
Tavarua: Video Streaming with WWAN Striping

Asfandyar Qureshi
MIT-CSAIL

asfand@csail.mit.edu

Jennifer Carlisle
MIT-CSAIL

jc@csail.mit.edu

John Guttag
MIT-CSAIL

guttag@csail.mit.edu

ABSTRACT
Tavarua is a multimedia streaming system that leverages
network-striping to deliver relatively high bit rate video over
present-day cellular wireless wide-area networks. The Tavarua
system achieves this by building on our previously developed
flexible network-striping middleware. This paper describes
a motivating mobile telemedicine application, and the de-
sign of the Tavarua system. It also describes experiments
in which our initial Tavarua implementation was used to
stripe video over multiple 3G cellular-phones from different
providers.

Categories and Subject Descriptors
H.5 [Information Systems]: Information Interfaces and
Presentation; J.4 [Computer Applications]: Life and Med-
ical Sciences; D.4.4 [Operating Systems]: Communica-
tions Management—network communication

General Terms
Human Factors, Design, Measurement

Keywords
Video streaming, network striping, wireless wide-area net-
works, mobile systems, telemedicine.

1. INTRODUCTION
This paper describes a novel real-time multimedia commu-

nications sub-system designed to support mobile telemedicine
applications.

Real-time telemedicine is not a new idea, it is at least
as old as the telephone. However, over the last decade,
the increasing availability of data communications has led
to a dramatically increased interest in new applications of
telemedicine. These applications can be viewed in terms of
the communications technology employed:
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• Fixed installations with high bandwidth and
ensured quality of service (QoS). For example, the
tele-stroke program at Massachusetts General Hospi-
tal (MGH) [2] uses dedicated tele-conferencing facili-
ties to connect MGH with several distant sites. This
allows stroke specialists at MGH to evaluate patients
who have been brought to one of the remote sites.

• Fixed or mobile facilities with high bandwidth
but limited QoS guarantees. For example, the In-
ternet is often used to send medical images to radiol-
ogists, who then use the same network to send back
their reports. Similarly, high quality photographic im-
ages are being used for remote dermatological consults
[15].

• Mobile facilities with low bandwidth and lim-
ited QoS guarantees. For example, cell phones and
radios are used to provide an audio link between EMT’s
in the field and care givers at hospitals.

We are in the process of developing a mobile application
that occupies a different point in this space: high band-
width, high QoS, mobile communications. In conjunction
with teams in Orange County, Florida, and Massachusetts
General Hospital we are building a system that will allow
physicians to remotely evaluate the condition of patients in
a moving ambulance. Potential uses include:

• For trauma victims, establishing effective communica-
tion between the emergency medicine system (EMS)
pre-hospital team and the in-house trauma team is
challenging. The physical distance and pressure of pro-
viding emergent care often prevent detailed and effec-
tive information exchange from one team to the other.
A system that allows real-time audio and visual linkage
of the two teams and real-time transmission of pre-
hospital data to the hospital could lead to improved
outcomes for patients.

• For some conditions, e.g., stroke or heart attack, prompt
initiation of an appropriate therapy can have a dra-
matic effect on the outcome. Consultation with a
physician during transport may reduce the time to in-
tervention.

• When an ambulance picks up a patient following a 911
call, the patient is usually transported to an emergency
department (ED). This may not always be the best
choice: for instance, the patient may be suffering from



an infectious disease, or the patient may not be in
need of urgent care. Avoiding inappropriate transport
is particularly important in geographical areas where
over-crowding of ED’s is a serious problem.

• In some cases, there can be questions about the appro-
priate destination for a patient. For example, should
the patient be taken to a hospital with specialized fa-
cilities, to the nearest hospital, to a clinic, or perhaps
nowhere (e.g., in the event of an inappropriate 911
call). A remote exam by a qualified physician, can be
used to assist in making such decisions.

Building an application that meets these needs requires
a mobile communications system that simultaneously han-
dles real-time uni-directional video (on the order of 500kbps,
with a latency no more than a few seconds), bi-directional
audio, and multiple physiological data streams (EKG, blood
pressure, etc.).

