝑖] < T.𝐿𝑉 [𝑖] then # Atomic
11 𝐷𝐵 [𝑘𝑒𝑦] .readLV[𝑖] = T.𝐿𝑉 [𝑖]

12 if not ValidateSuccess()) then
13 Abort(T);

14 Create log record and write to log buffer similar to Lines 8–11 in
Alg. 1;

15 for key ∈ T.writeSet do
16 DB[key].writeLV = ElemWiseMax (DB[key].writeLV, T.LV);
17 DB[key].release();

18 Asynchronously commit T if PLV ≥ T.LV and all transactions in
𝐿𝑖 with smaller LSNs have committed;

returns true if the values in the readSet are not modified by others.

The atomicity is guaranteed through a latch, or by reading a version

number twice before and after reading the value [35].

For high concurrency, we choose a reader-lock-free design of

the Commit function. The transaction first locks all the tuples in

the writeSet (Lines 6–7). Before validating the readSet (Line 12),

it updates the readLV of tuples in the readSet one dimension at a

time (Lines 9–11). Each update happens atomically using compare-

and-swap instructions. This is necessary because the data item

might appear in the readSet of multiple transactions, and concurrent

updates of readLV might cause loss of data. The reason that the

readLV extension must occur before the validation is to enforce

RAW dependencies. To see a failure example, consider a transaction

T1 modifying the data after T2’s validation but before T2’s updates
on readLV . Then, it is possible that T1 does not observe the latest
readLV , and fails to capture the RAW dependency to T2. Note that
updating readLV before the validation might cause unnecessary

dependencies (i.e., LV s larger than necessary) if the transaction

aborts later in the validation. Such aborts only affect performance

but not correctness. The log managers stays the same as in Alg. 2.

4.4 Extension: Multi-Versioning
We next discuss how Taurus works with MVCC. Concurrency con-

trol algorithms based on logical timestamps allow physically late

transactions to access early data versions and commit transactions

logically early. However, log records are flushed in the physical

time order. Solving the decoupled order requires extra design. Thus,

we assume the recovery process also uses multi-versions. This re-

laxes the decoupling by allowing physically late transactions to

commit logically early in the recovery. It also frees Taurus from

tracking the WAR dependencies because read operations can still

195

fetch the correct historic version even after the tuple has been mod-

ified. Therefore, Taurus only needs to track the WAW and RAW

dependencies. Different from Sec. 3.1, Taurus for MVCC only adds

a single metadata for the data versions, the LSN Vector LV . Our
discussion is based on the MVCC scheme [25] used in Hekaton [9].

Whenever a transaction reads a data version 𝑣 , the transaction

updates T.LV to be ElemWiseMax(T.LV, 𝑣 .LV) to catch RAW depen-

dencies. When a transaction updates the data by adding a new data

version 𝑣 after the old version 𝑢 during normal processing phase, it

first updates the timestamps as in MVCC, then it updates T.LV to

be ElemWiseMax(T.LV, 𝑢.LV), and 𝑣 .LV to be empty.

If the transaction T commits, before it replaces its transaction

ID with its end timestamp, it iterates data versions in the writeSet.
For a data version 𝑣 in the writeSet, it replaces 𝑣 .LV to be T.LV. The
log record of T contains T.LV and the commit timestamp of T. The
former identifies whether T should recover and the recovery order,

and the latter decides the visible data version as well as the logical

timestamp of the new versions when writing the data.

During recovery, Alg. 3 and Alg. 4 are executed. Only the visible

version is returned for read operations. Whenever a write happens,

the transaction writes a new version with the commit timestamp.

Different from MVCC, transactions no longer acquire locks during

recovery because no conflicts will occur.Without Taurus, the logical

timestamps in log records enforce a total order. Taurus exploits

parallelism to recover non-conflicting transactions in parallel.

5 Evaluation
We implemented both the 2PL and OCC variants of Taurus in the

DBx1000 in-memory DBMS [1] to evaluate its performance. We

evaluate them on three storage types: (1) NVMe SSDs, (2) HDDs,

and (3) Persistent Memory (PM) simulated by a RAM disk. The

performance profiles of these devices highlight different properties

of Taurus. As the mainstream storage, NVMe SSDs provide high

I/O bandwidth, enabling insights into the performance in produc-

tion. HDDs have limited bandwidth, which is better for command

logging. The cutting-edge PM largely eliminates disk bandwidth

restrictions and exposes CPU and memory overheads.

We compare Taurus to the following protocols all in DBx1000:

No Logging: The DBMS has all logging functionalities disabled.

It does not incur any logging-related overhead and therefore serves

as a performance upper bound.

