
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Taverna: Lessons in creating
a workflow environment for
the life sciences

Tom OINN1,Mark GREENWOOD4, Matthew
ADDIS2, M. Nedim ALPDEMIR4, Justin FERRIS2,
Kevin GLOVER3, Carole GOBLE4, Antoon
GODERIS4, Duncan HULL4, Darren MARVIN2,
Peter LI5, Phillip LORD4, Matthew R. POCOCK5,
Martin SENGER1, Robert STEVENS4, Anil
WIPAT5 and Chris WROE4

1EMBL European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
2IT Innovation Centre, University of Southampton, SO16 7NP, UK
3School of Computer Science and Information Technology, University of Nottingham, NG8
1BB, UK
4School of Computer Science, University of Manchester, M13 9PL, UK
5School of Computing Science, University of Newcastle, NE1 7RU, UK

key words: scientific workflow, Semantic Grid environment, life sciences, Web Services

SUMMARY

Life sciences research is based on individuals, often with diverse skills, assembled
into research groups. These groups use their specialist expertise to address scientific
problems. The in silico experiments undertaken by these research groups can be
represented as workflows involving the co-ordinated use of analysis programs and
information repositories that may be globally distributed. With regards to Grid
computing, the requirements relate to the sharing of analysis and information resources
rather than sharing computational power. The myGrid project has developed the
Taverna workbench for the composition and execution of workflows for the life sciences
community. This experience paper describes lessons learnt during the development of
Taverna. A common theme is the importance of understanding how workflows fit into
the scientists’ experimental context. The lessons reflect an evolving understanding of life
scientists’ requirements on a workflow environment, which is relevant to other areas of
data intensive and exploratory science.

∗Correspondence to: Mark Greenwood, School of Computer Science,
University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
E-mail: markg@cs.man.ac.uk
Telephone : +44 (0) 161 275 6183
Fax: +44 (0) 161 275 6204.

Received
Copyright c© 2000 John Wiley & Sons, Ltd. Revised

2

1. Introduction

Much of biology is based on comparative and speculative reasoning: predictions are based
on similar observations made previously. Discovery involves combining and collating results
obtained from a number of local and remote analyses and data resources available to
the community. These “in silico” experiments complement experiments performed in the
laboratory by generating new information from available data and forming hypotheses for
confirmation in the laboratory.

Many scientific computing projects within the academic community have turned to
workflows as a means of orchestrating complex tasks (in silico experiments) over a distributed
set of resources. Examples include DiscoveryNet [1] for molecular biology and environmental
data analysis, SEEK for ecology [2] , GriPhyn for particle physics [3], and SCEC/IT for
earthquake analysis and prediction [4]. The “Workflow in Grid Systems” workshop at the
GGF10 conference [5], and the formation of the Global Grid Forum Workflow Management
Research Group illustrate significant and growing interest in workflows within the Grid
community [6]. The diverse nature of the tasks being performed has led each group to adopt
or develop a workflow solution best suited to their requirements rather than use a common
standard.

In this paper, we describe myGrid: a UK e-Science pilot project building middleware to
support exploratory, data-intensive, in silico experiments in molecular biology. myGrid has
developed the Taverna workflow workbench environment which enables the scientific user
to create and run workflows written in the Simplified conceptual workflow language (Scufl).
These are enacted using the Freefluo workflow enactment engine. Our emphasis is on building
workflows that link together third party applications (both remote and local) that are familiar
to the scientist, using a language and tools designed for the scientist.

The design of the Taverna has been driven by: the users we wish to support; the nature of
the existing resources they wish to orchestrate; and the type of in silico experiment they wish
to perform.

Two classes of users myGrid supports are biologists and bioinformaticians. They have a
deep knowledge of the scientific functionality of the resources they want to link together,
perhaps have some limited programming experience, but have little or no knowledge of specific
middleware solutions such as Web/Grid Services to access them.

Biology resources are published by the third class of users that myGrid caters for–the
service providers. Currently, Taverna provides the means to access over 1000 of these services.
They take the form of applications such as analysis algorithms for comparing sequences,
databases arising from species-specific genome projects or holding cross species data sets
for proteins or nucleotides, visualisation tools for protein structures, simulations of heart
excitation models and so on. Some are replicated but many are unique and only available
through licensing arrangements at the host site. Most have poor or missing programmatic
interfaces. Although many early bioinformatics tools used the command line extensively (e.g.
GCG [7] or EMBOSS [8]), more recently analysis has moved toward web based interfaces. Thus

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

3

data transfer moved from file transfers between commands to “cut and paste” between web
browsers. The resources encompass heterogeneous and semi-structured data exposed using a
diverse range of mechanisms. There are no prescribed standards for formats, APIs or delivery
platforms.