In most urban areas, there are a large number of public
carrier wireless cellular channels providing mobile connectiv-
ity to the Internet. However, they are typically optimized for
the downstream link, so the upstream bandwidth offered by
these channels is far less than the advertised rates might lead
one to believe. Furthermore, individual channels provide lit-
tle in the way of QoS guarantees. These Wireless Wide Area
Networks (WWAN’s) are also dogged by high and variable
round trip times, occasional outages, considerable bursti-
ness, and high loss rates. The good news is that multiple
WWAN providers provide overlapping coverage. Further-
more, our experiments in Orange County, Florida, and the
Greater Boston area indicate that throughput from simulta-
neous WWAN connections can be combined to yield a high
aggregate throughput [16].

These issues led us, over the last few years, to investigate
using inverse multiplexing, or network striping, to aggregate
several of these channels to provide virtual channels. By
taking advantage of service provider diversity and overlap-
ping coverage, we attempt to provide applications with the
illusion that a reliable high-bandwidth channel is available.

In this paper, we describe Tavarua, a prototype system
that builds on our network striping sub-system and on open-
source video processing software, to develop a high-quality
mobile telemedicine application. In Section 2, we report
briefly on WWAN experiments we conducted to assess the
actual behavior of the available cellular connections (which
differs considerably from the best case behavior that is fre-
quently advertised). In Section 3 we describe the various
components of Tavarua. In particular, we describe Tribe,
which provides the lowest level connection between Tavarua
and the network interfaces; Horde, which provides the net-
work striping layer; and Tavarua’s video services subsys-
tem. In Section 4 we report on an empirical evaluation of
the most demanding component of the telemedicine system,
the up-link video transmission. We transmit video, striping
over multiple WWAN channels, and evaluate the impact of
packet losses on the quality of the received video.

2. NETWORK CHARACTERISTICS
WWAN channel performance is hard to predict. Adver-

tised network characteristics are rarely realistic. Further-
more, the performance at any given time depends on (among
other things) the spatial placement of the WWAN interface
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Figure 1: Measured packet round-trip-time distri-
butions from experiments conducted in Orlando.

relative to the provider’s base-stations, competition with
other users in the WWAN cell, and on artifacts arising from
physical occlusion and electromagnetic interference.

Therefore, in order to ground the following discussion,
we present a high-level summary of some WWAN experi-
ments we have conducted in Orlando and Boston. The re-
sults of our experiments are presented in more detail else-
where [16]. The goal of these experiments was to determine
how well multiple WWAN interfaces would perform, if they
were transmitting simultaneously in close proximity, inside a
moving vehicle. The experiments consisted of driving over a
large area constantly transmitting UDP packets, from mul-
tiple co-located WWAN interfaces, to a host on a wired eth-
ernet in Boston. We used EV-DO interfaces from Sprint and
Verizon.

Summary of results
In these experiments, we tested for available upload through-
put, packet round-trip-times, and loss characteristics.

Packet Latency
The measured packet round-trip-times (RTTs) for 1024-byte
packets were consistently high (around 600ms) with high
variance (σ ≈ 350ms), even when the CDMA channels were
otherwise well-behaved. Periods of elevated RTTs were not
uncommon, with RTT spikes as high 3.5 seconds. Fortu-
nately, the RTTs were not correlated across interfaces.

Disconnections
We experienced only a small number of short-lived (less than
30 seconds) disconnections during which an interface was un-
able to upload any data. Furthermore, these periods were
not correlated across interfaces, suggesting that the diver-
sity provided by multiple interfaces can be used to enhance
reliability.



Figure 2: Measured coverage map for Boston. Darker squares indicate regions of higher throughput.

Throughput
Our analysis shows that in practice, the upload through-
put seen by an interface varies considerably. However, con-
trary to our expectations, which were derived from simu-
lation based network studies [9], we found no correlation
between the vehicle’s speed and achieved throughput. It
seems that geographical location is the dominant factor lead-
ing to variation. This geography-based variation can be
attributable to any of several factors including distance to
base station, topography, occlusion by other structures, and
electro-magnetic interference.