Serial Logging: This is our baseline implementation that uses

a single disk and supports both data logging and command logging.

Serial Logging with RAID-0 Setup: This is the same configu-

ration as Serial Logging, except that it uses a RAID-0 array across

the eight disks using Linux’s software RAID driver.

Plover: This parallel data logging scheme partitions log records

based on data accesses [45]. It uses per-log sequence numbers to

enforce a total order among transactions. Each transaction gener-

ates multiple log entries.

Silo-R: Lastly, we also implemented the parallel logging scheme

from Silo [35, 44]. Silo uses a variant OCC that commits transactions

in epochs. The DBMS logs transactions in batches that are processed

by multiple threads in parallel. Silo-R only supports data logging

because the system does not track write-after-read dependencies.

5.1 Workloads
The choices of the benchmarks provide a comprehensive evalua-

tion of Taurus and baselines. YCSB, TPC-C Payment, and TPC-C

New-Order represent short transactions with moderate contention,

short transactions with low contention, and long transactions.

Yahoo! Cloud Serving Benchmark (YCSB): This benchmark

simulates the workload pattern of cloud-based OLTP systems [7]. In

our experiments, we simulate a DBMS with a single table. Each data

row has 10 fields and each field contains 100 bytes. We evaluate two

databases with 10 GB and 500 GB of data. We build a single index

for each table. The access pattern of transactions visiting the rows

follows a Zipfian distribution; we set the distribution parameter

to 0.6 to simulate moderate contention. Each transaction accesses

two tuples and each access has a 50% chance to be a read operation

(otherwise a write operation). We will perform sensitivity studies

regarding these workload parameters in Sec. 5.6. The size of a com-

mand log record is smaller than that of a data log record.

TPC-C: This is the standard OLTP benchmark that simulates a

wholesale company operating on warehouses [34]. There are nine

tables covering a variety of necessary information and transactions

are performing daily order-processing business. We simulate two

(Payment and New-Order) out of the five transaction types in TPC-

C as around 90% of the default TPC-C mix consists of these two

types of transactions. When Taurus is running in command logging

mode, each transaction log record consists of the input parameters

to the stored procedure. The workload is logically partitioned by

80 warehouses. We evaluate the full TPC-C workload in Sec. 5.5.

5.2 Performances with NVMe SSDs
We run the DBMS on an Amazon EC2 i3en.metal instance with
two Intel Xeon 8175M CPUs (24 cores per CPU) with hyperthread-

ing (96 virtual cores in total). The server has eight NVMe SSDs.

Each device provides around 2 GB/s bandwidth and in total the

server has 16 GB/s bandwidth. We use at most 80 worker threads

and 16 log manager threads to avoid context switches. Every disk

contains two log files to better exploit the bandwidth.

Logging Performance: Our first experiment evaluates the run-

time performance of Taurus by measuring the throughput when

the number of worker threads changes. We test the logging pro-

tocols with YCSB-500G and TPC-C benchmarks. We measure the

throughput by the number of transactions committed by the worker

threads per second. We keep the 2PL and OCC results separate to

avoid comparisons based on the concurrency control algorithm

performance. We show the 2PL results in Fig. 5 and the OCC results

in Fig. 6. The x-axes are the number of worker threads (excluding

the log managers), and the y-axes are the throughput.

Fig. 5a presents the logging performance for the YCSB-500G

benchmark. Taurus with command logging scales linearly, while

Taurus with data logging plateaus after 48 threads because it is

bounded by the I/O of 16 dedicated writers. The serial command

baseline also reaches a high throughput due to the succinctness

of the command logging. It grows slower after 48 threads. This is

not due to the disk bandwidth because the performance is similar

on the RAID-0 disk array. It is instead because every transaction

that spans multiple threads increments the shared LSN; this leads

196

No Logging Plover Data Serial Command Serial Data Serial RAID-0 Command Serial RAID-0 Data Taurus Command Taurus Data

1 16 32 48 64 80
Number of Worker Threads

0
5

10
15
20

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-500G

1 16 32 48 64 80
Number of Worker Threads

0
10
20
30
40

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) TPC-C Payment

1 16 32 48 64 80
Number of Worker Threads

0.0
1.5
3.0
4.5
6.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(c) TPC-C New-Order

Figure 5: Logging Performance (2PL). Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.

No Logging SiloR Data Taurus Command Taurus Data

1 16 32 48 64 80
Number of Worker Threads

0
4
8

12
16

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-500G

1 16 32 48 64 80
Number of Worker Threads

0
10
20
30
40

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)
(b) TPC-C Payment

1 16 32 48 64 80
Number of Worker Threads

0.0
1.5
3.0
4.5
6.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(c) TPC-C New-Order

Figure 6: Logging Performance (OCC). Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.

