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Abstract

In this paper, we introduce the notion of taut contact hyperbola on three-manifolds. It is 

the hyperbolic analogue of the taut contact circle notion introduced by Geiges and Gon-

zalo (Invent. Math., 121: 147–209, 1995), (J. Differ. Geom., 46: 236–286, 1997). Then, 

we characterize and study this notion, exhibiting several examples, and emphasizing dif-

ferences and analogies between taut contact hyperbolas and taut contact circles. Moreo-

ver, we show that taut contact hyperbolas are related to some classic notions existing in 

the literature. In particular, it is related to the notion of conformally Anosov flow, to the 

critical point condition for the Chern–Hamilton energy functional and to the generalized 

Finsler structures introduced by R. Bryant. Moreover, taut contact hyperbolas are related 

to the bi-contact metric structures introduced in D. Perrone (Ann. Global Anal. Geom., 52: 

213–235, 2017).
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1 Introduction

Following [13, 15], a pair (�1, �2) of contact 1-forms on a three-manifold M is called a 

contact circle if the linear combination �
a
= a

1
�

1
+ a

2
�

2
 is also a contact form for every 

a = (a1, a2) ∈ �
1 , the unit circle in ℝ2 . If in addition the volume forms �

a
∧ (d�

a
) are equal 

for every a ∈ �
1 , then (�1, �2) is said to be a taut contact circle.
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In the paper [24], we studied taut contact circles on a three-manifold from point of 

view of the Riemannian geometry and introduced the notion of bi-contact metric struc-

ture (�1, �2, g) , that is, (�1, �2) is a pair of contact 1-forms and g is a Riemannian metric 

associated to both the contact forms �
1
 , �

2
 such that the corresponding Reeb vector fields 

are orthogonal.

The main purpose of this paper is to start the study of the hyperbolic analogue, in 

dimension three, of taut contact circles study. The unit circle �1 of the Euclidean plane 

has its counterpart in the pseudo-Euclidean plane, that is, in the Minkowski plane, in the 

four arms of the unit equilateral hyperbolas ℍ1

r
∶ x

2
− y

2
= r, r = ±1 . Then, we call con-

tact hyperbola a pair of contact 1-forms (�1, �2) such that, for every a = (a1, a2) ∈ ℍ
1

r
 , 

the linear combination �
a
= a

1
�

1
+ a

2
�

2
 is also a contact form. If in addition the volume 

forms �
a
∧ (d�

a
) = r�

1
∧ (d�

1
) for every a ∈ ℍ

1

r
 , then (�1, �2) is said to be a taut contact 

hyperbola. In particular, if (�1, �2, g) is a bi-contact metric structure on a three-mani-

fold, then (�1, �2) is either a taut contact circle or a taut contact hyperbola.

We note that the notion of taut contact hyperbola introduced in this paper is very 

natural because is related to some classic notions existing in the literature: the notion of 

conformally Anosov flow introduced by Mitsumatsu [21] and Eliashberg-Thurston [12], 

the critical point condition for the Chern–Hamilton energy functional [9, 26] and the 

generalized Finsler structures introduced by Bryant [5, 6], are related to the taut contact 

hyperbolas. So we believe that this study is worthy of subsequent insights.

The present paper, where in particular we emphasize differences and analogies between 

taut contact hyperbolas and taut contact circles, is organized in the following way.

In Sect. 2, we collect some basic facts about contact Riemannian geometry.

In Sect.  3, we introduce the notion of taut contact hyperbola on a three-manifold. In 

particular, in the compact case, a taut contact hyperbola defines a conformally Anosov flow 

in the sense of Mitsumatsu [21] and Eliashberg-Thurston [12]. Then, we study left invari-

ant taut contact hyperbolas on 3D Lie groups. The Lie groups S̃L(2, R) and Sol3 are the only 

unimodular Lie groups which admit left invariant taut contact hyperbolas; thus, we deter-

mine the left invariant taut contact hyperbolas on these Lie groups. Then, we study taut 

contact hyperbolas on non-unimodular Lie groups, in particular there are non-unimodular 

Lie groups with the Milnor’s invariant D = 0 which admit a taut contact hyperbola with the 

corresponding Reeb vector fields dependent.

Section 4 contains some characterization of taut contact hyperbolas (cf. Theorem 4.2), 

and a remark about a difference between a taut contact circle and a taut contact hyperbola 

in terms of symplectic structures.

In Sect. 5, in analogy with the notion of taut contact 2-sphere, we introduce the notion 

of taut contact 2-hyperboloid, in particular we get that the Lie group S̃L(2, R) is the only 

simply connected three-manifold which admits a taut contact 2-hyperboloid (�1, �2, �3) 

with the corresponding Reeb vector fields (�1, �2, �3) that constitute the frame dual of the 

coframe (�1, �2, �3).

In Sect.  6, we show that the critical point condition for the Chern–Hamilton energy 

functional ( [9, 26]) is a sufficient condition for the existence of a taut contact hyperbola on 

a non-Sasakian contact metric three-manifold (M, �, g) (cf. Theorem 6.1). In particular, in 

the compact case, (M, ker �) is universally tight. Thus, we exhibit an example related to this 

Theorem.

In Sect. 7 we study the geometry of a three-manifold M determined by the existence of 

a bi-contact metric structure. We characterize the existence of a bi-contact metric structure 

(�1, �2, g) on M by the condition that (�1, �2) is a (−�)-Cartan structure (cf. Theorem 7.1). 

In particular, there are a 1-form �
3
 and a function � , that we call the Webster function (cf. 
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Remark 7.4), uniquely determined by this structure. Then, (cf. Theorem 7.5) �
3
 is Killing 

(resp. a contact form) if and only if (�1, �2) is taut contact circle (resp. the Webster function 

� ≠ 0 everywhere). Besides, we study the geometry of M when the 1-form �
3
 is a contact 

form and in particular when the Webster function � = ±1 (cf. Theorem 7.5 and Corollary 

7.6).

Finally, in Sect. 8, we see how bi-contact metric structures are related to the general-

ized Finsler structures (introduced by Bryant [5, 6]) and construct an explicit example of 

bi-contact metric structures (�1, �2, g) where (�1, �2) is a taut contact hyperbola with the 

Webster function � non-constant (in particular, this example gives a positive answer to a 

question posed in [24]).

2  Riemannian geometry of contact manifolds

In this section, we collect some basic facts about contact Riemannian geometry and refer 

to the two monographs [3, 4] for more information. All manifolds are supposed to be con-

nected and smooth. Moreover, in what follows, for a Riemannian manifold (M, g), we shall 

denote by ∇ the Levi-Civita connection of the Riemannian metric g, by R the correspond-

ing Riemannian curvature tensor and by Ric the Ricci tensor.

A contact manifold is a (2n + 1)-dimensional manifold M equipped with a global 

1-form � such that � ∧ (d�)n ≠ 0 everywhere on M. It has an underlying almost con-

tact structure (�, �,�) where � is a global vector field (called the Reeb vector field, 

or the characteristic vector field) and � is a global tensor of type (1,1) such that    

�(�) = 1 , �� = 0 , �2 = −I + � ⊗ � . A Riemannian metric g can be found such that

In such a case, g is called an associated metric, and we refer to (M, �, g) , or (M, �, �,�, g) , 

as a contact metric (or contact Riemannian) manifold. The tensor h =
1

2
L�� , where L 

denotes the Lie derivative, plays a fundamental role in contact Riemannian geometry, it is 

symmetric and satisfies:  h� = −�h ,   h� = 0   and

In particular, the Reeb vector field � is a geodesic vector field: ∇�� = 0.

More in general, given an almost contact structure (�, �,�) , a Riemannian metric g can 

be found such that g(�X,�Y) = g(X, Y) − �(X)�(Y) , and in this case (�, �,�, g) is called 

almost contact metric structure. An almost contact structure (�, �,�) is said to be  normal 

if the almost complex structure J on M ×ℝ defined by J(X, f d∕dt) = (�X − f �, �(X)d∕dt) 

is integrable, where f is a real-valued function. A contact metric manifold is said to 

be a K-contact manifold if the Reeb vector field � is a Killing vector field with respect 

to the associated metric g. Since the torsion � = L�g satisfies � = 2g(⋅, h�⋅) and 

Ric(�, �) = 2n − trh
2 , a contact metric manifold M is K-contact if and only if the tensor 

h = 0 or, equivalently, Ric(�, �) = 2n . A contact metric manifold is said to be a Sasa-

kian manifold if the almost contact structure (�, �,�) is normal. Any Sasakian manifold 

is K-contact and the converse also holds in dimension three. A contact metric manifold 

(M, �, g) is said to be an H-contact manifold if Reeb vector field � is a harmonic vector 

field, that is, � satisfies the critical point condition for the energy functional defined on the 

space of all unit vector fields; moreover, a contact metric manifold (M, �, g) is H-contact 

� = g(�, ⋅) , d� = g(⋅,�⋅) .

(2.1)∇� = −� − �h.
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if and only if � is an eigenvector of the Ricci operator Q, that is, Q� = (2n − trh2)� [23]. 

Sasakian manifolds and K-contact manifolds are H-contact manifolds, but the converse, in 

general, is not true.

Recently, we have considered a Riemannian metric g as an associated metric for two 

contact forms. More precisely, we have

Definition 2.1 ( [24]) Let M be a three-manifold. A bi-contact metric structure on M is 

a triple (�1, �2, g) where (�1, �2) is a pair of contact forms and g is an associated metric 

for both the contact forms �1, �2 , such that the corresponding Reeb vector fields satisfy 

g(�1, �2) = 0 , equivalently the corresponding almost contact structures (�
i
, �

i
,�

i
) , i = 1, 2 , 

satisfy the condition:

where � is defined by �
2
�

1
= ��

1
�

2
.

Then, in [24] we gave a complete classification of simply connected three-manifolds 

which admit a bi-H-contact metric structure (�1, �2, g) , i.e., (�1, g) and (�2, g)are both 

H-contact.

We note that in the classical definition of contact metric 3-structure (see, for example, 

[4] Chapter 13 and [3] Chapter 14) we have three contact metric structures (�i, �i,�i, g) , 

i = 1, 2, 3 , such that:

for any cyclic permutation (i, j, k) of (1, 2, 3). A contact metric 3-structure is called Sasa-

kian 3-structure if the three contact metric structures are Sasakian. The condition (2.3) 

implies, in particular, the orthogonality of the three Reeb vector fields with respect to g. 

So, if (�1, �2, �3, g) is a contact metric 3-structure then (�i, �j, g) are bi-contact metric struc-

tures for any i, j = 1, 2, 3, i ≠ j . However, this is only a necessary condition for a contact 

metric 3-structure. In fact, the Lie group S̃L(2,ℝ) admits three bi-contact metric structures 

which do not define a contact metric 3-structure (cf. Remark 7.7).

3  Taut contact hyperbolas: �rst properties and examples

3.1  Definitions and first properties

We begin this Subsection recalling the definitions of contact circle, contact sphere and 

taut contact circle introduced by H. Geiges and J. Gonzalo on a manifold of dimen-

sion three (see, for example, [13, 15]). In all this section, by M we will denote always a 

three-manifold.

Let (�1, �2) be a pair of contact 1-forms on M. The pair (�1, �2) is called a contact circle 

if for every a = (a1, a2) ∈ �
1 , the unit circle in ℝ2 , the linear combination �

a
= a

1
�

1
+ a

2
�

2
 

is also a contact form. A contact circle (�1, �2) is said to be a taut contact circle if the 

volume forms �
a
∧ (d�

a
) are equal for every a ∈ �

1 . Equivalently, a pair of contact forms 

(�1, �2) is a taut contact circle if and only if

(2.2)�1�2 + ��1 ⊗ �2 = −(�2�1 + ��2 ⊗ �1), � = ±1,

(2.3)�i�j − �j ⊗ �i = �k = −(�j�i − �i ⊗ �j)

(3.1)�
1
∧ d�

1
= �

2
∧ d�

2
and �

1
∧ d�

2
= −�

2
∧ d�

1
.
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In the case of closed three-manifolds, taut contact circles exist only on compact left quo-

tients of the Lie groups: �3 = SU(2) , S̃L(2, R) , Ẽ(2) (cf. [13], Theorem 1.2 ).