Figure 2 shows how aggregate throughput varied geograph-
ically during the Boston experiment. The map was con-
structed using GPS logs from the experiment.

Figure 3 shows how throughput varied over time during
part of this experiment. The vehicle was moving relatively
fast during this period. This snapshot covers four minutes
from the middle of a long-running experiment. The ramp-up
at the start of the Sprint graph is recovery from a short-lived
disconnection.

As indicated in the aggregate throughput graph, figure
3d, the use of multiple interfaces provides a considerable
smoothing effect.

Disappointingly, the peak upload throughput never reached
the rate advertised by network providers (never exceeding
140kbps per interface). We were also disappointed that our
results suggest that the throughput provided by interfaces
from the same provider can be strongly correlated in time.

Fortunately, our results indicate that it is possible to oper-
ate multiple WWAN interfaces to achieve a relatively consis-
tent high aggregate throughput. Additional interfaces, even
from the same provider, can boost aggregate throughput.

It is not immediately clear how many co-located WWAN
interfaces one can operate simultaneously before experienc-
ing cross-channel interference on either the air channel or
further down stream. Our scalability experiments, using
four interfaces from Verizon, made it clear that there is a
point of diminishing returns for co-located network inter-
faces for the same carrier. Doubling the number of inter-
faces from Verizon in Orlando (from two to four) led to only
a 50% increase in aggregate throughput.

From our analysis of these experiments, we estimate that
we will need at least six WWAN interfaces to meet our goal
of 500kbps video. We plan to use four from Verizon and
two from Sprint. Verizon provides better coverage in our
deployment area.
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Figure 3: An example of the dynamic variation in available upload throughput while moving in a vehicle.

3. TAVARUA: SYSTEM OVERVIEW
Figure 4 shows the structure of the Tavarua system.
The hardware in Tavarua consists of two main compo-

nents, one placed on the ambulance, the other residing at a
stationary command center, probably in a hospital. The
component on the ambulance consists of a PC, multiple
lightweight routers, WWAN interfaces, and video cameras.

The software in Tavarua consists of a collection of appli-
cations (video streaming, audio communications, telemetry
transmission, etc), supported by networking middleware.

The networking middleware provides network striping ca-
pabilities to the applications. Application data is distributed
over many network interfaces. The middleware arbitrates
between different applications, and optimizes for each ap-
plication’s QoS requirements. The middleware also handles
low-level issues related to the network interfaces (e.g., con-
gestion control, disconnections and reconnections). An ab-
stract striping interface is exposed to applications.

The set of applications is derived from the needs of our
mobile telemedicine project. The video server has, by far,
the highest network bandwidth requirements. The video
server is designed to exploit the availability of multiple chan-
nels, and must be able to deal with network instability (both
in terms of varying bandwidth and varying packet latencies).
A separate application handles bi-directional voice commu-

Figure 4: Overview of the Tavarua system.



Figure 5: The Tribe protocol allows Horde to trans-
parently connect to an arbitrary number of PCM-
CIA WWAN interfaces.

nications. Although the voice channel does not need to use
network striping to overcome bandwidth limitations, it does
take advantage of the multiple network channels to increase
the reliability of the audio link. Finally, a third application,
yet to be built, will handle the relatively low-bandwidth
telemetry.

System reliability is an important issue. Tavarua is part of
a multi-city multi-disciplinary research project. In the com-
ing year, we expect to deploy Tavarua as part of a months-
long medical study. During this period, the system needs to
operate with high availability, and with minimal interaction
with its engineers.

In order to ensure reliability, we have taken several steps
to harden the system. The system is structured as a set of
restartable components, keeping everything in user-space,
and taking advantage of process-level isolation. Further-
more, we plan on using hardware watchdogs and idle-period
detection to preemptively restart components.