1 16 32 48 64 80
Number of Worker Threads

0
4
8

12
16

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-500G

1 16 32 48 64 80
Number of Worker Threads

0
8

16
24
32

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) TPC-C Payment

1 16 32 48 64 80
Number of Worker Threads

0.0
2.5
5.0
7.5

10.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(c) TPC-C New-Order

Figure 7: Recovery Performance (2PL). Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.

1 16 32 48 64 80
Number of Worker Threads

0
4
8

12
16

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-500G

1 16 32 48 64 80
Number of Worker Threads

0
8

16
24
32

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) TPC-C Payment

1 16 32 48 64 80
Number of Worker Threads

0.0
2.5
5.0
7.5

10.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(c) TPC-C New-Order

Figure 8: Recovery Performance (OCC). Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.

to excessive cache coherence traffic that inhibits scalability [35].

Taurus command logging is more scalable because each logmanager

maintains a separate LSN. Serial data saturates the single disk’s

bandwidth. Similar to Taurus, Plover writes records across multiple

files. For each transaction, it generates a log record for each accessed

partition, and accesses the per-log LSN to generate a global LSN for

the transaction. Then, it uses this global LSN to update the per-log

sequence numbers. These updates are atomic to prevent data races.

Plover is limited by the contention of the local counters. Taurus

with command logging is up to 2.4× faster than Plover.

Fig. 5b shows the performance for the short and low-contended

Payment transactions. These results are similar to YCSB. All the

logging baselines incur a significant overhead compared to No

Logging. The gap between No Logging and Taurus reflects the

overheads discussed in Sec. 4.2. The LV maintenance in Taurus

only takes 1.6% of the running time. Taurus command logging has

the best performance. Plover suffers from the increased data ac-

cesses, causing the worker threads to compete for the latches on

the local sequence numbers, essentially downgrading to a single

stream logging. Fig. 5c shows the result for the New-Order trans-

actions. These transactions access a larger number of tuples (∼30

tuples each). The overall throughput is lower, making it difficult

to hit the LSN allocation bottleneck. Therefore, serial command

logging scales well. The gap between serial command with RAID-

0 and Taurus command consists of LV-related overheads. Taurus

shows advantages only when the number of workers is adequate.

We project that the serial command logging will reach the cache

traffic limit when there are 120 workers whereas Taurus should still

scale. Similar to Payment transactions, Plover is bounded by the

contention. Fig. 6 shows the comparison between the OCC variant

of Taurus and Silo-R. The No Logging baseline also uses the OCC

algorithm. For all the benchmarks, both Silo-R and Taurus data

logging plateau at a similar level, saturating the disk bandwidth.

Before that, Silo-R performs slightly better than Taurus because

it does not track LSN Vectors. However, Silo-R cannot track RAW

dependencies, so it is incompatible with command logging. Taurus

command outperforms Silo-R in every benchmark, by up to 2.8×.
Recovery Performance:We use the log files generated by 80

worker threads for better recovery parallelism. These files are large

enough for steady measurements and are stored in uncompressed

bytes across the disks with I/O caches cleaned. Fig. 7a shows the

197

Plover Data Serial Command Serial Data Serial RAID-0 Command Serial RAID-0 Data SiloR Data Taurus Command Taurus Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
0.3
0.6
0.9
1.2

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-10G Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
0.3
0.6
0.9
1.2

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) TPC-C Payment Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0.00
0.08
0.16
0.24
0.32

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(c) TPC-C New-Order Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0
3
6
9

12

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(d) YCSB-10G Command

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
1.5
3.0
4.5
6.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(e) TPC-C Payment Command

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
0.6
1.2
1.8
2.4
3.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(f) TPC-C New-Order Command

Figure 9: Data and Command Logging Performance comparison on YCSB-10G, TPC-C Payment, and TPC-C New-Order on HDDs.

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
0.2
0.4
0.6
0.8

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-10G Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0.00
0.25
0.50
0.75
1.00
1.25

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) TPC-C Payment Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0.00
0.08
0.16
0.24
0.32

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(c) TPC-C New-Order Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0
1
2
3
4
5

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(d) YCSB-10G Command

1 8 16 24 32 40 48 56
Number of Worker Threads

0
1
2
3
4
5

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(e) TPC-C Payment Command

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(f) TPC-C New-Order Command

Figure 10: Data and Command Recovery Performance comparison on YCSB-10G, TPC-C Payment, and TPC-C New-Order on HDDs.

recovery peformance on YCSB-500G. Plover outperforms Taurus

below 80 threads because it does not need to resolve dependencies.