The unit circle �1 of the Euclidean plane has its counterpart, in the pseudo-Euclidean 

plane, that is, in the Minkowski plane, in the four arms of the unit equilateral hyperbolas

Indeed, the equilateral hyperbolas have many of the properties of circles in the Euclidean 

plane (cf., for example, [8]). So we give the following definitions.

Definition 3.1 A pair (�1, �2) of contact forms on M is called a contact hyperbola if for 

every a = (a1, a2) ∈ ℍ
1

r
 , the linear combination �

a
= a

1
�

1
+ a

2
�

2
 is also a contact form.

This definition implies that any non-trivial linear combination �
a
= a

1
�

1
+ a

2
�

2
 with 

constant coefficients (a1, a2), a
2

1
− a

2

2
≠ 0 , is again a contact form.

Definition 3.2 A contact hyperbola (�1, �2) is said to be a taut contact hyperbola if the 

volume forms �
a
∧ (d�

a
) satisfy

(equivalently, �
a
∧ (d�

a
) = −r �

2
∧ (d�

2
)).

In [21], Mitsumatsu introduced a bi-contact structure (�1, �2) on a three-manifold, that 

is, �
1
 and �

2
 are mutually transverse contact 1-forms which induce opposite orientations. 

Anosov flow naturally induces a bi-contact structure whose intersection as a pair of plane 

fields is tangent to the flow. In general, the intersection of a bi-contact structure does not 

define an Anosov flow. In fact, he showed that if (�1, �2) is a bi-contact structure on a com-

pact three-manifold, then the vector field directing the intersection of the two contact sub-

bundles is a conformally Anosov flow (that they called projectively Anosov flow) which is 

a generalization of an Anosov flow. Eliashberg and Thurston [12] studied bi-contact struc-

tures and conformally Anosov flows from the viewpoint of confoliation theory.

The next proposition shows that the notion of taut contact hyperbola is related to that of 

conformally Anosov flow.

Proposition 3.3 Let (�1, �2) be a pair of contact forms on M. Then, (�1, �2) is a taut contact 

hyperbola if and only if

In particular, when M is compact, a taut contact hyperbola defines a conformally Anosov 

flow. But, a pair of contact forms that defines a conformally Anosov flow, in general, does 

not define a taut contact hyperbola.

Proof Let (�1, �2) be a taut contact hyperbola. If we take a = (0, 1) ∈ H
1

r
 , r = −1 , then 

�
a
= �

2
 and from (3.2) we get the condition �

2
∧ d�

2
= −�

1
∧ d�

1
 . Moreover, for all a ∈ ℍ

1

r
 , 

r = ±1 , (3.2) and the above condition imply

ℍ
1

r
∶ x

2
− y

2
= r, r = ±1.

(3.2)�a ∧ (d�a) = r �
1
∧ (d�

1
) for all a ∈ ℍ

1

r
.

(3.3)�
2
∧ d�

2
= −�

1
∧ d�

1
and �

1
∧ d�

2
= −�

2
∧ d�

1
.

r�1 ∧ d�1 = �
a
∧ d�

a
= (a2

1
− a

2

2
)�1 ∧ d�1 + a1a2(�1 ∧ d�2 + �2 ∧ d�1),
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and thus we get �
1
∧ d�

2
= −�

2
∧ d�

1
.

Vice versa, if we assume (3.3), from

we obtain (3.2). In particular, a taut contact hyperbola is a bi-contact structure (in the sense 

of Mitsumatsu) and thus, in the compact case, it defines a conformally Anosov flow. The 

last part is a consequence of Remark 3.10.   ◻

Remark 3.4 By using notations of complex/hyperbolic numbers, the conditions (3.1) and 

(3.3) can be write, respectively, in the simple forms

Since the sphere �3 does not admit a conformally Anosov flow (cf. [21] , p.1420), from 

Proposition 3.3, follows that the sphere �3 does not admit a taut contact hyperbola (cf. also 

[24], Corollary 3.7).

Corollary 3.5 The torus � 3 admits a taut contact hyperbola (and so a conformally Anosov 

flow).

Proof Consider on ℝ3 the volume form Ω = dx ∧ dy ∧ dz and the contact 1-forms

Then, 

Thus, by Proposition 3.3, (�1, �2) defines a taut contact hyperbola on ℝ3 . On the other hand, 

�
1
 and �

2
 are invariant under translation by 2� ; therefore, (�1, �2) defines a taut contact 

hyperbola on the torus � 3 .   ◻

Remark 3.6 The torus � 3 has many conformally Anosov flows, while it has no Anosov 

flows because its fundamental group does not grow exponentially.

Now, recall that a taut contact circle with �
1
∧ d�

2
= �

2
∧ d�

1
= 0 is said to be a Cartan 

structure (see [13]). On the other hand, if (3.3) holds with �
1
∧ d�

2
= �

2
∧ d�

1
= 0 , we 

have a taut contact hyperbola like-Cartan structure. So it is natural to give the following

Definition 3.7 A pair of contact 1-forms (�1, �2) is said to be a (−�)-Cartan structure on 

the three-manifold M if    �
2
∧ d�

2
= −��

1
∧ d�

1
and �

1
∧ d�

2
= 0 = �

2
∧ d�

1
 , � = ±1.

Of course, a 1-Cartan structure is a Cartan structure and (−1)-Cartan structure is a taut 

contact hyperbola with �
1
∧ d�

2
= 0.

�
a
∧ d�

a
= a

2

1
�1 ∧ d�1 + a

2

2
�2 ∧ d�2 + a1a2(�1 ∧ d�2 + �2 ∧ d�1),

�
c
∧ d�c

= 0, where �c
= �1 + i�2, i2 = −1, �

h
∧ d�h

= 0, where �
h
= �1 + j�2, j2 = 1, j ≠ ±1.

�
1
= cos zdx − sin zdy and �

2
= cos zdx + sin zdy.

�
1
∧ d�

1
= Ω = −�

2
∧ d�

2
and �

2
∧ d�

1
= (cos

2
z − sin

2
z)Ω = −�

1
∧ d�

2
.
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3.2   Taut contact hyperbolas on 3D Lie groups

3.3  Unimodular case

Let G be a simply connected unimodular 3D Lie group. Then, G contains a discrete sub-

group Γ such that the space of right cosets Γ�G is a differentiable manifold. Note that a 

three-dimensional Lie group G admits a discrete subgroup Γ such that Γ�G is compact 

if and only if G is unimodular ( [20]). Moreover, each left-invariant tensor field on G 

descends to Γ�G.

In particular, if we have a left-invariant taut contact hyperbola on G, then it descends to 

Γ�G and thus defines a conformally Anosov flow.

Now, we determine the simply connected unimodular 3D Lie groups G which admit taut 

contact hyperbolas. Since G is unimodular, there exist a basis of left invariant vector fields 

(e1, e2, e3) such that ( [20]) :

where (�1, �2, �3) are constant. If (�1, �2, �3) = (0, 0, 0) , then G is the Abelian Lie group 

ℝ
3 . The signature of (�1, �2, �3) ≠ (0, 0, 0) can be one of the following type:

• (+,+,+) and in this case G is the three-sphere group SU(2);

•    (+,+, 0) and in this case G = Ẽ(2) (the universal cover of the group of orientation-

preserving isometries of the Euclidean plane);

•   (+, 0, 0) and in this case G is the Heisenberg group H3
= Nil

3;

•   (+,−,−) and in this case G = S̃L(2, R);

•    (+,−, 0) and in this case G = Sol3 (also known as the group E(1, 1) of orientation-

preserving isometries of the Minkowski plane).

Denote by �
i
 the dual 1-forms : �i(ej) = �ij . Then

and thus

In general, if (�1, �2, �3) is a coframe on a three-manifold, the non-trivial 1-forms 

�
a
= a

1
�

1
+ a

2
�

2
+ a

3
�

3
 , �

b
= b

1
�

1
+ b

2
�

2
+ b

3
�

3
 with constant coefficients (a

i
), (b

i
) , 

satisfy

Thus, two arbitrary left invariant 1-forms �
a
, �

b
 on the unimodular Lie group G satisfy

Consequently, by Proposition 3.3, the left invariant 1-forms (�
a
, �

b
) define a taut contact 

hyperbola if and only if the symmetric bilinear map L satisfies

(3.4)[e2, e3] = �1e1, [e3, e1] = �2e2, [e1, e2] = �3e3,

d�1 = −�1�2 ∧ �3, d�2 = −�2�3 ∧ �1, d�3 = −�1�1 ∧ �2,

�i ∧ d�i = −�i�1 ∧ �2 ∧ �3 and �i ∧ d�j = 0 for any i ≠ j.

(3.5)

�
a
∧ d�

b
= a

1
b

1
�

1
∧ d�

1
+ a

2
b

2
�

2
∧ d�

2
+ a

3
b

3
�

3
∧ d�

3
+ a

1
b

2
�

1
∧ d�

2
+ a

2
b

1
�

2
∧ d�

1

+ a
1
b

3
�

1
∧ d�

3
+ a

3
b

1
�

3
∧ d�

1
+ a

2
b

3
�

2
∧ d�

3
+ a

3
b

2
�

3
∧ d�

2
.

�
a
∧ d�

b
= −L(a, b) �1 ∧ �2 ∧ �3, where we put L(a, b) = �1a1b1 + �2a2b2 + �3a3b3.
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Therefore, the constant (�1, �2, �3) that define the unimodular Lie groups SU(2), Ẽ(2) , H3 

and ℝ3 do not satisfy the condition (3.6). Only the constant (�1, �2, �3) that define the uni-

modular Lie groups Sol3 and S̃L(2,ℝ) satisfy the condition (3.6). Next, we determine the 

left invariant taut contact hyperbolas on these unimodular Lie groups.

Example 3.8 On the Lie group Sol3 we can consider a basis of left invariant vector fields 

(e1, e2, e3) such that 

In Example 8.2, we will give an explicit presentation of left invariant vector fields satisfy-

ing (3.7). The dual 1-forms �
i
 satisfy

and thus

Therefore, by (3.6) (�1, �2) is a left invariant taut contact hyperbola on the unimodular Lie 

group Sol3 and this structure descends to any compact left-quotient.

Moreover, by using (3.6), two arbitrary left invariant 1-forms (�
a
, �

b
) on the Lie group 

Sol3 define a taut contact hyperbola if and only if

Example 3.9 On the Lie group S̃L(2,ℝ) , we can consider a basis of left invariant vector 

fields (e1, e2, e3) such that 

In Example 8.2, we will give an explicit presentation of left invariant vector fields satisfy-

ing (3.8). The dual 1-forms �
i
 satisfy

and thus

Therefore, (�1, �2) and (�1, �3) satisfy (3.6), i.e., they are left invariant taut contact hyper-

bolas on the unimodular Lie group S̃L(2,ℝ) and these structures descend to any compact 

left-quotient.

Moreover, we can classify all left invariant taut contact hyperbolas on the Lie group 

S̃L(2,ℝ) . In this case, the bilinear map L defines on ℝ3 the Lorentzian metric

Then, by (3.6), two arbitrary left invariant contact 1-forms �
a
,�

b
 on S̃L(2,ℝ) , define a taut 

contact hyperbola if and only if   g0(b, b) = −g0(a, a) ≠ 0 and g0(a, b) = 0 , i.e., the vectors 

a and b are two orthogonal vectors, one of which is timelike and so the other is spacelike. 