In the following sections, we discuss aspects of the Tavarua
system in more detail. We begin with the network sub-
systems, Tribe and Horde, and then address the applications.
Because of the high network demands of streaming video and
the ample opportunity for customization, we devote the ap-
plication discussion to describing the video component. We
consider the user interface component of the telemedicine
system to be an important part of our research project, but
that is not yet built.

3.1 Tribe: Connecting to Many Networks
Our network experiments imply that meeting our mini-

mum bandwidth requirements using today’s networks will
require operating at least six WWAN interfaces simultane-
ously, and perhaps as many as ten. Each interface is a PCM-
CIA card. We considered using PCI-to-PCMCIA bridges
to connect the necessary network interface cards to a sin-
gle machine. In the end, however, we chose a more scal-
able software-based approach, using conventional off-the-
shelf hardware. Figure 5 shows the structure of this solution.

The main computer is connected to a network of lightweight
routers over a local high-speed ethernet. Each router box
handles a maximum of two WWAN interfaces, forwarding
packets to and from the main computer. In the present im-
plementation, each box is a net4521 embedded computer,
from Soekris Engineering [3].

The Tribe protocol runs over the local ethernet. The
protocol allows the main computer to keep track of active

WWAN interfaces (as they come up and go down, in re-
sponse to call disconnections and reconnections), and to re-
motely manage and restart services on the routers as neces-
sary.

On the primary computer, Tribe emulates each active re-
mote interface as a local interface. This emulation is ac-
complished using a standard TUN/TAP Linux kernel module.
Packets sent to a TUN interface managed by Tribe are trans-
parently tunneled over the local ethernet to the appropriate
Soekris box, before being sent out over a WWAN interface.

With the Tribe in place, Horde has the ability to treat the
remote WWAN interfaces as local interfaces. Tribe masks
the additional complexity associated with managing the re-
mote interface cards.

In addition to not requiring specialized hardware this solu-
tion also scales well. If additional bandwidth is desired and
more WWAN interfaces are needed, we simply add more
Soekris boxes.

Tribe is not Horde specific. It can support any Linux ap-
plication that uses TCP, UDP, or ICMP. Like Horde, Tribe
runs entirely in user-space, requiring only a small set of el-
evated privileges, such as raw socket capabilities.

3.2 Horde: Network Striping
Network striping takes data from a single source channel,

sends it in some order over a set of smaller channels, and,
if appropriate, reassembles the data in the correct order at
the other end. A great deal of work has been done on net-
work striping [6, 13, 14, 18, 20]. Most of this work is aimed
at providing improved scheduling algorithms under the as-
sumption that the underlying links are relatively stable and
homogeneous.

Unfortunately, in our environment the underlying links
are neither stable nor homogeneous (see §2). Furthermore,
the applications in our telemedicine system generate mul-
tiple data streams that are heterogeneous with respect to
their service needs. Some application streams have packet-
level latency requirements and others have file-level latency
requirements. Some application streams are more sensitive
to packet losses than are others. Some application streams
are sensitive to jitter, while others are not. Etc.

In many cases, researchers have decided to make the strip-
ing layer invisible to applications. Applications are writ-
ten as if there is a single large transmission channel. How-
ever, when striping heterogeneous data streams over a multi-
provider set of WWAN channels, the manner in which the
striping middleware decides to schedule the transmission of
application packets can have a large influence on observed
packet latencies, stream loss rates, and throughput. This, in
turn, can have a large impact on the utility the application
layer derives from network service. This suggests that it is
important to allow applications some control over the way
in which striping is done.

One approach to doing this involves application-specific
code to perform the striping. This is often the method
chosen by multi-path video streaming applications [19, 7,
8]. However, this can lead to complicated application-level
code, and typically incorporates implicit assumptions about
the actual network channels.

We have been developing a different approach, based upon
the Horde middleware system. Horde, which we have been
developing over the last several years, allows a collection
of application data streams to provide abstract information



Figure 6: The network stack used by Tavarua.

about desired performance characteristics to a striping sub-
system. The subsystem uses this information to stripe data
from these streams across a set of dynamically varying net-
work channels. The main technical challenge in Horde is
giving the application control over certain aspects of the
data striping operation (e.g., an application may want ur-
gent data to be sent over low latency channels or critical
data over high reliability channels) while at the same time
shielding the application from low-level details.