Each Plover log file contains totally ordered entries, sufficient to

recover independently. Plover saturates the bandwidth after 48

threads. Taurus command scales linearly and exceeds Plover at 80

threads. The serial baselines, regardless of data or command logging,

with a RAID-0 setup or not, are limited by the total sequence order

of transactions. Taurus is up to 42.6× faster than the serial baselines.

The recovery performance of TPC-C Payment is in Fig. 7b. Both

Plover and Taurus data logging hit the I/O bottleneck quickly, while

Taurus command logging scales linearly. Fig. 7c shows the com-

parison for TPC-C New-Order. Taurus command scales well and

outperforms Plover by up to 2.4×. The gap between Plover and

Taurus data is due to dependency resolution and the resulting mem-

ory overhead. Taurus command is slower than Taurus data at 16

threads due to the cost of re-running the transactions. Fig. 8 shows

the results for the OCC baselines. Silo-R requires data logging and

therefore falls behind Taurus command logging. But Silo-R does not

need dependency resolution so it outperforms Taurus data logging

when the number of transactions is large. Silo-R uses latches to

ensure that transactions only apply updates with a higher version

number. This overhead is more significant when transactions are

long. Taurus command logging outperforms Silo-R by up to 9.7×.

5.3 Performance with Hard Disks
To better understand the performance of baselines with limited

bandwidth, we evaluate them on an Amazon EC2 h1.16xlarge

machine with eight HDDs. Each disk provides 160 MB/s bandwidth

and in total the server has 1.3 GB/s bandwidth. Since the server

only has 256 GB memory, we use YCSB-10G. The data logging and

command logging baselines differ in absolute throughput on HDDs,

so we present them separately. Silo-R is bound by the disk band-

width often, and the difference in concurrency control does not

contribute to the relative order. Therefore, we display the results

for Silo-R and 2PL baselines together.

Logging Performance: Fig. 9a shows the logging performance

of data logging baselines for YCSB-10G. We observe that serial data

saturates the bandwidth of a single disk quickly. Taurus data logging

achieves 7.1× higher throughput than serial data. Serial data logging

on RAID-0 delivers similar performance since the bandwidth of the

disk array is 8× greater. Silo-R and Plover also flush across eight

disks uniformly, thereby achieving similar performance. In Figs. 9b

and 9c, we also observe this pattern for the TPC-C transactions

except that Plover plateaus because of the high contention.

Fig. 9d shows the command logging baselines for the YCSB bench-

mark. Serial command logging outperforms serial data logging due

to smaller log records. Starting from 16 threads, its performance is

limited by the single disk bandwidth. The serial command baseline

on a RAID array plateaus after 24 threads, limited by the cache

coherence traffic. Taurus with command logging is 9.2× faster than

Silo-R and Plover. Fig. 9e shows the throughput for TPC-C Pay-

ment. Taurus plateaus after 16 threads, achieving 5.2× speedup

over Silo-R. Serial command logging suffers from NUMA issues

between 16 threads and 48 threads as the log buffer resides on a

198

No Logging
Plover Data

Serial Command
Serial Data

SiloR Data
Taurus Command

Taurus Data

1 16 32 48 64 80
Number of Worker Threads

0
5

10
15
20

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-500G Logging

1 16 32 48 64 80
Number of Worker Threads

0
4
8

12
16

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) YCSB-500G Recovery

Figure 11: DRAM Performance.

single socket. For the TPC-C New-Order workload in Fig. 9f, both

serial command with RAID-0 and Taurus command scale well.

Recovery Performance: Fig. 10 shows the recovery perfor-

mance. The serial baselines are again limited by the total order. For

Taurus, the recovery performance of data logging plateaus after

the number of worker threads exceeds 8. It is up to 1.7× faster than

the serial data logging with RAID. Taurus data logging achieves

similar throughput as Silo-R, while Taurus command logging is up

to 6.3× faster. Plover parallels Silo-R except for Payment; here, it

devolves into single-stream logging due to the contention.

The peak performance of Taurus command logging and Taurus

data logging are 11.3× and 5.5× faster than the serial baselines for

YCSB recovery. For TPC-C Payment in Fig. 10e, Taurus command

logging is 7.1× faster than serial command logging. Its performance

decreases with more than 24 workers because parallelism is fully

exploited and more threads only incur more contention.

For TPC-C New-Order, the performance ratios between Taurus

and the serial baselines are 17.5× and 6.7× for command logging (or

data logging lifted by disk arrays) and data logging (without disk

arrays), respectively. If the DBMS uses Taurus command logging

instead of data logging, it improves the performance by 7.7×. This is
up to 56.6× better than serial data logging. Databases with limited

bandwidth can benefit from Taurus supporting command logging.