(3.6)L(a, a) = −L(b, b) ≠ 0, L(a, b) = 0.

(3.7)[e2, e3] = 2e1, [e3, e1] = −2e2, [e1, e2] = 0.

d�1 = −2�2 ∧ �3, d�2 = 2�3 ∧ �1, d�3 = 0,

�1 ∧ d�1 = −2�1 ∧ �2 ∧ �3 = −�2 ∧ d�2, �1 ∧ d�2 = 0 = �2 ∧ d�1.

(a2

1
− a

2

2
) ≠ 0 and (b1, b2) = ±(a2, a1).

(3.8)[e2, e3] = 2e1, [e3, e1] = −2e2, [e1, e2] = −2e3.

d�1 = −2�2 ∧ �3, d�2 = 2�3 ∧ �1, d�3 = 2�1 ∧ �2,

−�1 ∧ d�1 = 2�1 ∧ �2 ∧ �3 = �2 ∧ d�2 = �3 ∧ d�3, �1 ∧ d�j = 0 for any i ≠ j.

g0(a, b) = L(a, b) = a1b1 − a2b2 − a3b3, for any a, b ∈ ℝ
3.
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Remark 3.10 We can consider two left invariant 1-forms �
a
, �

b
 on the Lie group Sol3 with

then �
a
, �

b
 satisfy �

b
∧ d�

b
= −�

a
∧ d�

a
 and �

a
∧ d�

b
= �

b
∧ d�

a
≠ 0 . Analogously, we can 

consider �′
a
, �

′

b
 on the Lie group S̃L(2,ℝ) with

In both the cases, (�
a
, �

b
) and (��

a
, �

�
b
) do not define a taut contact hyperbola, but they define 

a bi-contact structure in the sense of Mitsumatsu [21], and so define a conformally Anosov 

on any compact quotient of Sol3 and S̃L(2,ℝ) , respectively. Therefore, the notion of taut 

contact hyperbola is stronger than the notion of conformally Anosov.

3.4  Non-unimodular case

Let G be a non-unimodular 3D Lie group. Then G admits a basis of left invariant vector 

fields e1, e2, e3 such that (cf. [20])

This Lie group G can be presented as a semi-direct product Lie group ℝ2
⋊

A
ℝ , where 

A =

(

� �

� �

)

 , trA = � + � ≠ 0 . Denote by

the invariant introduced by Milnor [20, p. 321], which, unless A is a multiple of the identity 

matrix, completely determines the non-unimodular Lie algebra (and so the Lie group) up to 

isomorphisms.

Let (�1, �2, �3) be the basis of 1-forms dual of (e1, e2, e3) . Then, 

and thus

where Ω = �
1 ∧ �

2 ∧ �
3 . Then, by using (3.5), two arbitrary left invariant 1-forms 

�
a
=

∑3

i=1
a

i
�i and �

b
=

∑3

i=1
b

i
�i satisfy

Therefore, (�
a
, �

b
) is a taut contact hyperbola on the non-unimodular Lie group G if, and 

only if, are satisfied the following:

In particular,

L(b, b) = b
2

1
− b

2

2
= −(a2

1
− a

2

2
) = −L(a, a) ≠ 0 and L(a, b) = a1b1 − a2b2 ≠ 0,

g0(b, b) = −g0(a, a) ≠ 0 and g0(a, b) ≠ 0.

(3.9)[e1, e2] = �e2 + �e3, [e1, e3] = �e2 + �e3, [e2, e3] = 0, � + � ≠ 0.

D = 4det A∕(trA)2

d�1
= 0, d�2

= −��1
∧ �2

− ��1
∧ �3

, d�3
= −��1

∧ �2
− ��1

∧ �3
,

�2
∧ d�2

= � Ω, �3
∧ d�3

= −� Ω, �2
∧ d�3

= � Ω and �3
∧ d�2

= −� Ω,

�
a
∧ d�

b
= (�a2b2 + �a2b3 − �a3b2 − �a3b3)Ω,

�
a
∧ d�

a
= (�a

2

2
+ (� − �)a2a3 − �a

3

3
)Ω.

(3.10)

{

(�a
2

2
+ (� − �)a2a3 − �a

2

3
) = −(�b

2

2
+ (� − �)b2b3 − �b

2

3
) ≠ 0,

2�a2b2 + (� − �)(a2b3 + a3b2) − 2�a3b3 = 0.
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In this case, the non-unimodular Lie group is defined by the matrix A =

(

� �

� �

)

 , �, � ≠ 0 , 

and the Reeb vector fields of �2, �3 are given by   �
2
= e

2
− (�∕�)e

3
 ,   �

3
= −(�∕�)e

2
+ e

3
 . 

Then, �2, �3 are linearly independent if and only if the Milnor’s invariant 

D = 4 det A∕(trA)2 ≠ 0 . Moreover, D = 0 if and only if �
2
= ±�

3
 . Thus, we get the 

following

Proposition 3.11 The non-unimodular Lie group G = ℝ
2
⋊

A
ℝ , where A =

(

� ± �

±� �

)

 , 

� ≠ 0 , admits a taut contact hyperbola (�1, �2) with the corresponding Reeb vector fields 

satisfying �
2
= ∓�

1
.

Remark 3.12 The result of the Proposition 3.11 gives an interesting difference with respect 

to the case of a taut contact circle. In fact, the Reeb vector fields of any taut contact circle 

are linearly independent (cf. Theorem 4.1).

Remark 3.13 Not all non-unimodular Lie groups admit a left invariant taut contact hyper-

bola. In fact, for � = � ≠ 0 and �� < 0 , the system (3.10) does not admit solution.

Now, we give an explicit example of non-unimodular Lie group satisfying Proposi-

tion 3.11.

Example 3.14 Consider the hyperbolic plane ℍ2 =
{

(x1, x2) ∈ ℝ
2 ∶ x2 > 0

}

 equipped with 

standard Lie group structure. For any � ≠ 0 , the vector fields

define a basis of left invariant vector fields on ℍ2 . Now, consider the direct product Lie 

group

Then (E1, E2, E3 = �
t
) is a basis of left invariant vector fields on GH . We note that with 

respect to the basis

the Lie algebra of GH is defined by   [e2, e3] = 0, [e1, e2] = [e1, e3] = �(e2 + e3) . So, GH is 

the non-unimodular Lie group ℝ2
⋊

A
ℝ , where A = �I

2
 , with the Milnor’s invariant D = 0.

4  Some characterization of taut contact hyperbolas

We start this section recalling the following characterizations of taut contact circles.

(�2, �3) is a taut contact hyperbola ⟺ � = � ≠ 0 and � = � ≠ 0.

E1 = 2� x2�1, E2 = 2� x2�2

GH = ℍ
2
×ℝ.

e1 = E2, e2 = (E1 + E3), e3 = (E1 − E3),
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Theorem 4.1 (Zessin [27]) Let (�1, �2) be a contact circle on a three-manifold M, and let �
1
 , 

�
2
 be the corresponding Reeb vector fields. Then, �

1
 , �

2
 are everywhere linearly independent 

and d�1(�2, ⋅), d�2(�1, ⋅) never vanish. Moreover, the following properties are equivalent

(i)    (�1, �2) is a taut contact circle;

(ii)    �
a
= a

1
�

1
+ a

2
�

2
 is the Reeb vector field of �

a
= a

1
�

1
+ a

2
�

2
 for any a ∈ �

1;

(iii)    �
2
(�

1
) = −�

1
(�

2
) and d�1(�2, ⋅) = −d�2(�1, ⋅).

In Proposition 3.11, we showed the existence of taut contact hyperbolas (�1, �2) with 

the corresponding Reeb vector fields (�1, �2 = ±�1) . Next, we give some characteriza-

tion of taut contact hyperbolas with �
2
≠ ±�

1
 . More precisely, we show the following 

theorem.

Theorem 4.2 Let (�1, �2) be a pair of contact forms on a three-manifold M with �
2
≠ ±�

1
 in 

any point p ∈ M . Then, the following are equivalent:

(a)    (�1, �2) is a taut contact hyperbola ;

(b)    �
1
(�

2
) = �

2
(�

1
) and d�1(�2, ⋅) = d�2(�1, ⋅) ≠ 0 in any point p ∈ M;

(c)     �
a
= a

1
�

1
+ a

2
�

2
is a contact form with Reeb vector field�

a
= r(a

1
�

1
− a

2
�

2
)for any 

a ∈ ℍ
1

r
.

  In particular, in a such case, �1, �2 are linearly independent.

We first give the following lemmas.

Lemma 4.3 Let (�1, �2) be a contact hyperbola on M. Then,

�
1
 , �

2
 are pointwise linearly independent ⟺ d�1(�2, ⋅) and d�2(�1, ⋅) are ≠ 0 in any 

point.

Moreover,

�
a
= r(a

1
�

1
− a

2
�

2
)is the Reeb vector field of �

a
= a

1
�

1
+ a

2
�

2
 for all a ∈ ℍ

1

r
    if and 

only if   �
2
(�

1
) = �

1
(�

2
) and d�1(�2, ⋅) = d�2(�1, ⋅).

Proof (⇒ ) Suppose that there exists a point p ∈ M such that d�2(�1, ⋅) = 0 at p, 

and so d�
a
(�1, ⋅) = a1d�1(�1, ⋅) + a2d�2(�1, ⋅) = 0 at p for any a ∈ ℍ

1

r
 . Then, since 

(�
a
∧ d�

a
)(�1, ⋅, ⋅) ≠ 0 , we get �

a
(�

1
)
p
≠ 0 for any a ∈ ℍ

1

r
 , and in particular �

2
(�

1
)
p
≠ 0 . 

Now, we put ��
1
= (1∕�)�

1
 , where � = �

2
(�

1
)
p
≠ 0 . Then,   �

2
(��

1
)
p
= 1   and   (d�2)(�

�
1
, ⋅) = 0

give the contradiction (�
2
)
p
= (1∕�)(�

1
)
p
 , that is, �1, �2 linearly dependent at p.

(⇐ ) If we suppose �1, �2 linearly dependent in some point p, i.e., (�
2
)
p
= �(�

1
)
p
 for some 

constant � ≠ 0 , then we have the contradiction (d�1)(�2, ⋅)p = �(d�1)(�1, ⋅)p = 0 . For the 

second part, it is sufficient to remark that

  �
a
(�

a
) = 1 + ra

1
a

2

(

�
2
(�

1
) − �

1
(�

2
)
)

   and   d�
a
(�

a
, ⋅) = ra1a2

(

d�2(�1, ⋅) − d�1(�2, ⋅)
)

 .  

 ◻
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Lemma 4.4 Let (�1, �2) be a contact hyperbola on M with �
2
≠ ±�

1
 in any point p ∈ M . 

Then,  d�1(�2, ⋅) and d�2(�1, ⋅) are ≠ 0 in any point p ∈ M.

In particular, if �
2
≠ ±�

1
 in any point p ∈ M , then �1, �2 are linearly independent in any 

point p ∈ M.

Proof Assume that �
2
≠ ±�

1
 in any point, and suppose that there exists a point p ∈ M such 

that d�2(�1, ⋅)p = 0 . Then, for all a ∈ ℍ
1

r

Consequently, since �
a
 is a contact form, i.e., �

a
∧ d�

a
(�1, ⋅, ⋅) ≠ 0 , we obtain

In particular, taking a = (0, 1) , we have that   � ∶= �
2
(�

1
)
p
≠ 0.

Now, we show that � ≠ 0 gives a contradiction. Consider the function f ∶ ℍ
1

r
→ ℝ 

defined by

Consider the cases:   (I) � > 0   and   (II) � < 0.