The key idea in Horde is separating the striping mecha-
nism from the striping policy. Horde is not meant to be a
general networking middleware: if most application data can
be sent down a single, stable link, using Horde is overkill.
In situations where one is dealing with a fixed set of rel-
atively homogeneous and stable channels, other techniques
are probably more appropriate. The middleware is designed
for QoS-limited applications operating in mobile settings
over sets of heterogeneous wireless links. In such settings,
the packet scheduler has an opportunity to significantly mod-
ulate observed QoS.

Figure 6 shows the network stack used by Tavarua. Tavarua
applications communicate with a local Horde daemon which
provides the network striping service. Horde can both con-
nect directly to UDP sockets and go through Tribe. Inside
the Horde daemon no distinction is made between Tribe-
managed interfaces and native interfaces. The internal struc-
ture of the Horde daemon can be simplified as the three lay-
ers shown in the figure. These are discussed briefly below.

Horde API
Horde uses a connection-based model. Two hosts must first
establish a shared session. Then the applications on the
source and destination nodes must negotiate one or more
connections, or streams, inside that session, before they start
sending data to each other.

When sending/receiving data on a stream, applications
communicate with Horde at the granularity of Application
Data Units (ADU’s). Our design draws from previous argu-
ments for application level framing [12]. Callbacks are used
to notify applications about receptions of ADU fragments
and detections of fragment losses. Losses are detected as a
side-effect of the congestion control algorithms in Horde.

If the application is sensitive to some network QoS aspects
for an ADU, it can tag the ADU with various objectives in
order to modulate the network QoS for that ADU. Figure 7
shows some of the objectives supported by the current Horde
implementation. These objectives are treated as hints for
Horde’s packet scheduler.

Objective Description
Fragments-
Allowed

If true (default), then the ADU may be
fragmented during packetization.

Loss-
Threshold

Given a loss threshold T , an ADU will
not be sent in a transmission slot if the
estimated loss probability for that slot is
greater than T .

Correlation-
Group

If two ADU’s, A and B, are in the same
correlation group, they will be sent so
as to minimize the joint loss probability
P (A lost ∧ B lost). Notably, this means
that they will not be packed into the same
network packet. Furthermore, they may
be spaced out in time on the same chan-
nel, or sent simultaneously over uncorre-
lated channels.

Figure 7: Some supported QoS objectives.

Packet scheduling
In Horde’s middle layer, an outgoing packet scheduler de-
cides how to schedule ADU’s from the unsent ADU pool over
the available channels. The packet scheduler packs ADU’s
into packets as transmission slots become available. Multi-
ple ADU’s can be packed into a single packet, and ADU’s
may be fragmented during packetization.

The present Horde implementation uses a greedy schedul-
ing algorithm that uses hard-coded knowledge to deal with
each supported type of QoS objective. A detailed discus-
sion of the scheduler is beyond the scope of this paper.
The Horde architecture allows for different schedulers to be
loaded for different sessions. Earlier, we have experimented
with randomized algorithms that supported more objectives,
but were far less efficient [17].

Channel Management
The lowest layer in Horde presents an abstract view of the
network channels to the higher layers of the middleware.
This layer deals directly with the network channels. In par-
ticular it: monitors interfaces as they connect and discon-
nect; handles network I/O; maintains a predictive model for
the QoS on the channel, based on historical statistics; and
also performs congestion control.

Horde runs an independent congestion control session for
each underlying network channel. Congestion control is im-
plemented below the striping layer because when data is
being striped there are multiple channels, and so there are
multiple congestion domains. Furthermore, keeping the con-
gestion control logic below the packet scheduler allows us
to transparently run congestion control schemes optimized
for particular types of WWAN channels. For example, the
Horde implementation evaluated in this paper uses a conges-
tion control scheme optimized for CDMA2000 channels. A
detailed description of the specific congestion control scheme
is beyond the scope of this paper.