5.4 Performance with PM (RAM Disk)
We evaluated the performance on DRAM filesystems to simulate a

PM environment. Every operation to this filesystem goes through

the OS. This overhead is shared in the real PM. The PM incurs a

higher latency (<1 us for 99.99%) and has a bandwidth 3-13× lower

compared to DRAM [40]. We conjecture that Taurus command

logging would perform relatively better on a real PM because the

bandwidth might become the bottleneck. Fig. 11 shows the results

on the DRAM filesystem. The advantage of command logging is

greatly reduced when the bandwidth is sufficient. Taurus command

logging scales linearly, while serial command logging is restricted

by the cache coherence traffic. All the parallel algorithms scale well

in recovery. Silo-R outperforms Taurus slightly as it does not resolve

dependencies. We can infer that Taurus does not incur observable

overhead that would preclude it from a PM-based DBMS.

5.5 TPC-C Full Mix
To demonstrate the generality of Taurus and to evaluate Taurus in

a more realistic OLTP workload, we added the support for range

scans, row insertions, and row deletions. We implement all the

types of transactions from the TPC-C benchmark with the 2PL

concurrency control algorithm. The full TPC-C mix consists of 45%

No Logging
Serial Command

Serial Data
Serial RAID-0 Command

Serial RAID-0 Data
Taurus Command

Taurus Data

1 8 16 24 32 40 48 56
Number of Worker Threads

0.00
0.15
0.30
0.45
0.60
0.75

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) Logging

1 8 16 24 32 40 48 56
Number of Worker Threads

0.0
0.2
0.4
0.6
0.8

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) Recovery

Figure 12: TPC-C Full Mix Performance (2PL)

No Logging
Plover Data
Serial Command

Serial Data
Serial RAID-0 Command
Serial RAID-0 Data

SiloR Data
Taurus Command
Taurus Data

0.0 0.5 1.0 1.5
Zipfian Theta

0
4
8

12
16

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(a) YCSB-10G Logging

0.0 0.5 1.0 1.5
Zipfian Theta

0
1
2
3
4

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

(b) YCSB-10G Recovery

Figure 13: Contention. Varying Zipfian Theta in YCSB.

New-Order, 43% Payment, 4% Order-Status, 4% Delivery, and 4%

Stock-Level. Figure 12 shows the logging performance and recovery

performance. Starting from 32 threads, the logging algorithms are

limited by the workload parallelism. Compared to No Logging, the

overhead caused by Taurus is around 11.7%. In recovery, Taurus

command logging outperforms the serial baselines by 12.8×.

5.6 Sensitivity Study
Now we evaluate the performance when various factors change.

Contention:Weuse the YCSB-10Gworkload on the h1.16xlarge
server to study how the contention level impacts performance. We

adjust the 𝜃 parameter of the Zipfian distribution. A higher 𝜃 value

corresponds to higher contention. Every baseline uses 56 workers.

Fig. 13a shows the throughput when varying 𝜃 for the logging.

When 𝜃 is greater than 1.0, the performance of all the schemes

decreases due to the reduced parallelism in the workload. Fig. 13b

shows the recovery performance. It indicates different trends for se-

rial algorithms and Taurus. For Taurus, the performance dropswhen

𝜃 goes beyond 0.8 due to the inter-log dependency issue (Sec. 3.5):

dependencies between transactions spanning different logs incur

extra latency that hurts performance at high contention. In con-

trast, serial algorithms have low throughput at low contention, but

perform better with higher 𝜃 , because higher data skew makes the

working set fit in on-chip caches, resulting in a higher cache hit rate

and better performance. Since the recovery proceeds sequentially,

contention does not introduce data races, so it does not harm the

performance of the serial baselines. When the contention is high

(i.e., 𝜃 > 1), we run Taurus with serial recovery to avoid the high

latency between dependent transactions. This enables Taurus to

achieve good performance under high contention.

Transaction Impact We evaluate YCSB-500G on an EC2 i3en.
metal instance and vary the number of tuples every transaction

accesses from 2 to 2,000. Fig. 14 shows the throughput is inversely

proportional with the transaction length. Fig. 15 shows the time

breakdown of Taurus data logging. When the number of tuples

199

No Logging Plover Data Taurus Command Taurus Data

101 102 103

Txn Length

10 3

10 1

101

Th
ro

ug
hp

ut
(m

illi
on

 tx
n/

s)

Figure 14: Transaction Impact. Varying the no. of accesses per txn.