For the case (I), we distinguish the following subcases:

For the subcase (I
1
) consider the function f defined on the connected subset 

C1 = {a ∈ ℝ
2 ∶ a

2

1
− a

2

2
= 1, a1 > 0} . Put � = (�∕

√

�2 − 1) > 1 and take

Then, f (a) = a
1
+ �a

2
> 0 and f (ā) = a

1
− �a

2
< 0 . Thus, it should exist b ∈ C

1
 such that 

f (b) = 0 , and this gives a contradiction.

For the subcase (I
2
) consider the function f defined on the connected subset 

C2 = {a ∈ ℝ
2 ∶ a

2

1
− a

2

2
= −1, a2 > 0} . Put � = (1∕�) > 1 and take

Then, f (a) = a
1
+ �a

2
> 0 and f (ā) = −a

1
+ �a

2
< 0 . Thus, it should exist b ∈ C

2
 such 

that f (b) = 0 , and this gives a contradiction.

For the subcase (I
3
) , �

2
(�

1
)
p
= 1 and d�2(�1, ⋅)p = 0 give the contradiction �

2
= �

1
 at p.

For the case (II), we distinguish the following subcases:

For the subcase (II
1
) consider the function f defined on the connected subset 

C3 = {a ∈ ℝ
2 ∶ a

2

1
− a

2

2
= 1, a1 < 0} . Put � = (�∕

√

�2 − 1) < −1 and take

Then, f (a) = a
1
+ �a

2
< 0 and f (ā) = a

1
− �a

2
> 0 . Thus, it should exist b ∈ C

3
 such that 

f (b) = 0 , and this gives a contradiction.

d�a(�1, ⋅) = a1d�1(�1, ⋅) + a2d�2(�1, ⋅) = 0 at p.

�
a
(�

1
)
p
≠ 0 for all a ∈ ℍ

1

r
.

f (a) = �a(�1
)p = a

1
�

1
(�

1
)p + a

2
�

2
(�

1
)p = a

1
+ �a

2
.

(I1) � > 1, (I2) 0 < � < 1, (I3) � = 1.

a = (a1, a2), ā = (a1,−a2) ∈ C1, with a1 > � > 1 and a2 =

√

a
2

1
− 1 > 0.

a = (a1, a2), ā = (−a1, a2) ∈ C2, with a1 > 0 and a2 > �∕
√

�2 − 1 > 0.

(II1) � < −1, (II2) − 1 < � < 0, (II3) � = −1.

a = (a1, a2), ā = (a1,−a2) ∈ C3, with a1 < � < −1 and a2 =

√

a
2

1
− 1 > 0.
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For the subcase (II
2
) consider the function f defined on the connected subset 

C4 = {a ∈ ℝ
2 ∶ a

2

1
− a

2

2
= −1, a2 < 0} . Put � = (1∕�) < −1 and take

Then, f (a) = a
1
+ �a

2
> 0 and f (ā) = −a

1
+ �a

2
< 0 . Thus, it should exist b ∈ C

4
 such 

that f (b) = 0 , and this gives a contradiction.

For the subcase (II
3
) , �

2
(−�

1
)
p
= 1 and d�2(−�1, ⋅)p = 0 give the contradiction �

2
= −�

1
 

at p. We proceed analogously if suppose d�1(�2, ⋅)p = 0 . The second part of the Lemma fol-

lows from Lemma 4.3.   ◻

Proof of Theorem 4.2 (a) ⟺ (b)

If we suppose (a) (respectively (b)), by Lemma 4.4 (respectively Lemma 4.3), we have 

that the Reeb vector fields �
1
 , �

2
 are linearly independent. Moreover, we have

Then, by using Proposition 3.3, it is not difficult to see that (a) ⇔ (b).

(c) ⟺ (a)

Suppose (c), that is, �
a
= a

1
�

1
+ a

2
�

2
 is a contact form with Reeb vector field 

�
a
= r(a

1
�

1
− a

2
�

2
) for any a ∈ ℍ

1

r
 . Then, (�1, �2) is a contact hyperbola and, from Lemma 

4.4, �1, �2 are linearly independent and d�1(�2, ⋅), d�2(�1, ⋅) ≠ 0 in any point p ∈ M . Then, 

Lemma 4.3 gives �
1
(�

2
) = �

2
(�

1
) and d�1(�2, ⋅) = d�2(�1, ⋅) ≠ 0 . So, we get (b) and thus (a).

Conversely, suppose (a), that is, (�1, �2) is a taut contact hyperbola and thus 

�
a
= a

1
�

1
+ a

2
�

2
 is a contact form for any a ∈ ℍ

1

r
 . Since (a) is equivalent to (b), by Lemma 

4.3 we get (c).  ◻

We close this subsection with remarking that the taut contact hyperbolas are related to 

the symplectic pair.

Remark 4.5 (taut contact hyperbola/circle and symplectic structures)

Let (M, �, �,�) be an almost contact manifold. We denote by C(M) = ℝ+ × M the cone 

on M, for more information about the geometry of the cone C(M) we refer, for example, to 

[4] Section 6.5. Consider the (1, 1)-tensor J on C(M) defined by

where � = t
�

�t
 is Liouville (or Euler) vector field. Then, J is an almost complex structure 

invariant under the flow of � : L�J = 0 . Moreover, it well-known that � is a contact form on 

M if and only if the 2-form Ω = d(t2
�) is a symplectic form on C(M).

Now, let (�1, �2) be a pair of contact forms on a three-manifold M and (�
i
, �

i
,�

i
) , 

i = 1, 2 , underlying almost contact structures. Then the corresponding symplectic forms 

Ω
i
= d(t2

�
i
) = 2tdt ∧ �

i
+ t

2
d�

i
 , i = 1, 2 , satisfy: 

a = (a1, a2), ā = (−a1, a2) ∈ C4, with a1 =

�

a
2

2
− 1 > 0 and a2 < �∕

√

�2 − 1 < −1.

�1 ∧ d�1(�1, �2, ⋅) =d�1(�2, ⋅), �2 ∧ d�2(�1, �2, ⋅) = −d�2(�1, ⋅),

�1 ∧ d�2(�1, �2, ⋅) = − �1(�2)d�2(�1, ⋅), �2 ∧ d�1(�1, �2, ⋅) = �2(�1)d�1(�2, ⋅).

JX = �X for X ∈ ker �, J� = � , J� = −�,

Ω1 ∧ Ω1 == 4t
3
dt ∧ �1 ∧ d�1,

Ω2 ∧ Ω2 = 4t
3
dt ∧ �2 ∧ d�2,

Ω1 ∧ Ω2 = 2t
3
dt ∧ (�1 ∧ d�2 + �2 ∧ d�1) = Ω2 ∧ Ω1,

(a1Ω1 + a2Ω2)∧(a1Ω1 + a2Ω2) = 4t
3
dt ∧ �

a
∧ d�

a
.
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So, (�1, �2) is a contact hyperbola (resp. circle) if and only if Ω
a
∶= (a

1
Ω

1
+ a

2
Ω

2
) is a 

symplectic 2-form on the four-dimensional cone C(M) for any (a1, a2) ∈ ℍ
1

r
 (resp. for any 

(a1, a2) ∈ �
1).

On the other hand, on a four-manifold, following Bande and Kotschick [2]: a symplectic 

pair is defined by two symplectic forms (�1,�2) that satisfy

and following Geiges [14]: (�1,�2) is said to be a conformal symplectic couple if

Therefore (cf. also Section 6 of [24] where we studied the metric cone of a bi-contact met-

ric manifold) we get:

(�1, �2) is a taut contact hyperbola (resp. circle) if and only if the corresponding sym-

plectic 2-forms (Ω1,Ω2) define a symplectic pair (resp. a conformal symplectic couple) .

Moreover, given a pair of contact forms (�1, �2) on M with �
2
≠ ±�

1
 in any point p ∈ M , 

the corresponding symplectic 2-forms Ω
1
 , Ω

2
 satisfy:

Then, by Theorems 4.2 and 4.1, we get

(�1, �2) is a taut contact hyperbola (resp. circle) if and only if the corresponding sym-

plectic 2-forms (Ω1,Ω2) satisfy Ω2(�1, ⋅) = Ω1(�2, ⋅) ≠ 0 (resp. Ω2(�1, ⋅) = −Ω1(�2, ⋅) ≠ 0 ) 

in any point.

5   Taut contact 2-hyperboloid

Recall (cf. [13]) that a contact sphere on a three-manifold M is a triple of contact 1-forms 

(�1, �2, �3) such that any linear combination (a
1
�

1
+ a

2
�

2
+ a

3
�

3
) , a ∈ �

2 , is a contact form; 

moreover, it is taut if the volume forms �
a
∧ (d�

a
) on M are equal for every a ∈ �

2 ; moreover 

in this case the 1-forms (�1, �2, �3) parallelize the three-manifold M.

Now, consider the surface

that is, H2

−1
 is an one-sheeted hyperboloid and H2

1
 is a two-sheeted hyperboloid. In analogy 

with the definition of (taut) contact 2-sphere we give the following definition. We say that 

a triple of contact 1-forms (�1, �2, �3) on a three-manifold M, is a contact 2-hyperboloid if 

the 1-form

This definition implies that any non-trivial linear combination �
a
= a

1
�

1
+ a

2
�

2
+ a

3
�

3
 

with constant coefficients (a1, a2, a3), a
2

1
− a

2

2
− a

2

3
≠ 0 , is again a contact form. We call the 

�1 ∧ �2 = 0 and �1 ∧ �1 = −�2 ∧ �2,

�
1
∧ �

2
= 0 and �

1
∧ �

1
= �

2
∧ �

2
.

Ω1(�2, X) =2t(dt ∧ �1)(�2, X) + t
2
d�1(�2, X) = t

2(d�1)(�2, X) for X tangent to M;

Ω1(�2, �t) =2t(dt ∧ �1)(�2, �t) + t
2
d�1(�2, �t) = −t�1(�2);

Ω2(�1, X) =2t(dt ∧ �2)(�1, X) + t
2
d�2(�1, X) = t

2(d�2)(�1, X) for X tangent to M;

Ω2(�1, �t) =2t(dt ∧ �2)(�1, �t) + t
2
d�2(�1, �t) = −t�2(�1).

H
2

r
∶ a

2

1
− a

2

2
− a

2

3
= r, r ± 1,

�a = a
1
�

1
+ a

2
�

2
+ a

3
�

3
is a contact form for any a ∈ H2

r
.
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triple (�1, �2, �3) a taut contact 2-hyperboloid if the volume forms r(�
a
∧ d�

a
) are equal for 

every a ∈ H
2

r
 , that is,

Besides, we note that

Consequently, we get

Proposition 5.1 A triple of contact 1-forms (�1, �2, �3) on a three-manifold M is a taut con-

tact 2-hyperboloid if and only if (�1, �2) and (�1, �3) are taut contact hyperbola and the 

other pair (�2, �3) is a taut contact circle.

Remark 5.2 We note that a triple of contact 1-forms (�1, �2, �3) on a three-manifold M 

defines a taut contact 2-sphere if and only if (�1, �2) , (�1, �3) and (�2, �3) are taut contact 

circles.

A difference, with respect to the taut contact 2-spheres, is that: in general the 1-forms 

�1, �2, �3 that define a taut contact 2-hyperboloid are not linearly independent. In fact, 

we have the following.

Example 5.3 On the torus � 3 the contact 1-forms

are linearly dependent and define a taut contact 2-hyperboloid. More precisely: (�1, �2) , 

(�1, �3) are taut contact hyperbola, and (�2, �3) is a taut contact circle.

Now, we give the following

Proposition 5.4 Let (�1, �2, �3) be a coframe of contact 1-forms on a three-manifold 

M. Denote by (e1, e2, e3) the frame dual of (�1, �2, �3) . Then, (�1, �2, �3) is a taut contact 

2-hyperboloid if and only if there exist three 1-forms �1, �2, �3 and a nonzero smooth func-

tion � such that

where the 1-forms �
i
 satisfy

In particular, �
1
= �

2
= �

3
 if and only if �

i
= 0 for any i = 1, 2, 3 . If this is the case, then 

the function � is a constant ≠ 0.