Finally, myGrid users are often members of small research groups that begin their analyses,
as low volume ad-hoc experiments that are incrementally and rapidly prototyped in an
exploratory way. Some are “one-offs” and effectively disposable, whilst others are later
developed into production workflows which will be executed repeatedly. Much of the scientific
benefit comes from combining results from many different workflow runs, so it is essential to
manage the data produced by each experiment. Scientists frequently undertake similar analysis
to that of other groups, and therefore the workflow designed by one user is often suitable for
adoption or adaptation by many others.

These requirements have lead to several major design lessons:

An open world service assumption. Biologists have strong opinions about the particular
services that they wish to use; they generally do not accept substitutes. We wanted to
be able to use any service as it was presented, rather than require service providers
to implement services in a prescribed manner and thus create a barrier to adoption.
Accordingly, Taverna caters for a variety of different service interfaces, and does not
require adherence to a common universal type system. Consequently, the data is largely
opaque to the middleware. This is a drawback when we come to integrate results.

Easy and rapid ad-hoc workflow design. Quickly and easily finding services and
adapting previous workflows is key to effective workflow prototyping. As the target
end users for Taverna are not necessarily expert programmers, we have: developed a
graphical workflow workbench; developed a portal for launching workflows; used semantic
technologies to provide service descriptions that are closer to scientists’ view of their
experiments than implementation-specific syntactic types [9]; and, most importantly,
defined a tiered architecture that hides the complexity of different services enabling the
user to think about the experiment rather than its execution.

A multi-tiered abstraction architecture. We have a requirement to both present a
straight forward perspective to our users and yet cope with the heterogeneous interfaces
of our services. A major consequence of this for the workflow system architecture has been
to provide a multi-tiered approach to resource discovery and execution that separates
application and user concerns from operational and middleware concerns. The result is
a three-tiered model for describing resources and their interoperation at different levels
of abstraction. Scufl, a workflow language for linking applications, is at the abstraction
level of the user; an extensible processor plug-in architecture for the Freefluo enactor
manages the low-level “plumbing” invocation complexity of different families of services.
In between lies an execution layer interpreting the Taverna Data Object Model that
handles user-implied control flows such as implicit iteration over lists, and a user’s fault
tolerance policies.

A data flow centric model. Bioinformaticians are familiar with the notion of data flow
centric analysis. Much of the analysis we want to support is in the form of pipelines in

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

4

which data about a particular biological entity is integrated from a number of resources
and further analysed. Examples include workflows to support work on the genetic basis
of Graves’ Disease [10] and Williams Beuren Syndrome (WBS) [11]. Thus, to support
bioinformaticians in their current practices Taverna emphasises a data flow centric
specification.

Fault tolerance. Any software operating in a networked, distributed environment is required
to cope gracefully with failure. In bioinformatics, where many services are not
professionally supported, service failure is common. Fault tolerance mechanisms such
as dynamic service substitution and retry are supported by Taverna.

Support for the e-Science lifecycle. Using a workflow makes it easier for scientists to
describe and run their experiments in a structured, repeatable and verifiable way
compared to cutting and pasting between multiple web-based forms. However, workflows
are not a complete solution for supporting in silico experiments. They exist in a wider
context of scientific data management, as illustrated in Figure 1. The user is still at the
centre, interacting with the workflows and the services, and interpreting the outcomes.
It is desirable that workflows become a resource in their own right, to be described and
shared (steps 1 and 5). It is essential that data produced by a workflow carries with
it some record of how and why it was produced i.e. the provenance of the data (step
4). Thus myGrid has built an environment and components that marry the workflow
environment with sophisticated methods of provenance collection [12] and semantic-
based resource and workflow discovery [9]. All myGrid components are organised into a
context-aware Service Oriented Architecture coordinated by a common data model and
an events-bus [13].