Tuple Tracking
LV Update
Get Lock

Release Lock
Create Log Record

Write to Buffer
Cleanup

Index Overhead
Transaction Payload

0.0 0.2 0.4 0.6 0.8 1.0
Time Breakdown

2
20

200
2000

Tx
n

Le
ng

th

Figure 15: Transaction Impact. Time breakdown of Taurus Logging.

Taurus LV Overhead (ns) Taurus SIMD-off LV Overhead (ns)

1 2 4 8 12 16
The Number of Loggers

0

200

400

600

LV
 O

ve
rh

ea
d

(n
s)

Figure 16: Vectorization. The LV Update overhead (in nanosec).

accessed per transaction increases from 2 to 200, the LV update

overhead stays fixed at 0.6%, while the tuple tracking overhead of

2PL increases from 10.7% to 72.8%. With the NO_WAIT policy [43]

to avoid deadlocks, the abort rate grows quickly with the number

of tuples accessed. At 2000 tuples per transaction, the abort rate is

high, causing the overhead distribution to change greatly because

overheads grow differently. Some overheads like writing the log

buffer occur once per transaction, some like tuple tracking occur

linearly in the number of tuples accessed, and some like getting

the lock are more sensitive to the contention. At 2,000 tuples per

transaction, the LV updating overhead is around 2.1%.

Number of Log Files We also evaluate the effectiveness of the

SIMD optimizations. We run Taurus command logging with SIMD

on and off against the YCSB-10G workload with 64 threads. Fig. 16

plots the time (in nanoseconds) of LV overhead per transaction with

different numbers of log files. The gap increases with the number

of log files. Using SIMD reduces the overhead by up to 89.5%.

6 Related Work
Early-lock-release (ELR): ELR [8, 13, 23, 32] allows a transaction

to release locks before flushing to log files. Controlled Lock Viola-

tion [12] is similar. Taurus includes ELR in its design.

Single-Storage Logging Algorithms:ARIES [29] has been the
gold standard in database logging and is widely implemented. How-

ever, ARIES does not scale well on multicore processors, as many

recent works have observed [16, 35, 37, 44]. C-ARIES [33] was pro-

posed to support parallel recovery, and CTR [2] improves the recov-

ery time by using multi-versioning and aggressive checkpointing,

but the contention caused by the original ARIES logging remains.

Aether [16], ELEDA [18], and Border-Collie [20] have opti-

mized ARIES by reducing the length of critical sections in logging.

But they still use a single storage device and suffer from the central-

ized LSN bottleneck. TwinBuf [28] uses two log buffers to support

parallel buffer filling. Besides the single storage bottleneck, TwinBuf

relies on global timestamps to order the log records. These schemes

are similar to the serial data baseline we evaluated in Sec. 5.

Single-Stream Parallel Logging Algorithms: P-WAL [30] re-

alizes parallel logging but relies on a single counter to order transac-

tions, incurring scalability issues. Besides, the enforced order causes

serial recovery. Adaptive logging [41] achieves parallel recovery

for command logging in a distributed partitioned database. It infers

dependency information from the transactions’ read/write set. This

approach maintains each transaction’s start and end times to detect

dependencies. PACMAN [38] enables parallel command logging

recovery by using program analysis to learn what computation can

be performed in parallel. Taurus supports both parallel logging and

recovery, while [38] only supports parallel recovery.

LoggingAlgorithms forModern Storage: Fast recovery based
on NVM is an active research area [3, 4, 6, 10, 15, 21, 22, 36]. This

line of work leverages the high bandwidth and byte-addressable

nature of NVM to improve the performance. Taurus, in contrast,

can work on both traditional HDD/SSDs and new NVM devices.

Dependency-TrackingAlgorithms: Similar to Taurus, [8] also

uses dependency tracking to log to multiple files, but does not log

dependency information as metadata. This leads to two shortcom-

ings: (1) transactions with dependencies have to be logged in order,

incurring significant overhead when there are many inter-log de-

pendencies; (2) it does not support parallel recovery. DistDGCC [42]

is coupled with a dependency tracking logging scheme, but it logs

fine-grained dependency graphs. In [17], Johnson et al. proposed a

parallel logging scheme that relies on single-dimension Lamport

clocks to achieve a global total order. Taurus uses multi-dimension

vector clocks and only preserves partial orders between dependent

transactions, enabling moderate parallelism in recovery. Enforcing

a total order can accelerate the recovery if the inherent parallelism

is low. Taurus provides a serial fallback to fit low-parallelism cases.