3.3 Video Services
Our telemedicine application must provide a number of

image related services including high resolution still images,
realtime video, non-realtime video (when network connectiv-
ity will not support realtime video), and various DVR-like
functions. The most challenging of these is providing high
quality realtime video, the topic of this subsection.

In the remainder of this subsection we first discuss the



Figure 8: A grid of x264 video encoders is run,
with the encoders out of phase with each other. At
most three encoders produce I-frames for any given
frame. The I-frame pattern is randomly selected.

basic approach used for video encoding/decoding. The key
problem to be solved is robustness in the face of packet losses
and limited bandwidth.

Video Encoding/Decoding
Our video streaming application is built using the ffmpeg

code-base [1]. ffmpeg is an open-source project that pro-
vides a feature-rich audio/video codec library. We use the
H264 codec. Several video codecs were empirically evalu-
ated at different frame rates and different bit-rates. H264
was chosen because it was observed to achieve the best qual-
ity at low bit-rates. We are using the x264 encoder [5], which
is an open-source implementation of H264.

Unfortunately, the standard x264 encoder is not ideally
suited to support video streaming in the face of restricted
bandwidth and packet losses. The I-frames produced by
the encoder are quite large and therefore span many pack-
ets, even at low bit-rates. For a CIF1 video encoded at
300kbits/sec, more than sixteen UDP packets may be needed
to hold a single I-frame. A single packet loss can corrupt an
I-frame. In our experience, the ffmpeg/x264 decoder does
not handle partial I-frames well, and often crashes when
asked to decode corrupted frames. We do not want to use
retransmissions to mask losses because of the large packet
round-trip-times in our system. Furthermore, given our lim-
ited bandwidth, adding forward-error-correction coding is
not an appealing option.

To construct a video encoding resilient to packet losses,
we use the following approach:

• Each frame is segmented in a grid of subframes. An
example grid is shown in figure 8. The largest subim-
ages in this grid are 64 pixels by 64 pixels.

• Each subframe is encoded and decoded independently
of the other subframes. This requires grids of ffmpeg/x264
encoders and decoders.

• Some of the subframes of each frame are intra-coded
(i.e., treated as I-frames) and others are encoded as
either P-frames or B-frames. See figure 8.

1352 pixels wide, 288 pixels high.

The encoded subimages are linearized as follows:

..., D
(0,0)
j , D

(1,0)
j , ..., D

(5,0)
j , D

(0,1)
j , D

(1,1)
j , ..., D

(5,4)
j , D

(0,0)
j+1 , ...

Where D
(x,y)
j is the component for frame j from the encoder

at (x, y) in the grid. Each D
(x,y)
j is an ADU. Therefore, the

video stream Horde sees consists of the above sequence.
The grid of video encoders is run so that encoders are out

of phase with each other. All encoders do not begin encoding
at the same frame. With a constant group of picture (GOP)
size, this causes them to operate out of phase with each
other. With 30 encoders and a GOP of 10 frames, at most
three subframes of the original frame are intra-coded.

By creating more but smaller independently decodable I-
frames, this encoding dramatically reduces the number of
packets needed to transfer an I-frame component. Most I-
frame components fit in a single packet. Consequently, the
amount of received data that needs to be discarded due to
a packet loss is also dramatically reduced.

Furthermore, a packet loss causes a localized corruption
in part of the video, rather than corrupting the entire frame,
and any other subsequent frames whose decoding depends
on the missing data.

This approach also does not have to deal with bitrate
spikes at each I-frame. For every frame, the network has
to transfer some I-frame components, some P-frame com-
ponents, and some B-frame components. This smooths out
the transmission rate and improves packetization.

In order to avoid the correlated losses of I-frame compo-
nents, these components can be tagged with the same cor-
relation group GI . Additionally, a loss threshold objective
can be used for every ADU in the video stream, in order to
avoid high-loss channels.

In the present implementation, the encoder phase differ-
ences are randomly selected on application startup. We may
eventually use a non-random pattern. Our WWAN exper-
iments imply that WWAN channels experience short burst
losses. Furthermore, multiple encoded subimages are often
packed into a single packet by horde’s packetization algo-
rithms. Therefore, we may want to avoid initializing con-
tiguous encoders successively.