To steer myGrid and Taverna developments, there has been close collaboration with
two groups investigating the genetics of human disease. The Institute for Human Genetics
at Newcastle University, UK have developed workflows investigating the basis for Graves’
Disease [10]. While St Mary’s Hospital at the University of Manchester, UK are investigating
the foundations of WBS [11]. Other scientists using Taverna are working on gene annotation
for the investigation of susceptibility to Trypanosomiasis in cattle, investigations for small
molecules, executing the JUMBO library for molecules, gene identification in the chicken
genome, and managing simulations of cellular models of cardiac electrophysiology. Taverna
currently has over 500 installations. Consequently, we are now in a position to assess what it
is about workflows that makes them such a promising technology:

Making tacit procedural knowledge explicit: For at least the last 250 years this has
been recognised as essential in science. Each experiment must carry with it a detailed
“methods” description, to allow others both to validate the results, but also re-use the
experimental method for their own purposes. Our experience suggests that workflows
allow the same to be achieved for in silico experiments. They are formal, precise and
explicit, yet straightforward to explain to others.

Ease of automation Many of the analysis we support are already undertaken by scientists
who orchestrate their applications by hand. Workflows can drastically reduce analysis

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

5

Figure 1. The e-Science life cycle

time by automation. For example, Taverna workflows developed by the WBS team have
reduced a manual task that took 2 weeks to be an automated task that typically takes
just over two hours.

Appropriate level of abstraction Bioinformaticians have traditionally automated analy-
ses through the use of scripting languages such as PERL. These are notoriously difficult
to understand often because they can conflate the high level orchestration at the
application level with low level “plumbing”. Workflow systems such as myGrid’s support
the separation of these concerns.

The rest of the paper is organised as follows. Section 2 further elaborates on the background
to Taverna, outlining requirements in detail and presenting the life cycle of in silico
experimentation. Section 3 introduces the major Taverna components. Section 4 concentrates
on the workflow design phases of the life cycle, and Section 5 on executing and monitoring
workflows. Section 6 completes the life cycle with metadata and provenance associated with
managing and sharing results, and the workflows themselves. Section 7 discusses related work.
Section 8 discusses the lessons learnt from these experiences, highlighting that in many cases
the issues and solutions involve related technical and non-technical aspects. These lessons drive
our current and future work.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

6

2. Further Background of Taverna

By taking a concrete example we can illustrate the kinds of users, analyses and resources
that inform our requirements, and in turn impact on the design of the workflow system.
Members of St Mary’s Hospital Academic Unit of Medical Genetics, at Manchester University
are investigating the genetic basis of a rare congenital disorder Williams Beuren Syndrome
(WBS) [11]. It is known to be caused by deletion of a small region of human chromosome seven.
By examining the genes known to be in that region, researchers can begin to understand the
origins of the complex physical and behavioural features of affected children. The completion
of the initial phase of the Human Genome Project [14] now means researchers do not need
to examine the affected region in the laboratory, but can instead search a genome database
into which other large scale genome sequencing projects have deposited their results. Selected
records can then be submitted for further analysis: i) to characterise any genes in those new
sequences using analysis tools, and gather related information from other databases; and ii) to
characterise proteins that will be produced from those genes. By adopting a workflow-based
approach using Taverna, the St Mary’s team have automated tasks that manually took two
weeks to take two hours, and have shared and adapted their workflows with other scientists.
The bioinformaticians rapidly picked up the Taverna workbench, and evolved their workflows
over many generations of experimentation. The chief bottlenecks were wrapping the services
and integration of the results. The former is a temporary bootstrapping issue; the latter is
more significant and discussed in Section 6.

New DNA sequences are released to the various genome sequence databases on a
regular (hourly) basis. As a result, the WBS researchers wish to rerun their workflows
frequently (weekly) and repeatedly, to discover new sequences of relevance and to characterise
them. The different classes of services needed to perform the WBS analysis are numerous
(currently numbering 30), and distributed widely. They are provided by a mixture of large
scale bioinformatics centres such as the National Centre for Bioinformatics (NCBI), which
maintains among other things the large genome database GenBank [15], and many distributed
bioinformatics groups that maintain smaller scale databases or analysis tools. For example,
two analysis tools to predict the presence of genes in DNA: Genscan [16] and Twinscan [17]
are published by groups at Massachusetts Institute of Technology and Washington University
St Louis.