Kuafu [14] is an algorithm for replaying transactions in paral-

lel on a replica. It also encodes dependencies but only supports

data logging. Bernstein et al. present a logging algorithm [5] for

multi-partition databases. Their design uses two-dimensional vector

clocks but keeps a total order among cross-partition transactions.

7 Conclusion
We presented Taurus, a lightweight parallel logging scheme for

high-throughput main memory DBMSs. It is designed to support

not only data logging but also command logging, and is compatible

with multiple concurrency control algorithms. It is both efficient

and scalable compared to state-of-the-art logging algorithms.

Acknowledgments
This work was supported (in part) by the National Science Founda-

tion (IIS-1846158, IIS-1718582, SPX-1822933, SPX-1822920), Google

Research Grants, the Alfred P. Sloan Research Fellowship program,

and Wisconsin Alumni Research Foundation.

200

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1718582
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1822933
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1822920
https://sloan.org/grant-detail/8638

References
[1] [n.d.]. DBx1000. https://github.com/yxymit/DBx1000.

[2] Panagiotis Antonopoulos, Peter Byrne,Wayne Chen, Cristian Diaconu, Raghaven-

dra Thallam Kodandaramaih, Hanuma Kodavalla, Prashanth Purnananda, Adrian-

Leonard Radu, Chaitanya Sreenivas Ravella, and Girish Mittur Venkatara-

manappa. 2019. Constant time recovery in Azure SQL database. Proceedings of
the VLDB Endowment 12, 12 (2019), 2143–2154.

[3] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s talk about stor-

age & recovery methods for non-volatile memory database systems. In SIGMOD.
707–722.

[4] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind logging.

VLDB 10, 4 (2016), 337–348.

[5] Philip A Bernstein and Sudipto Das. 2015. Scaling Optimistic Concurrency

Control by Approximately Partitioning the Certifier and Log. IEEE Data Eng.
Bull. 38, 1 (2015), 32–49.

[6] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. 2015. Rewind:

Recovery write-ahead system for in-memory non-volatile data-structures. VLDB
8, 5 (2015), 497–508.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC. 143–154.
[8] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R

Stonebraker, and David A Wood. 1984. Implementation techniques for main
memory database systems. Vol. 14. ACM.

[9] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s

Memory-Optimized OLTP Engine. In SIGMOD. 1243–1254.
[10] Ru Fang, Hui-I Hsiao, Bin He, C Mohan, and Yun Wang. 2011. High performance

database logging using storage class memory. In 2011 IEEE 27th International
Conference on Data Engineering. IEEE, 1221–1231.

[11] Colin J Fidge. 1987. Timestamps inmessage-passing systems that preserve the partial
ordering. Australian National University. Department of Computer Science.

[12] Goetz Graefe and Harumi Kuno. 2016. Controlled lock violation for data transac-

tions. US Patent 9,396,227.

[13] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.

2013. Controlled lock violation. In SIGMOD. ACM, 85–96.

[14] Chuntao Hong, Dong Zhou, Mao Yang, Carbo Kuo, Lintao Zhang, and Lidong

Zhou. 2013. KuaFu: Closing the parallelism gap in database replication. In ICDE.
IEEE, 1186–1195.

[15] Jian Huang, Karsten Schwan, and Moinuddin K Qureshi. 2014. NVRAM-aware

logging in transaction systems. VLDB 8, 4 (2014), 389–400.

[16] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: a scalable approach to logging. VLDB 3, 1-2 (2010),

681–692.

[17] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2012. Scalability of write-ahead logging on multicore and multi-

socket hardware. The VLDB Journal 21, 2 (2012), 239–263.
[18] Hyungsoo Jung, Hyuck Han, and Sooyong Kang. 2017. Scalable database logging

for multicores. VLDB 11, 2 (2017), 135–148.

[19] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,

Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-Performance,

Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1,
2 (2008), 1496–1499.

[20] Jongbin Kim, Hyeongwon Jang, Seohui Son, Hyuck Han, Sooyong Kang, and

Hyungsoo Jung. 2019. Border-Collie: A Wait-free, Read-optimal Algorithm for

Database Logging on Multicore Hardware. In SIGMOD. ACM, 723–740.

[21] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip

Won. 2016. NVWAL: Exploiting NVRAM in write-ahead logging. ACM SIGOPS
Operating Systems Review 50, 2 (2016), 385–398.

[22] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.

In SIGMOD. ACM, 691–706.

[23] Hideaki Kimura, Goetz Graefe, and Harumi A Kuno. 2012. Efficient locking

techniques for databases on modern hardware.. In ADMS@ VLDB. 1–12.
[24] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for

concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[25] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-

nisms for Main-Memory Databases. VLDB (2011), 298–309.

[26] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.