Network Bandwidth Variation
Given the mobile setting, the video application must deal
with the frequent changes in available bandwidth, and still
provide near real-time video. Variation is inevitable for a
variety of reasons including congestion control, network in-
terface disconnections, vehicular location, and competition
with other users for base-station resources.

In an effort to mitigate the impact of variations in band-
width, we dynamically adapt the encoder’s Q parameter
[21], which controls the bit-rate at which the video is en-
coded. Horde provides feedback to the application telling it
the maximum available data transmission rate. Given this
information, the video server can calculate the appropriate
Q parameter value at which to encode the video.

The Q parameter is updated using two rules. Given slight
changes in available bandwidth an additive-increase-additive-
decrease rule is used to update Q. When a large difference
between the encoding rate and the available bitrate is no-
ticed (e.g., when a WWAN interface disconnects), a formula
is used to predict the approximate Q value needed to encode
at the new available bitrate.
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4. EVALUATION
To evaluate the current implementation of our video stream-

ing component we ran a series of tests. We first report on a
simulation used to evaluate the resiliency of our encoder to
packet losses. Then we present an experiment in which our
implementation striped video over three WWAN interfaces.

Three undistorted original CIF sequences chosen from a
standard video repository [4] were used as input data. The
clips we chose were: silent, mother-and-daughter, and
bowing. These videos were chosen to fit the model of our ap-
plication, bowing provides a static background and a sudden
jerky movement, not unlike a patient entering the ambulance
and performing a task for the doctor. mother-and-daughter
is a relatively static scene of two people talking, not unlike a
paramedic talking with a patient. silent is a single subject
displaying constant aperiodic motion.

The results presented in the sections below all use the
silent clip. We chose silent because of the presence of
motion throughout the clip.

4.1 Packet Loss Resilience
When transmitting encoded video over a network, packet

losses can cause corruptions in the decoded video. We ar-
gued earlier that our grid-encoder would be resilient to packet
losses. In this section we provide evidence for this claim by
evaluating the impact of simulated packet losses.

We started by selecting five grid sizes: a single encoder;
four encoders; eight encoders; sixteen encoders; and thirty
encoders. This was done to gauge the performance of dif-
ferent grid sizes. For each grid size, we ran multiple experi-
ments with simulated random packet losses. silent was en-
coded at around 500kbits/s and we simulated losses at 1%,
5% and 10% of total packets. Figure 9 shows the results
of our experiments, showing the peak-signal-to-noise-ratio
(PSNR) for the decoded video in each experiment. A higher
PSNR implies higher quality video.

When there are no packet losses, the 4-encoder and 8-
encoder grids performed almost as well as the single encoder.
The 16-encoder and 30-encoder grids performed slightly worse.
The problem is that working with smaller subframes ad-
versely impacts compresssion. Therefore, when moving from
the 8-encoder grid to the 16-encoder grid, we had to reduce
the encoders’ Q, by 1, in order to keep the bitrate roughly
constant, leading to the signal degradation.

When a single encoder was used, increasing packet losses
caused a sharp decrease in PSNR. In this case, when part of
an I-frame was lost, all the packets for that I-frame (as many
as 18) had to be discarded. This also caused subsequent
frames dependent on that I-frame to become corrupted.

The 4-encoder case demonstrates that even a grid com-
posed of relatively large sub-images yields a dramatic im-
provement. In this case, 1% packet losses did not signifi-
cantly impact video quality.

Moving from four encoders to eight seems to yield a less
dramatic improvement. Adding ever more encoders results
in diminishing returns.

The quality improvement provided by the grid-encoder is
due to two factors. First, smaller ADU’s span fewer pack-
ets, so a single packet loss does not cause a large number
of already received bytes to be discarded. Second, losing



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 (k

bi
ts

/s
ec

)

Time since start of experiment (sec)

Aggregate
Verizon-1
Verizon-2

Sprint

Figure 11: Network throughput in an experiment where Tavarua striped, over 3 CDMA interfaces, a looping
silent clip using a grid of 30 encoders. Past the startup transient, the video was encoded at an average
bitrate of around 375kbits/s, and 1.5% of the packets were lost.