�
a
∧ d�

a
= r �1 ∧ d�1 for every a ∈ H

2
r
.

�
a
∧ d�

a
= a

2

1
�

1
∧ d�

1
+ a

2

2
�

2
∧ d�

2
+ a

2

3
�

3
∧ d�

3
+ a

1
a

2
(�

1
∧ d�

2
+ �

2
∧ d�

1
)

+ a
1
a

3
(�

1
∧ d�

3
+ �

3
∧ d�

1
) + a

2
a

3
(�

3
∧ d�

2
+ �

2
∧ d�

3
).

�1 = (cos z)dx − (sin z)dy, �2 = (cos z)dx + (sin z)dy and �3 = (sin z)dx − (cos z)dy,

(5.1)

⎧
⎪
⎨
⎪
⎩

d�1 = �1 ∧ �1 + ��2 ∧ �3,

d�2 = �2 ∧ �2 − ��3 ∧ �1,

d�3 = �3 ∧ �3 − ��1 ∧ �2,

(∗) �i(ei) = 0 and �i(ej) = �k(ej) for any (i, j, k) permutation of (1, 2, 3).
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Proof Since (�1, �2, �3) is a coframe, we put

where fi, gi, hi are smooth functions. Then, the conditions

are equivalent to the conditions f
2
= −g

3
= −h

1
= � , where � is a nowhere zero function. 

Moreover, the conditions

are equivalent to the conditions g2 = −f3 = −�3, h2 = −f1 = �2, h3 = −g1 = −�1 . Thus, 

(�1, �2, �3) is a taut contact 2-hyperboloid if and only if

where

Consequently, the 1-forms �
i
 satisfy (∗) ; moreover, �

1
= �

2
= �

3
 if and only if 

�
1
= �

2
= �

3
= 0 . In this case, we have

Analogously, e
2
(�) = e

3
(�) = 0 , and so � is a constant.   ◻

Corollary 5.5 A simply connected three-manifold M admits a taut contact 2-hyperboloid 

(�1, �2, �3) , with the corresponding Reeb vector fields (�1, �2, �3) that constitute the frame 

dual of the coframe (�1, �2, �3) , if and only if M is the Lie group S̃L(2,ℝ).

Proof In the Proposition 5.4, the condition �
1
= �

2
= �

3
 , i.e., �

i
= 0 for any i = 1, 2, 3 , is 

equivalent to the condition that the vector fields e
i
 are the Reeb vector fields of the contact 

forms �
i
, i = 1, 2, 3 . Then, if (�1, �2, �3) is a taut contact 2-hyperboloid with the correspond-

ing Reeb vector fields (�1, �2, �3) that constitute the frame dual of the coframe (�1, �2, �3) , 

from (5.1) we get that the 1-forms �
i
 vanish and so the Reeb vector fields satisfy

Therefore, M admits a Lie group structure isomorphic to S̃L(2,ℝ).

Conversely, if we consider the Lie group S̃L(2,ℝ) , by using the notations of the 

Example 3.9, we have the 1-forms (�1, �2) and (�1, �3) are left invariant contact hyper-

bolas and (�2, �3) is a left invariant taut contact circle. Then, by Proposition 5.1, we get 

that the 1-forms (�1, �2, �3) define a left invariant taut contact 2-hyperboloid. Moreover, 

⎧
⎪
⎨
⎪
⎩

d�1 = f1�1 ∧ �2 + f2�2 ∧ �3 + f3�3 ∧ �1,

d�2 = g1�1 ∧ �2 + g2�2 ∧ �3 + g3�3 ∧ �1,

d�3 = h1�1 ∧ �2 + h2�2 ∧ �3 + h3�3 ∧ �1,

�
1
∧ d�

1
= −�

2
∧ d�

2
= −�

3
∧ d�

3

0 = �
1
∧ d�

2
+ �

2
∧ d�

1
= �

1
∧ d�

3
+ �

3
∧ d�

1
= �

2
∧ d�

3
+ �

3
∧ d�

2

⎧
⎪
⎨
⎪
⎩

d�1 = �1 ∧ �1 + ��2 ∧ �3,

d�2 = �2 ∧ �2 − ��3 ∧ �1,

d�3 = �3 ∧ �3 − ��1 ∧ �2,

�1 = (�2�2 + �3�3), �2 = (�1�1 + �3�3) and �3 = (�1�1 + �2�2).

0 = d
2�

1
= d� ∧ �

2
∧ �

3
+ �(d�

2
) ∧ �

3
− ��

2
∧ d�

3
= d� ∧ �

2
∧ �

3
⇒ e

1
(�) = 0.

[�1, �2] = ��3, [�2, �3] = −��1, [�3, �1] = ��2, � = const. ≠ 0.
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the corresponding Reeb vector fields (�1, �2, �3) constitute the frame dual of the coframe 

(�1, �2, �3) .   ◻

Remark 5.6 In the compact case, taut contact 2-spheres exist only on left quotients of the 

three-sphere group �3 = SU(2) ( [13], Theorem 1.10). In particular, the torus � 3 does not 

admit a taut contact 2-sphere, however it admits a taut contact 2-hyperboloid.

6  Taut contact hyperbolas and the Chern–Hamilton energy functional

Let (M, �) be an oriented compact contact manifold. Denote by M(�) the set of all Rie-

mannian metrics associated to the contact form � and by A(�) the set of all almost CR 

structures J for which the Levi form is positive definite. The sets M(�) and A(�) can be 

identified (cf., for example, Proposition 8 of [25]). Tanno [26] considered the Dirichlet 

energy

defined for any g ∈ M(�) . Then, he found the critical point condition ( [26], Theorem 5.1)

The Dirichlet energy (6.1) was first studied by Chern and Hamilton [9] for compact contact 

three-manifolds as a functional defined on the set A(�) (there was an error in their calcula-

tion of the critical point condition, as was pointed out by Tanno). This functional is known 

in literature also with the name of Chern–Hamilton energy functional. Moreover, since 

Ric(�, �) = 2n − trh
2 = 2n − ‖�‖2∕4 , the functional (6.1) is equivalent to the functional 

L(g) = ∫
M

Ric(�, �)dv studied in general dimension, for compact regular contact manifold, 

by Blair ( [3], Section 10.3). We note that K-contact metrics and Sasakian metrics are triv-

ial critical metrics, besides we note that the critical point condition (6.2) has a tensorial 

character, so it holds also in the non-compact case. On the other hand, the sphere �3 admits 

a Sasakian structure, therefore: in general a Sasakian three-manifold fails to admit a taut 

contact hyperbola.

Next, we show that the critical point condition (6.2) is a sufficient condition for the 

existence of a taut contact hyperbola on a non-Sasakian contact metric three-manifold. In 

fact, we have the following.

Theorem 6.1 Let (M, �, g,�, �) be a non-Sasakian contact metric three-manifold, that is, 

the torsion � ≠ 0 at any point. If the metric g satisfies the critical point condition for the 

Dirichlet energy functional (6.1), then M admits a taut contact hyperbola.

Proof Let (M, �, g,�, �) be a non-Sasakian contact metric three-manifold. Let 

{e1, e2 = �e1, �} be an orthonormal basis of smooth eigenvectors for h with h� = 0 , 

he
1
= �e

1
 , he

2
= −�e

2
 , � being the positive eigenvalue. Since the three eigenvalues 0, �,−� 

of h are everywhere distinct, the corresponding line fields are global and by the orientabil-

ity the basis can be taken to be global. Let �
1
 , �

2
 be the 1-forms g-dual to e

1
 and e

2
 , respec-

tively, and hence (�1, �2, �) is a global basis of 1-forms. Using (2.1), we have

(6.1)E(g) = ∫M

‖�‖2dv, � = L�g,

(6.2)∇�� = 2��, equivalently ∇�h = −2�h.
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By straightforward computation and using ∇�� = 0 , we get

where a = g(∇�e1, e2) is a smooth function. Moreover, (∇�h)� = 0 and by using (6.4) we 

obtain

and

Thus,

Consequently, since g satisfies the critical point condition (6.2), we have a = −1 and 

�(�) = 0 . Thus, (6.4) becomes

Then, by using (6.3) and (6.5) we have

Therefore, by using Proposition 3.3, the 1-forms (�1, �2) define a taut contact hyperbola.  

 ◻

Following Y. Eliashberg [11], a contact manifold (M, �) is called overtwisted if there 

exists an embedded disk D in M such that TpD = ker �p for all p ∈ �D . It is called tight if it 

is not overtwisted. Moreover, the contact distribution is called universally tight if even its 

lift to the universal cover of M is tight. Recently, S. Hozoori ( [18], Theorem 1.4) proved, 

in the compact case, that a conformally Anosov contact three-manifold is universally tight. 

On the other hand, by proof of Theorem 6.1 we note that the intersection of the bi-contact 

structure (�1, �2) is given by ℝ� and thus, by [21], (M, ker �) is a conformally Anosov con-

tact three-manifold. Therefore, we have the following

Corollary 6.2 Let (M, �, g,�, �) be a compact non-Sasakian contact metric three-manifold. 

If the metric g is a critical metric for the Dirichlet energy functional, then (M, ker �) is uni-

versally tight.

(6.3)∇
e

1
� = −�e

1
− �he

1
= −(1 + �)e

2
and ∇

e
2
� = (1 − �)e

1
.

(6.4)∇�e1 = a e2 and ∇�e2 = −a e1,

(∇�h)e1
= ∇�he

1
− h(∇�e1

) = �(�)e
1
+ 2a� e

2

(∇�h)e2
= (∇�h)�e

1
= −�(∇�h)e1

= −�(�)e
2
+ 2a� e

1
.

(∇�h) = −2a h� +
(

�(�)∕�
)

h.

(6.5)∇�e1
= −e

2
and ∇�e2

= e
1
.

�1 ∧ d�1(�, e1, e2) = − (d�1)(�, e2) =
1

2
g(e1,∇�e2 − ∇e2

�) =
�

2
> 0,

�2 ∧ d�2(�, e1, e2) =(d�2)(�, e1) = −
1

2
g(e2,∇�e1 − ∇e1

�) = −
�

2
< 0,

�1 ∧ d�2(�, e1, e2) = − (d�2)(�, e2) =
1

2
g(e2,∇�e2 − ∇e2

�) = 0,

�2 ∧ d�1(�, e1, e2) =(d�1)(�, e1) = −
1

2
g(e1,∇�e1 − ∇e1

�) = 0,
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Next, we exhibit an example of compact non-Sasakian contact metric three-manifold 

with the contact Riemannian metric g critical for the Dirichlet energy (6.1).

Example 6.3 Let (M, g) be a compact 2-dimensional Riemannian manifold of constant sec-

tional curvature k < 0 . By Theorem  7 and Corollary 3 of the paper [1], we get that the 

unit tangent sphere bundle T
1
M admits a family of non-Sasakian contact metric structures 

(�̃
a
, G̃

a
) , depending on one parameter a > 0 , satisfying the critical point condition (6.2), 

where the critical metric G̃
a
 is a Riemannian g-natural metric. In particular, for a = 1∕4 

and k = −1 , (�̃
a
, G̃

a
) is the standard (non-Sasakian) contact Riemannian structure on T

1
M 

satisfying the critical point condition (6.2) ( [3], Th. 10.13, p.208), where G̃
a
 is the classic 

Sasaki metric G̃
S
 . In general, for a > 0 , G̃

a
 is a metric of Kaluza–Klein type, i.e., horizontal 

and tangential lifts are mutually orthogonal with respect to G̃
a
 . To note that the Sasaki met-

ric on T
1
M , in general, is not Sasakian in the sense of the contact Riemannian geometry.