From the early 1990s, the biological community has enthusiastically adopted web technology
to disseminate data and analysis methods. Bioinformaticians perform these low volume in silico
experiments by cutting and pasting data between web pages, sometimes assisted by bespoke
screen-scraping parsers and PERL scripts to overcome format discrepancies. However, the
complexity of in silico experiments together with the volumes of data produced by high
throughput technologies is now threatening to overwhelm the users of this standard web
technology. Analysis methods are constantly evolving and, as more resources become available,
more in silico experiments can be done. This in turn generates more resources and knowledge
for designing further experiments.

Life scientists are accustomed to making use of a wide variety of web-based resources.
However, building applications that integrate resources with interfaces designed for humans is
difficult and error-prone [18]. The emergence of Web Services [19], along with the availability

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

7

of suitable tool support, has seen a significant number of bioinformatics web resources
becoming publicly available and described with a WSDL interface. Early examples include
the XEMBL [20], and openBQS [21] hosted by the European Bioinformatics Institute (EBI),
and the services provided by XML Central of DDBJ [22]. Recently, the range of available Web
Services is growing: the BioMOBY project is gathering an expanding range of services [23],
pathway data are available from the KEGG API†, and a range of analysis services are offered
by the PathPort project [24]. Taverna does not have a monopoly on the use of these services,
since they will be used by a range of different clients because of the diverse nature of the life
sciences. Moreover, it is difficult to predict which small research-group experimental service of
today will become the established de-facto standard service of the future.

Services used by WBS and other projects using Taverna include the following:

• EMBOSS, The European Molecular Biology Open Source Software Suite, a package of
over 270 functions for sequence analysis originally developed by Human Genome Mapping
Project. No simple Web or Grid Services are available by default. However, myGrid
has developed Soaplab, a framework that allows legacy command line applications to
be automatically deployed as Web Services given a description of their interface [25].
Soaplab is used to add Web Service capability to EMBOSS commands.

• SeqHound is a database of biological sequences and structures which also provides over
160 functions [26]. Again no Web/Grid service interface is available. They instead provide
a Representational State Transfer (REST) style interface [27], where all information
required for the service invocation is encoded in a single HTTP GET or POST request.

• Some of the smaller distributed groups have adopted the BioMOBY project’s conventions
for publishing Web Services. BioMOBY provides a registry and messaging format for
bioinformatics services [23]. Currently over 140 services are listed in BioMOBY registries.

• Some groups have yet to publish their application as a service at all. If no service is
provided we obtain the application, install it on a myGrid server and deploy it as a Web
Service. This process can be simplified by the use of Soaplab.

There are currently over 1000 services accessible to a myGrid user. Although the majority
involve complex interaction patterns (in the case of Soaplab/ EMBOSS), specific messaging
formats (in the case of BioMOBY), or use different protocols and paradigms (in the case of
SeqHound), they follow a small number of stereotyped patterns. The user’s lack of middleware
knowledge means they should not be expected to deal with the differences between these
patterns. In addition, given the number and distribution of services the user cannot be expected
to have existing knowledge of what services are available, where they are or what they do.

The data produced by these services is mostly semi-structured and heterogeneous. There are
a large number of data formats including those for gene sequences, for protein sequences, as well
as bespoke formats produced by many analysis tools (including Genscan and Twinscan). These

†http://www.genome.jp/kegg/soap/

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

8

are rarely encoded in XML and there is usually no formal specification that describes these
formats. Interpreting the data as it is passed between different databases and analysis tools
is therefore difficult. This contrasts with data in other scientific workflow projects which have
much more centralised control of data formats. For example, the SEEK project provides tools
for ecologists within the project to describe their data using XML Schema and ontologies, and
so support middleware driven data integration [28]. DiscoveryNet [1] requires each application
service to be wrapped allowing data to adhere to a common format. Other projects are
more uniform than myGrid in the way applications on distributed resources are accessed.
For example, abstract Pegasus workflows used in the SCEC/IT project are first compiled into
concrete workflows. Each step of a concrete workflow corresponding to a job to be scheduled
on a Condor cluster [29].

Thus, Taverna differs from these projects by placing an emphasis on coping with an
environment of autonomous service providers and a corresponding ’open world’ model for the
underlying Grid and service-orientated architecture. Taverna’s target audience of life scientists
want easy access and composition of as wide a range of services as feasible. In general, the
life science community is unlikely to take up an imposed data model. Besides, much of the
data within bioinformatics is intrinsically hard to structure being textual, or in legacy flat file
formats.