 35

 36

 37

 38

 39

 15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

PS
NR

Time since start of experiment (sec)

Figure 12: PSNR for decoded video from the experiment of figure 11.

packets causes localized image corruptions, rather than cor-
rupting entire frames. For instance, losing a packet from a
30-encoder grid’s video stream would lose less than 5% of
the intra-coded information. Losing a packet from a single
encoder’s video stream would corrupt the entire frame.

The reduction in ADU size is likely the dominant factor
here. Figure 10 shows the distribution of ADU sizes for each
type of grid. Recall that in our video stream ADU’s are
encoded frames. Note the dramatic difference between the
single encoder and 4-encoder cases. In contrast, all multi-
encoder grids have relatively similar distributions.

4.2 Striping Video
Using the current implementation of Tavarua, we sent

encoded video from a stationary host, striping over three
WWAN interfaces (two EV-DO Verizon interfaces and one
EV-DO Sprint interface), two of which were connected using
Tribe (over 802.11). Figures 11 and 12 show the results of
one such experiment.

Figure 11 shows the network throughput during the ex-
periment. Each point represents the number of bits sent
during one second-long non-overlapping windows. Beyond
an initial startup transient, Horde’s congestion control algo-
rithm stabilizes and provides highly consistent throughput.
The stability is achievable because Horde uses a channel-
optimized congestion control scheme.

Figure 12 shows the PSNR for individual frames dur-
ing the experiment. Figure 12 ignores PSNR’s during the
startup transient and the time-axis is slightly offset from the
time-axis in figure 11 due to buffering at the receiver.

Part of the PSNR variance is due to changes in the Q
parameter in response to changes in available throughput,
and part of the variance is due to packet losses. For example,
the PSNR peak at around 45 seconds in figure 12 is likely
caused by the video encoder increasing its encoding bitrate
in order to probe for additional bandwidth. The PSNR dip
at around 70 seconds is caused by the throughput dip around
the same time (see figure 11).



5. RELATED WORK
With the steady improvement of 3G technology, there

have been several attempts at streaming multimedia using
cellular networks [10]. While the fundamental issue of utiliz-
ing provider diversity to increase transmission reliability is
similar, in many cases they do not aggregate the channels,
and send packets redundantly over the multiple indepen-
dent channels. Additionally, others have largely focused on
the bandwidth-rich downlink channel, while our goals de-
mand solutions for accommodating transmissions under the
impoverished uplink channel.

The problems that surround sending delay-sensitive pack-
ets over unreliable IP links have also been studied. In [11]
the idea of network striping to send multimedia data is ad-
dressed, but only for the case of constant transmission rates.
Due to the mobile nature of our application, we need striping
protocols that flexibly adapt to the available network.

Approaches such as multi-description video streaming [22]
also address the issues of packet and compression losses.

6. SUMMARY AND CONCLUSION
This paper described the design and an evaluation of the

current implementation of Tavarua, a novel real-time multi-
media communications sub-system designed to support mo-
bile telemedicine applications that require high bandwidth
and QoS. The key hypothesis underlying Tavarua is that ad-
equate bandwidth and QoS can be obtained by streaming
data over multiple simultaneous public carrier data network
connections.

The bulk of the paper is devoted to a description of the
components of Tavarua: Tribe, which provides the lowest
level connection between Tavarua and the network inter-
faces; Horde, which provides the network striping layer, in-
cluding congestion control; and a video services subsystem.

We are quite encouraged by our initial evaluation of Tavarua.
Our experiments demonstrate clearly that

• Our approach to video encoding significantly mitigates
the impact of packet loss on video quality, and

• Our network striping system can be used to provide
sufficient upstream service to transmit reasonably high
quality video.

Based upon these results, we are moving forward on build-
ing a fully functional mobile telemedicine system.
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