7  Geometry of bi-contact metric structures

In this section, we study the geometry of a three-manifold determined by the existence of 

a bi-contact metric structure. The following theorem, which can be considered as a more 

complete presentation of Theorem 3.6 of [24], will be very useful for this study.

Theorem 7.1 Let (�1, �2) be a pair of contact forms on a three-manifold M, with Reeb vec-

tor fields (�1, �2) , �2
≠ ±�

1
 . Then, the following are equivalent.

(I)  (�1, �2) defines a bi-contact metric structure, i.e., there exists a Riemannian metric g 

for which (�1, �2, g) is a bi-contact metric structure.

(II)  (�1, �2) is a (−�)-Cartan structure, i.e.,

(III)  There exists a unique 1-form �
3
 such that

where the smooth function � = (d�3)(�2, �1) satisfies d� ∧ �
1
∧ �

2
= 0.

Proof (I) ⇒ (II).

Let (�1, �2, g) be a bi-contact metric structure and (�1, �1,�1, g) , (�2, �2,�2, g) the 

corresponding contact metric structure with g(�1, �2) = 0 . Consider the vector field 

�
3
= �

1
�

2
= ��

2
�

1
 , � = ±1 (cf. Definition 2.1). Then (�1, �2, �3) is a global orthonormal 

basis and �i(�j) = �ij for i = 1, 2 and j = 1, 2, 3 . Consequently, �
1
∧ d�

2
= 0 = �

2
∧ d�

1
 and

that is,   �
2
∧ d�

2
= −��

1
∧ d�

1
.

(II) ⇒ (III).

By using (II), (3.1) and (3.3), we get that (�1, �2) ia taut contact hyperbola (resp. cir-

cle) if � = 1 (resp. � = −1 ). From Theorem  4.2 (if � = 1 ) and Theorem  4.1 (if � = −1 ), 

we get that �1, �2 are linearly independent, �
1
(�

2
) = ��

2
(�

1
) and d�1(�2, ⋅) = �d�2(�1, ⋅) ≠ 0 

�1 ∧ d�2 = �2 ∧ d�1 = 0, �2 ∧ d�2 = −��1 ∧ d�1, � = ±1.

d�1 = −2�2 ∧ �3, d�2 = −2��1 ∧ �3, d�3 = 2��2 ∧ �1,

(�2 ∧ d�2)(�1, �2, �3) = −�2(�2)d�2(�1, �3) = −g(�1,�2�3) = �, (�1 ∧ d�1)(�1, �2, �3) = ... = 1
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everywhere. Then, �
1
∧ d�

2
= 0 = �

2
∧ d�

1
 implies �

1
(�

2
) = �

2
(�

1
) = 0 . Now, consider the 

1-form

Then, �
3
(�

2
) = �

3
(�

1
) = 0 and there exists a vector field �

3
 such that �

3
(�

3
) = 1 , (�1, �2, �3) 

is a basis and thus �
1
∧ �

2
∧ �

3
 is a volume form and ( �1 ∧ �2, �1 ∧ �3, �2 ∧ �3 ) is a basis of 

2-forms. Since

we get

Finally, by using (7.1), we have

and hence  d�
3
= 2� �

2
∧ �

3
 where � is a smooth function satisfying d� ∧ �

1
∧ �

2
= 0 , that 

is, �
3
= 0 where we put d� =

∑

i
�

i
�

i
 . The 1-form �

3
 satisfying (III) is unique because from 

(7.1) one gets that �3 = −d�1(�2, ⋅) = −�d�2(�1, ⋅).

(III) ⇒ (I).

Let (�1, �2, �3) be the triple of vector fields dual to the basis (�1, �2, �3) of 1-forms. We 

note that �1, �2 are necessarily the Reeb vector fields of �1, �2 , respectively. Moreover by the 

usual formulae, the dual of the equations of (III) are

where � is a smooth function. Now, we consider the Riemannian metric g defined by 

g(�i, �j) = �ij . Then �1 = g(�1, ⋅) and �2 = g(�2, ⋅) . Moreover, if we define the (1, 1)-tensors 

�
1
 and �

2
 by

then (�1, �1,�1) and (�2, �2,�2) are almost contact structures. Moreover, by using (7.2), we 

get d�1 = g(⋅,�1) and d�2 = g(⋅,�2) , that is , (�1, �2, g) is a bi-contact metric structure on 

M.   ◻

From Theorem  7.1 follows that for a bi-contact metric structure (�1, �2, g) are 

uniquely determined the 1-form �3 = d�1(⋅, �2) and the smooth function � = (d�3)(�2, �1) . 

In particular, we deduce

Corollary 7.2 If a 3D Lie group G admits a left invariant bi-contact metric structure, then 

G is unimodular.

The next example shows that there exist taut contact hyperbolas/circles which do not 

define (−�)-Cartan structures.

Example 7.3 Consider on ℝ3 the 1-forms

�3 = d�1(⋅, �2) = �d�2(⋅, �1) ≠ 0 everywhere.

d�1(�1, ⋅) = d�2(�2, ⋅) = 0, d�1(�2, �3) = −�3(�3) = −1 and d�2(�1, �3) = −��3(�3) = −�,

(7.1)d�1 = −2�2 ∧ �3, d�2 = −2��1 ∧ �3.

0 = d�
2
∧ �

3
= �

2
∧ d�

3
and 0 = d�

1
∧ �

3
= �

1
∧ d�

3

(7.2)[�1, �2] = 2� �3, [�2, �3] = 2 �1, [�3, �1] = −2� �2,

�1�1 = 0, �1�2 = �3, �1�3 = −�2, �2�2 = 0, �2�1 = ��3, �2�3 = −��1,

�
1
= (ay + bz)f (x) dx + dy and �

2
= (�by + az)f (x) dx + dz
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where f(x) is a positive smooth function and a, b ∈ ℝ , a, b ≠ 0 . Then

Consequently,

and

So for � = 1 , (�1, �2) defines a taut contact hyperbola, and � = −1 , (�1, �2) defines a taut 

contact circle. In both the cases (�1, �2) does not define a (−�)-Cartan structure. Besides, 

by Remark 4.5, we get that on the four manifold ℝ3
×ℝ

+
 the corresponding symplectic 

2-forms define a symplectic pair for � = 1 and a conformal symplectic couple for � = −1.

Remark 7.4 An interpretation of the function � in terms of the Webster scalar curva-

ture. Consider the Webster scalar curvature W as defined by Chern and Hamilton [9] in 

their study on contact Riemannian three-manifolds. If (M, �, g) is a contact Riemannian 

three-manifold, the Webster scalar curvature is given by ( [9], p.284)

where w is the usual scalar curvature and Ric(�, �) is the Ricci curvature in the direction 

of the Reeb vector field � . We note that the generalized Tanaka-Webster scalar curvature ŵ 

(cf. [26]) is eight times the Webster scalar curvature W as defined by Chern and Hamilton. 

Moreover, a compact simply connected regular Sasakian (2n + 1)-manifold is a principal �1

-bundle over a compact Kaehler manifold B of complex dimension n, and the generalized 

Tanaka-Webster scalar curvature ŵ is the scalar curvature of the Kaehler manifold B ( [25] 

p.26). Of course, in dimension three, B is a Riemann surface and hence the Webster scalar 

curvature W determines the Gaussian curvature ( 4W ) and the Eulero-Poincaré character-

istic of B.

Now, let (�1, �2, g) be a bi-contact metric structure. Then, we have the following (cf. 

[24], p.224):

• if (�1, �2) is a taut contact circle, i.e., � = −1 , the Webster scalar curvatures of (�1, g) 

and (�2, g) are given by the same function 

• if (�1, �2) is a taut contact hyperbola, i.e., � = +1 , the Webster scalar curvatures of 

(�1, g) and (�2, g) are given, respectively, by the functions 

So, in both the cases the function � determines the Webster curvature and it does not 

depend on the associated metric g. Therefore, we call � the Webster function of the (−�)

-Cartan structure (�1, �2) . If (�1, �2) is a taut contact circle, i.e., a Cartan structure, the Web-

ster function � is invariant for an Euclidean rotation of constant angle (cf. [24]).

Now, we suppose that (�1, �2) is a taut contact hyperbola and consider a hyperbolic rota-

tion of constant angle of (�1, �2) , i.e.,

d�
1
= af (x) dy ∧ dx + bf (x) dz ∧ dx and d�

2
= �bf (x) dy ∧ dx + af (x) dz ∧ dx.

�1 ∧ d�1 = bf (x) dx ∧ dy ∧ dz, �2 ∧ d�2 = −��1 ∧ d�1 ≠ 0

�
1
∧ d�

2
= −�

2
∧ d�

1
= af (x) dx ∧ dy ∧ dz ≠ 0.

W = (1∕8)(w − Ric(�, �) + 4),

(7.3)W = (� + 1)∕2;

W
1
= (� − 1)∕2 and W

2
= −(� + 1)∕2.
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Since

then (��
1
, ��

2
) is again a (−1)-Cartan structure. Moreover, the corresponding Reeb vec-

tor fields of the contact forms (��
1
, ��

2
) are ��

1
= a

1
�

1
− a

2
�

2
 and ��

2
= −r(a

2
�

1
− a

1
�

2
) . 

Consequently,

and thus d��
3
= rd�

3
= 2r��

2
∧ �

1
= ... = 2��

�

2
∧ �

�

1
 . Therefore, the Webster function of the 

(−1)-Cartan structure (��
1
, ��

2
) is ��

= � , i.e., for a (−1)-Cartan structure, the Webster func-

tion � is invariant for a hyperbolic rotation of constant angle.

About the 1-form �
3
 and the Webster function � , we have the following

Theorem 7.5 Let (�1, �2, g) be a bi-contact metric structure on the three-manifold M. Then, 

for the 1-form �
3
 hold the following properties.

(1)  �
3
 is a Killing 1-form (with respect to g) if and only if (�1, �2) is a taut contact circle.

(2)  �
3
 is a contact form if and only if the Webster function � ≠ 0 everywhere.

(3)  If �
3
 is a contact form, then

is a contact metric structure of the three-manifold M, and it is a Sasakian structure if and 

only if (�1, �2) is a taut contact circle.

Proof Let (�1, �2, g) be a bi-contact metric structure on the three-manifold M. Denote by 

(�i,�i, �i, g) , i = 1, 2 , the corresponding contact metric structures with g(�1, �2) = 0 . The 

1-form �
3
 defined by (III) of Theorem 7.1 is given by �3 = −d�1(�2, ⋅) ≠ 0 everywhere, and 

thus

Moreover, g(�3, �3) = �3(�3) = g(�1�2,�1�2) = 1 , g(�1, �3) = −g(�1�1, �2) = 0 and 

g(�2, �3) = −�g(�2�2, �3) = 0 . So (�1, �2, �3) is an orthonormal basis, dual to the basis of 

1-forms (�1, �2, �3) . Moreover, by proof of Theorem 7.1, the basis (�1, �2, �3) satisfies (7.2). 

Consequently, the fundamental tensors h
1
= (1∕2)L�

1

�
1
 and h

2
= (1∕2)L�

2

�
2
 of the con-

tact metric structures (�1, g) , (�2, g) , respectively, satisfy

Now, recall that a 1-form � on a Riemannian manifold (M, g) is a Killing form if and only if

(��
1
= a1�1 + a2�2, ��

2
= r(a2�1 + a1�2), r = ±1, with a = (a1, a2) ∈ ℍ

1

1
.