3. Architecture of Taverna

Figure 2 gives the architecture of Taverna and associated myGrid components.
Taverna has two major conceptual architectural abstractions:

A three-tiered data model for describing resources and their interoperation at different levels
of abstractions, from the user perspective to the services perspective.

– The Application Data Flow layer, is aimed at the user and is characterised by a
User-Level Workflow Object Model (indicated by a transparent rounded rectangle
that covers most of the Taverna Workbench in Figure 2). The purpose is to
present the workflows from a problem-oriented view, hiding the complexity of the
interoperation of the services. When combining services into workflows users think
in terms of the data consumed and produced by logical services and connecting
them together. They are not interested in the implementation styles of the services,
and the scientists should not need to be familiar with the concepts or details of
service-orientated architectures.

– The Execution Flow layer relieves the user of most the details of the execution flow
of the workflow and expands on control flow assumptions that tend to be made by
users. This layer is characterised by the Enactor Internal Object Model (indicated
by a transparent rounded rectangle overlayed on Freefluo in Figure 2) and by
the myGrid Contextual Information Model (indicated by a transparent rounded
rectangle that spans the Taverna workbench, the workflow enactor (Freefluo), the
service discovery component (Feta), and the data (MIR) and metadata (KAVE)

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

9

Figure 2. Architecture of Taverna and associated myGrid components

store components of myGrid). The layer manages list and tree data structures,
implicitly iterates over collections of inputs and implements fault recovery strategies
on behalf of the user. This saves the user explicitly handling these at the Application
layer and avoids mixing the mechanics of the workflow with its conceptual purpose.
A drawback is that an expert bioinformatician needs to understand the behavioural
semantics of this layer to avoid duplicating the implicit behaviour.

– The Processor Invocation layer, is aimed at interacting with and invoking
concrete services. Bioinformatics services developed by autonomous groups can
be implemented in a variety of different styles even when they are similar logical
services from a scientist’s perspective. This layer is characterised by the Enactor
Internal Object Model and is catered for by an extensible processor plug-in
architecture for the Freefluo enactment engine.

A framework that provides three levels of extensibility:

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

10

– The first level provides a plug-in framework to add new GUI panels to facilitate
user interaction for deriving and managing the behavioural extensions incorporated
into Taverna. This extensibility is made available at the workbench layer.

– The second level allows for new processor types to be plugged-in to enable the
enactment engine to recognise and invoke new types of services (which can be
both local and external services). This permits a wider variety of workflows to be
constructed and executed. This level of extensibility is provided at the workflow
execution layer.

– The third level is provided for loosely integrating external components via an event-
observer interface. The workflow enactor generates events during critical state
changes as it executes the workflow, exposing snap shots of important parts of
its internal state via event objects (i.e. messages). Those event objects are then
intercepted and processed by observer plug-ins that can interact with external
services. This level of extensibility is made available at the workflow execution
layer.

We now introduce the Taverna workbench first, and then discuss each of the architectural
abstractions in more detail.

3.1. Taverna workbench

The Taverna workbench provides the main user interface to the above components. The main
function of the workbench itself is to enable the construction and editing of Scufl workflows,
loading and saving these in an XML serialisation (known as XScufl). The basic workbench
supports the creation and editing of workflows using the model explorer and the service panel,
manipulating a workflow object model. The workbench enactor User Interface (UI) provides the
interface for running workflows. The enactment capability is provided by Freefluo with Taverna
extensions, and communicates with the UI using the Taverna data model. The semantic search
UI is an interface to the Feta semantic service discovery component to complement the basic
service panel. The MIR Browser provides navigation capability over data stored in the myGrid
Information Repository (MIR), including experimental designs (i.e. workflows or any other
operations), specific experimental results and intermediate data.

As Scufl already provides a user-centred data-flow abstraction, the core of the workbench
is a data-model centic GUI, shown in Figure 3. The main mechanism for interaction with the
workflow is through the Explorer View (labelled A in Figure 3). This presents a tree view,
showing the various services or processors present in the workflow. The same data is also
visualised as a graph (B). The user can tailor the amount of information that displayed in
this figure. Many of the processors, for example, present a large number of ports, most of
which are unused in any particular workflow, but which complicate the display. The user may
select new services to add to the workflow from a palette of available services(D). Services are
gathered using a variety of different techniques, often dependent on the source. For example,
myGrid supports a UDDI-based registry of services and workflows called GRIMOIRES that
Feta can operate over; BioMOBY provides a central registry of services; and both Soaplab and

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

11

Figure 3. The Taverna Workbench showing a tree structure explorer (A) and a graphical diagram
view (B) of a Scufl workflow. The results of this workflow are shown in the enactor invocation window
in the foreground (C). A service palette showing the range of operations which can be used in the

composition of a workflow is also shown (D).