2014. Rethinking main memory OLTP recovery. In ICDE. 604–615. http://hstore.

cs.brown.edu/papers/voltdb-recovery.pdf

[27] FriedemannMattern. 1988. Virtual Time and Global States of Distributed Systems.

In Parallel and Distributed Algorithms. 215–226.
[28] Qingzhong Meng, Xuan Zhou, Shan Wang, Haiyan Huang, and Xiaoli Liu. 2018.

A Twin-Buffer Scheme for High-Throughput Logging. In International Conference
on Database Systems for Advanced Applications. 725–737.

[29] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.

1992. ARIES: a transaction recovery method supporting fine-granularity locking

and partial rollbacks using write-ahead logging. ACM Transactions on Database
Systems (TODS) 17, 1 (1992), 94–162.

[30] Yasuhiro Nakamura, Hideyuki Kawashima, and Osamu Tatebe. 2019. Integration

of TicToc Concurrency Control Protocol with Parallel Write Ahead Logging

Protocol. International Journal of Networking and Computing 9, 2 (2019), 339–

353.

[31] David A Patterson, Garth Gibson, and Randy H Katz. 1988. A Case for Redundant
Arrays of Inexpensive Disks (RAID). Vol. 17. ACM.

[32] Eljas Soisalon-Soininen and Tatu Ylönen. 1995. Partial strictness in two-phase

locking. In International Conference on Database Theory. Springer, 139–147.
[33] Jayson Speer and Markus Kirchberg. 2007. C-ARIES: A multi-threaded version

of the ARIES recovery algorithm. In International Conference on Database and
Expert Systems Applications. Springer, 319–328.

[34] The Transaction Processing Council. 2007. TPC-C Benchmark (Revision 5.9.0).

[35] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy Transactions in Multicore In-Memory Databases. In SOSP.
[36] Tianzheng Wang and Ryan Johnson. 2014. Scalable logging through emerging

non-volatile memory. VLDB 7, 10 (2014), 865–876.

[37] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. 2014. Using restricted

transactional memory to build a scalable in-memory database. In EuroSys. 26.
[38] YingjunWu,Wentian Guo, Chee-Yong Chan, and Kian-Lee Tan. 2017. Fast Failure

Recovery for Main-Memory DBMSs on Multicores. In Proceedings of the 2017
ACM International Conference on Management of Data. 267–281.

[39] Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. 2020. Taurus: Light-

weight Parallel Logging for In-MemoryDatabaseManagement Systems (Extended

Version). arXiv:arXiv:2010.06760

[40] Jian Yang, Juno Kim,Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.

2020. An empirical guide to the behavior and use of scalable persistent memory. In

18th {USENIX} Conference on File and Storage Technologies ({FAST} 20). 169–182.
[41] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai Wu. 2016.

Adaptive logging: Optimizing logging and recovery costs in distributed in-

memory databases. In SIGMOD. 1119–1134.
[42] Chang Yao, Meihui Zhang, Qian Lin, Beng Chin Ooi, and Jiatao Xu. 2018. Scaling

distributed transaction processing and recovery based on dependency logging.

VLDB Journal 27, 3 (2018), 347–368.
[43] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control

with One Thousand Cores. VLDB, 209–220.
[44] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast

databases with fast durability and recovery through multicore parallelism. In

OSDI. 465–477.
[45] Huan Zhou, Jinwei Guo, Huiqi Hu, Weining Qian, Xuan Zhou, and Aoying Zhou.

2020. Plover: parallel logging for replication systems. Frontiers of Computer
Science 14, 4 (2020), 144606.

201

https://github.com/yxymit/DBx1000
http://hstore.cs.brown.edu/papers/voltdb-recovery.pdf
http://hstore.cs.brown.edu/papers/voltdb-recovery.pdf
http://arxiv.org/abs/arXiv:2010.06760

	Abstract
	1 Introduction
	2 Background
	2.1 Serial Logging
	2.2 Parallel Logging Challenges

	3 Taurus Parallel Logging
	3.1 LSN Vector
	3.2 Logging Operations
	3.3 Recovery Operations
	3.4 Supporting Index Operations
	3.5 Limitations of Taurus

	4 Optimizations and Extensions
	4.1 Optimization: LV Compression
	4.2 Optimization: Vectorization
	4.3 Extension: Support for OCC
	4.4 Extension: Multi-Versioning

	5 Evaluation
	5.1 Workloads
	5.2 Performances with NVMe SSDs
	5.3 Performance with Hard Disks
	5.4 Performance with PM (RAM Disk)
	5.5 TPC-C Full Mix
	5.6 Sensitivity Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