�
�

1
∧ d�

�

1
=(a2

1
− a

2

2
)�1 ∧ d�1 = �1 ∧ d�1, �

�

2
∧ d�

�

2
= (a2

2
− a

2

1
)�1 ∧ d�1 = −�1 ∧ d�1,

�
�

1
∧ d�

�

2
=r(a2

1
− a

2

2
)�1 ∧ d�2 = 0, �

�

2
∧ d�

�

1
= r(a2

2
− a

2

1
)�1 ∧ d�2 = 0,

��
3
= −d��

1
(��

2
, ⋅) = r(a1d�1 + a2d�2)(a2�1 − a1�2, ⋅) = r�3 = ... = −d��

2
(��

1
, ⋅),

(� = −�̄�3, g� = ��̄�g + (1 − ��̄�)� ⊗ �), where �̄ = �(sign�),

�3 = d�1(⋅, �2) = g(⋅,�1�2) = g(�3, ⋅), where�3 ∶= �1�2 = ��2�1.

(7.4)

{

h1�1 = 0, h1�2 = (� + �)�2, h1�3 = −(� + �)�3,

h2�1 = �(1 − �)�1, h2�2 = 0, h2�3 = −�(1 − �)�3.

i(X)d� = ∇
X
� for any vector field X on M,
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where ∇ is the Levi-Civita connection of the metric g. Then, in our case, by using the nota-

tions introduced before, �
3
 is a Killing form if and only if

By (III) of Theorem 7.1, d�
3
= 2� �

2
∧ �

1
 , thus

Moreover, we have

Since, by using (2.1), (7.4), and (7.2), we get

Then, we obtain

Therefore, 

that is, the property (1). Since �
3
∧ d�

3
= 2� �

3
∧ �

2
∧ �

1
 , we get the property (2).

Now, suppose that �
3
 is a contact form, that is, the Webster function � ≠ 0 everywhere. 

Then, �
3
= �

1
�

2
 is the Reeb vector field of the contact form �

3
 . If we define the tensor �

3
 by

since �
3
(�

i
) = �

3i
 , we have �2

3
= −I + �

3
⊗ �

3
 . Consider the tensors

It is not difficult to see that these tensors satisfy �2
= −I + � ⊗ � , � = g�(�, ⋅) and 

d� = g
�
(⋅,�) . Therefore, (�,�, �, g�) is a contact metric structure on the three manifold 

M. Moreover, this structure is Sasakian if and only if the almost contact metric structure 

(�,�, �) is normal.

Recall that in dimension three, any almost CR structure is integrable, then by using The-

orem 11 of [25] we get that the almost contact structure (�,�, �) is normal (equivalently, 

the induced almost CR structure is normal) if and only if � is a CR Reeb vector field, that 

is, the tensor L�J vanishes, where J = �| ker �
 , ker � =span(�1, �2) . By using (7.2),

d�3(�i, �j) = (∇�i
�3)�j for i, j = 1, 2, 3.

d�3(�i, �j) = 0 when i = 3orj = 3, and d�3(�1, �2) = −�.

(∇�i
�3)�j = −g

(

�3,∇�i
�j

)

.

(7.5)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∇�1
�1 = 0, ∇�2

�1 = −(1 + � + �)�3, ∇�3
�1 = (1 − � − �)�2,

∇�2
�2 = 0, ∇�1

�2 = −(1 − � + �)�3, ∇�3
�2 = (� − 1 + �)�1,

∇�1
�3 = (1 − � + �)�2, ∇�2

�3 = (1 + � + �)�1, ∇�3
�3 = 0.

(∇�1
�3)�2 = (1 − � + �), (∇�2

�3)�1 = (1 + � + �) and (∇�i
�3)�j = 0 in the other cases.

d�3(�i, �j) = (∇�i
�3)�j for i, j = 1, 2, 3 ⟺ � + 1 = 0,

�3�3 = 0,�3�1 = −��2,�3�2 = ��1,

� = − �̄�3, � = �3, � = −�̄�3,

g� =��̄�g + (1 − ��̄�)�3 ⊗ �3, where we put �̄ = sign(��).

−�̄
(

L�J
)

�1 =
(

L�3
�3

)

�1 = [�3,�3�1] − �3[�3, �1] = 2(� + 1)�1,−�̄
(

L�J
)

�2 =
(

L�3
�3

)

�2 =[�3,�3�2] − �3[�3, �2] = −2(� + 1)�2.
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Then, (�, �,�) is normal if and only if � + 1 = 0 , that is, (�1, �2) is a taut contact circle.  

 ◻

Next, we examine the property (3) of Theorem  7.5. Consider the contact metric 

structure (� = −�̄�3, g� = ��̄�g + (1 − ��̄�)�3 ⊗ �3) , �̄ = sign(��) , which is Sasakian if 

and only if � = −1 . We note that the metric g
�
= g if and only if the Webster function 

� = ±1.

Now, for � = ±1 , the vector fields (�1, �2, �3) are g-orthonormal and satisfy (7.2), for 

which M̃ has a Lie group structure isomorphic to SU(2) or S̃L(2,ℝ) ; moreover, 

are three left invariant bi-contact metric structures with

So, we distinguish the following cases. 

a)     (�, �) = (1,−1) . In this case (�, �,�, g�) = (�3, �3,�3, g) and M̃ is the Lie group 

SU(2). Moreover, the tensors (�
i
, �

i
,�

i
) , i = 1, 2, 3 , related to the bi-contact metric 

structures (7.6), satisfy the condition (2.3). Thus, (�1, �2, �3, g) is a contact metric 

3-structure. In particular, by Remark 5.2, the triple (�1, �2, �3) defines a taut contact 

2-sphere. On the other hand, a contact metric 3-structure is a Sasakian 3-structure 

(see, for example, [3] p.293) and g is of constant sectional curvature +1.

b)    (�, �) = (−1, 1), (1, 1), (−1,−1) . In this case M̃ is the Lie group S̃L(2,ℝ).

b
1
)     If (�, �) = (−1, 1) , then (�, �,�, g�) = (�3, �3,�3, g) is not Sasakian and thus 

(�1, �2, �3, g) is not a contact metric 3-structure. Moreover, since � + � = 0 , from (7.4) 

we have that (�1, g) is Sasakian. Besides, by using (7.5) a direct computation gives 

that the Ricci tensor of g is Ric = −6g + 8�
1
⊗ �

1
 . Then, if we consider the corre-

sponding Lorentzian-Sasakian structure (�1, gL = g − 2�1 ⊗ �1) , from formula (22) of 

[25], the corresponding Ricci tensor is given by RicL = Ric + 4g − 4�
1
⊗ �

1
= −2gL , 

and thus gL is a Lorentzian metric of constant sectional curvature −1.

b
2
)  If (�, �) = (1, 1) , also in this case (�, �,�, g�) = (−�3,−�3,�3, g) is not Sasakian 

and thus (�1, �2,−�3, g) is not a contact metric 3-structure. Moreover, since � = � , 

from (7.4) we have that (�2, g) is Sasakian. Then, as in the case b
1
) , we get that 

(�2, gL = g − 2�2 ⊗ �2) is a Lorentzian-Sasakian structure with gL Lorentzian metric 

of constant sectional curvature −1.

b
3
)  If (�, �) = (−1,−1) , the structures (�1, g),(�2, g) are not Sasakian, thus (�1, �2,−�3, g) 

is not a contact metric 3-structure, but the structure (�, �,�, g�) = (−�3,−�3,�3, g) is 

Sasakian. Then, as in the case b
1
) , we get that (−�3, gL = g − 2�3 ⊗ �3) is a Lorentz-

ian-Sasakian structure with gL Lorentzian metric of constant sectional curvature −1.

Finally, in all the cases b
i
) , i = 1, 2, 3 , from Proposition 5.1, follows that the 1-forms 

�1, �2, �3 define a taut contact 2-hyperboloid.

Summing up, we get

Corollary 7.6 Let (�1, �2, g) be a bi-contact metric structure on the three-manifold M 

with the Webster function � ≠ 0 everywhere. Then, the metric g
�
= g if and only if � =

const.= ±1.

(7.6)(�1, �2, g), (�1,−�̄�3, g), (�2,−�̄�3, g)

�3 ∧ d�3 = −�� �2 ∧ d�2 = � �1 ∧ d�1, �i ∧ d�j = 0, i ≠ j.
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In this case, i.e., for � =const.= ±1,

are three left invariant bi-contact metric structures and M̃ is either SU(2) or S̃L(2,ℝ).

More precisely, we have the following.

• If (�, �) = (1,−1) , M̃ is SU(2) and (�1, �2, �3, g) is a 3-Sasakian structure on it, where 

(�1, �2, �3) is a taut contact 2-sphere and g is of constant sectional curvature +1.

• If (�, �) = (−1, 1), (1, 1), (−1,−1) , M̃ is S̃L(2,ℝ) and the 1-forms �1, �2, �3 define a taut 

contact 2-hyperboloid. Besides, for (�, �) = (−1,−1) (resp. (�, �) = (−1, 1), (1, 1) ) 

the structure (−�3, gL = g − 2�3 ⊗ �3) (resp. (�1, gL = g − 2�1 ⊗ �1) , 

(�2, gL = g − 2�2 ⊗ �2) ) is a Lorentzian-Sasakian structure with gL Lorentzian metric of 

constant sectional curvature −1.

Remark 7.7 From Corollary 7.6 we get that the Lie group S̃L(2,ℝ) admits three left invari-

ant bi-contact metric structures, with the same associated metric, which do not define a 

contact metric 3-structure.

8  Generalized Finsler structures and bi-contact metric structures

The main purpose of this section is to see how the taut contact hyperbolas are related 

to generalized Finsler structures, and construct examples of bi-contact metric structures 

(�1, �2, g) with (�1, �2) taut contact hyperbola. On the other hand, in [24], we posed the 

question to find examples (if there exist) of bi-contact metric structures (�1, �2, g) on 

3-manifolds which are not homogeneous, and thus with the Webster function � non-con-

stant, where the 1-forms (�1, �2) satisfy the conditions that define a taut contact hyperbola. 

So, by this study we give, in particular, a positive answer to this question (see Example 

8.2).

Let M be a three-manifold. Following R. Bryant [5, 6], a coframe (�1,�2,�3) on M is 

said to be a (I, J, K)-generalized Finsler structure if it satisfies the following structure 

equations

where (I, J, K) are smooth functions on M, known as the main scalar, the Landsberg cur-

vature and the flag curvature, respectively.

We note that if (�1,�2,�3) is a (I,  J,  K)-generalized Finsler structure, then 

(�1,−�2,−�3) is a (−I,−J, K)-generalized Finsler structure. As remarked in [5] and [6], 

the difference between the notions of Finsler structure and generalized Finsler structure 

is global in nature, that is, any generalized Finsler structure is locally diffeomorphic to 

a Finsler structure, hence M can be realized locally as the unit sphere bundle of a Fin-

sler surface (N, F) in such a way that the given coframing is the canonical coframing 

induced on M by the (local) Finsler structure F.

(�1, �2, g), (�1,−���3, g) and (�2,−���3, g)

(8.1)

⎧
⎪
⎨
⎪
⎩

d�1 = −�2 ∧ �3,

d�2 = �1 ∧ �3 + I�3 ∧ �2,

d�3 = −K�1 ∧ �2 − J�2 ∧ �3,
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In the sequel, for a smooth function f on M equipped with a generalized Finsler struc-

ture, we put df =

∑3

i=1
fi �i . Computing the exterior derivative of the structure equations 

(8.1), one gets the so called Bianchi identities (cf. [5], Section 1; [6], Section 2.2)

In particular, I = const. implies J = 0 ;    J =const. and K =const.≠ 0 imply I = J = 0 . 

When I = J = 0 , the generalized Finsler structure is locally a Riemannian structure.

Denote by Ω the volume form �
1
∧ �

2
∧ �

3
 . From (8.1), a simply computation gives

Then, from Theorem 7.1, we get

Proposition 8.1 Let (�1,�2,�3) be a (I,  J,  K)-generalized Finsler structure on a three-

manifold M. Then

a)    (�1,�2) defines a bi-contact metric structure   if and only if   � = −1 , I = J = 0.

b)    (�1,�3) defines a bi-contact metric structure   if and only if   K = −� , J = I = 0.

c)    (�2,�3) defines a bi-contact metric structure   if and only if   K = −�.

Bryant et al. [6] studied Finsler surfaces of constant flag curvature K = 0,±1 , with a 

Killing field.

Next, we discuss separately the cases a), b), c).

• The case a) : � = −1, I = J = 0 . In this case the triple of 1-forms 

(�1, �2, �3) = (1∕2)(�1,�2,�3) satisfies (III) of Theorem 7.1, where (�1, �2) is a taut 

contact circle with the Webster function � = K . So, if the flag curvature K is ≠ 0 

everywhere, from Theorem 7.5 follows that �
3
 is a Killing contact form. Moreover, 

in this case, we have a generalized Riemann structure in the sense of [7]. Of course, 

a bi-contact metric structure with � = −1 defines a (0, 0, �) generalized Finsler struc-

ture.

  A model for this type of structure is implicitly given in [24]. More precisely, con-

sider the space ℝ3(x1, x2, t) , a smooth function � = �(x1, x2) and put �
1
= ��∕�x

1
 , 

�
2
= ��∕�x

2
 , �

11
= �

2
�∕�x

2

1
 and �

22
= �

2
�∕�x

2

2
 . Then, the 1-forms 

define a coframe on ℝ3(x1, x2, t) . Moreover, they satisfy the structure equations (8.1) of 

a generalized Finsler structure with I = J = 0 and K = −e
−2�(�

11
+ �

22
) . We note that 

if (N, G) is a Riemannian surface, using isothermal local coordinates (x1, x2) on N, the 

Riemannian metric G is given by G = e
2�(dx

2

1
+ dx

2

2
) and, in terms of these coordinates, 

the function K = −e
−2�(�

11
+ �

22
) is its Gaussian curvature.

• In the case b): K = −�, I = J = 0 , the triple of 1-forms (�1, �2, �3) = (1∕2)(�1,�3,−�2) 

satisfies (III) of Theorem 7.1 with � = 1 , where (�1, �2) is a taut contact hyperbola (resp. 

circle) if � = 1 (resp. � = −1).

(8.2)I1 = J, J1 = −K3 − KI.

�2 ∧ d�2 = �1 ∧ d�1 = −Ω, �3 ∧ d�3 = K�1 ∧ d�1 = −KΩ, �1 ∧ d�2 = −I Ω,

�2 ∧ d�1 = 0, �1 ∧ d�3 = −J Ω, �3 ∧ d�1 = 0, �2 ∧ d�3 = �3 ∧ d�2 = 0.

�1 = e
�

(

(cos t)dx1 + (sin t)dx2

)

,

�2 = e
�

(

− (sin t)dx1 + (cos t)dx2

)

,

�3 = −�2dx1 + �1dx2 + dt,
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• In the case c): K = −� , the most interesting case for our study, the structure equations 

become 

Then, the 1-forms

satisfy:

Besides,

and thus, by using (8.2), we have

Therefore, for K = −1 (resp. K = 1 ), we get taut contact hyperbolas (resp. circles) with the 

Webster function � , in general, non-constant. If K = 1 and � ≠ 0 everywhere, from Theo-

rem 7.5 follows that �
3
 is a Killing contact form.

Next, we give an explicit example of bi-contact metric structure (�1, �2, g) where (�1, �2) is 

a taut contact hyperbola with the Webster function � non-constant.

Example 8.2 Let M be a connected open subset of ℝ3 . On M we consider the following 

1-forms

where f(x) is a positive smooth function defined on M. These forms satisfy:

So, one gets

⎧
⎪
⎨
⎪
⎩

d�1 = −�2 ∧ �3,

d�2 = �1 ∧ �3 + I�3 ∧ �2,

d�3 = ��1 ∧ �2 − J�2 ∧ �3.

�1 = (1∕2)�3, �2 = (1∕2)�2 and �3 = (1∕2)(��1 + J�3 − �I�2)

d�1 =(1∕2)d�3 = (1∕2)(��1 ∧ �2 − J�2 ∧ �3) = 2�3 ∧ �2,

−2��1 ∧ �3 = − (1∕2)�3 ∧ (�1 + J��3 − I�2) = (1∕2)d�2 = d�2.

2d�3 = (�d�1 + dJ ∧ �3 + Jd�3 − �dI ∧ �2 − �Id�2)

= (J2 − J
2 + �I3 + �I

2 − �)�2 ∧ �3 + (J1 − �I)�1 ∧ �3 + (�J − �I1)�1 ∧ �2,

d�3 = 2� �2 ∧ �1, where � = (J2 − J
2 + �I3 + �I

2 − �).

�1 = dx + xdy + dz, �2 = −
cosh z

f (x)
dx + f (x)(sinh z)dy, �3 = −

sinh z

f (x)
dx + f (x)(cosh z)dy

d�1 =dx ∧ dy = �3 ∧ �2,

d�2 = −
sinh z

f (x)
dz ∧ dx + f �(x)(sinh z)dx ∧ dy + f (x)(cosh z)dz ∧ dy,

d�3 = −
cosh z

f (x)
dz ∧ dx + f �(x)(cosh z)dx ∧ dy + f (x)(sinh z)dz ∧ dy,

�1 ∧ �3 = −
sinh z

f (x)
dz ∧ dx + f (x) cosh z (dz ∧ dy) +

(

f (x)(cosh z) + x
sinh z

f (x)

)

dx ∧ dy,

�1 ∧ �2 = −
cosh z

f (x)
dz ∧ dx + f (x)(sinh z)dz ∧ dy +

(

f (x)(sinh z) + x
cosh z

f (x)

)

dx ∧ dy.
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where

Therefore, (�1,�2,�3) is a (I, J,−1) generalized Finsler structure on M. Then, by the dis-

cussion of the case c) of Proposition 8.1, (�1, �2) = (1∕2)(�3,�2) is a taut contact hyper-

bola. In this case, the 1-form �
3
 is given by

Since 2d�
3
= (f �f )�(x) dx ∧ dy = (f �f )�(x)�

3
∧ �

2
= −4(f �f )�(x)�

2
∧ �

1
 , we get

where the Webster � function is given by

The frame (�1, �2, �3) , dual of the coframe (�1, �2, �3) , is given by

where �1, �2 are the Reeb vector fields of �1, �2.

Then, if g is the Riemannian metric defined by g(�i, �j) = �ij , (�1, �2, g) is a bi-contact 

metric structure with the Webster scalar curvatures

In this example, we have a family of (If , Jf ,−1) generalized Finsler structures, depending 

on a function f(x), that define taut contact hyperbolas. In particular, this family contains 

generalized Finsler structures that define left invariant taut contact hyperbolas on the Lie 

groups Sol3 and S̃L(2, R) . More precisely,

• Consider M = ℝ
3 and the (If , Jf ,−1) generalized Finsler structure corresponding to the 

function f (x) = 1 . Then, the 1-forms (�1, �2) = (1∕2)(�3,�2) and �
3
 are given by 

 and the dual vector fields 

 satisfy (3.7), and hence define on ℝ3 a Lie group structure isomorphic to Sol3.

• Consider M = ℝ
3

+
= {(x, y, z) ∈ ℝ

3 ∶ x > 0} and the (−1, If , Jf ) general-

ized Finsler structure corresponding to the function f (x) = x . Then, the 1-forms 

(�1, �2) = (1∕2)(�3,�2) and �
3
 are given by 

d�1 = �3 ∧ �2, d�2 = �1 ∧ �3 + I�3 ∧ �2, d�3 = �1 ∧ �2 − J�2 ∧ �3,

I = (f � − (x∕f )) sinh z − f cosh z and J = (f � − (x∕f )) cosh z − f sinh z.

�
3
= (1∕2)

(

�
1
+ J�

3
− I�

2

)

= ... = (1∕2)
(

dz + f �(x)f (x)dy
)

.

d�
3
= 2� �

2
∧ �

1

�(x) = −(f �f )�(x) = −(1∕2)(f 2)��(x).

�1 =2

(

f (x)(sinh z)�x +
cosh z

f (x)
�y − f �(x)(cosh z)�z

)

,

�2 = − 2

(

f (x)(cosh z)�x +
sinh z

f (x)
�y − f �(x)(sinh z)�z

)

, �3 = 2�z,

(8.3)W
1
= −

(

(f 2)��(x) + 2
)

∕4 and W
2
=
(

(f 2)��(x) − 2
)

∕4.

�1 = (−(sinh z)dx + (cosh z)dy)∕2, �2 = (−(cosh z)dx + (sinh z)dy)∕2, �3 = (1∕2)dz,

�1 =2((sinh z)�
x
+ (cosh z)�

y
), �2 = −2((cosh z)�

x
+ (sinh z)�

y
),

�3 =2�
z



763Annals of Global Analysis and Geometry (2021) 60:735–765 

1 3

 and the dual vector fields 

 satisfy (3.8), and hence define on ℝ3

+
 a Lie group structure isomorphic to S̃L(2,ℝ).

Remark 8.3 About the Webster curvature, we recall that every contact structure on a com-

pact orientable three-manifold has a contact form and an associated Riemannian metric 

whose Webster scalar curvature is either a constant ≤ 0 or is everywhere strictly positive 

(see the main result of [9]). On the other hand, every compact orientable three-manifold M 

has a contact structure [19]. Therefore, every compact orientable three-manifold M has a 

contact Riemannian structure whose Webster scalar curvature is either a constant ≤ 0 or is 

everywhere strictly positive.

Now, from (8.3), it is not difficult to find a positive function f(x) for which W
1
 be a 

strictly negative function and W
2
 be a strictly positive function. On the other hand, on a 

three-manifold, a contact Riemannian structure determines a non-degenerate CR struc-

ture with the same Webster scalar curvature (cf., for example, [25] p.30). So, we get the 

following

Proposition 8.4 Any connected open subset of ℝ3 admits a non-degenerate CR structure 

whose Webster scalar curvature is a strictly negative function and a non-degenerate CR 

structure whose Webster scalar curvature is a strictly positive function.

Final remark

Of course, it is an open question to give a classification of three-manifolds which admit 

a taut contact hyperbola. Recall that the homothety class of a taut contact circle is defined 

by multiplication by the same positive function and by a rotation of constant angle [13]. 

Similarly, we can define the homothety class of a taut contact hyperbola. If f is a positive 

smooth function and (�1, �2) a pair of contact forms on a three-manifold M, the contact 

forms (�̃1 = f �1, �̃2 = f �2) satisfy

Then,

•   (�1, �2) is a taut contact hyperbola if and only if (�̃1, �̃2) is a taut contact hyperbola.

  Moreover, if (�1, �2) is a taut contact hyperbola and (��
1
, ��

2
) is obtained from (�1, �2) 

by a hyperbolic rotations of constant angle, it is not difficult to see that

•   (�1, �2) is a taut contact hyperbola if and only if (��
1
, ��

2
) is a taut contact hyperbola.

This suggests to define the homothety class of a taut contact hyperbola by multiplication by 

the same positive function and by a hyperbolic rotation of constant angle. Hence, to clas-

sify taut contact hyperbolas is equivalent to classify their homothety classes.

�1 =
(

−
sinh z

x
dx + x(cosh z)dy

)

∕2, �2 =
(

−
cosh z

x
dx + x(sinh z)dy

)

∕2,

�3 =(1∕2)(xdy + dz),

�1 =2
(

x(sinh z)�
x
+

cosh z

x
�

y
− (cosh z)�

z

)

, �2 = −2
(

x(cosh z)�
x
+

sinh z

x
�

y
− (sinh z)�

z

)

,

�3 =2�
z
,

�̃i ∧ d�̃i = f 2�i ∧ d�i, (i = 1, 2), �̃1 ∧ d�̃2 + �̃2 ∧ d�̃1 = f 2(�1 ∧ d�2 + �2 ∧ d�1).
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