Seqhound provide many services from one installation which can be discovered introspectively.
Finally, the enactor panel enables the user to enact workflows and view the generated results.

Although construction of a workflow essentially consists of building a directed graph,
describing the data flow, the user generally interacts with the workflow explorer. The graph
layout view (B) is generated automatically from the information in the workflow model, using
the GraphViz layout package [30]. It is currently not possible to directly interact with the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

12

graphical view, although it is possible that later versions of the workbench will provide this
functionality.

3.2. The Application Data Flow layer: the Taverna Workflow Object Model and
the Scufl language

The Scufl language is essentially a data flow centric language, defining a graph of data
interactions between different services (or, more strictly, processors–see Section 3.4). Scufl
is designed to reflect the users abstraction of the in silico experiment, rather than the low-
level details of the enactment of that experiment. Internally to Taverna, Scufl is represented
using a Workflow Object Model, along with additional information gained from introspecting
over the services. A typical workflow developed in the Graves disease use case is shown in
Figure 6. A simplified example to illustrate Scufl is shown in Figure 4.

The components of a Scufl workflow are:

A set of inputs that are points for the data for the workflow.

A set of outputs that are exit points for the data for the workflow.

A set of processors each of which represents a logical service: an individual step within a
workflow. A processor includes a set of input ports and a set of output ports. From
the user’s perspective the behaviour of a processor is to receive data on its input ports,
(process the data internally) and to produce data on its output ports.

A set of data links that link data sources to data destinations. The data sources can be
inputs or processor output ports, and data destinations can be outputs or processor
input ports.

A set of coordination links that enable running order dependencies to be expressed where
direct data flow is not required by providing additional constraints on the behaviour of
the linked processors. For example, in Figure 4 two coordination links are defined so
that that one processor will not process its data until another processor completes, even
though there is no direct data connection between them.

3.3. The Execution Flow layer

Part of the complexity of workflow design is when the user needs to deal with collections,
control structures such as iterations and error handling. Scufl is simplified to the extent that
these are implicit. This layer fills in these implicit assumptions by interpreting an Internal
Object Model that encodes the data that passes through a workflow. This data model is
lightweight; it contains some basic data structures such as lists and trees, and enables the
decoration of data with MIME types and semantic descriptions to enable later discovery or
viewing of the data. Unlike other projects like Pathport [24] and caBIG [31], Taverna does not
attempt to formally structure the domain data itself in our attempt to cater for the use of any
services we are presented by the bioinformatics community.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

13

Figure 4. An Example Scufl model. This small workflow has been extracted from a Graves’ Disease
case study example. It shows one input, three outputs and eight processors. All the processors are
labelled top to bottom with input ports, processor name and output ports. All the processors in
this example are standard WSDL-described standard web services, except for “Pepstats” which is a
Soaplab processor. All the links are data links except for two coordination links on the right hand
side. The links are labelled with syntactic type information: “l(text/plain)” indicates a list of plain

text strings.

The addition of data structures such as lists to the data object model brings about an
added complexity. There are a number of ways in which the list could be handled by the
service. Taverna uses an implicit, but configurable, iteration mechanism as shown in Figure 5.
Where a processor takes a single list as inputs, the enactment engine will invoke the processor
multiple times and collate the results into a new list. Where a processor takes two (or more)
list inputs, the service will be invoked with either the cross or dot product of the two lists.

Taverna supports fault tolerance through a configurable mechanism; processors will retry a
failed service invocation a number of times, often with increasing delays between retry attempts
before, finally, reporting failure. Users can specify alternative services for any Scufl processor
in the order they should be substituted. Alternative services are typically either an identical

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

14

Figure 5. Configurable iteration. For example, processor implements a function f - it takes one input
a and produces result f(a). If this processor is given a list of inputs [a1,a2,a3], the implicit iteration
will produce a list of results, one for each input. This is equivalent to ’map f [a1,a2,a3]’. Where a
processor has more that one input the default is to apply the function to the cross product of all the
input lists, however sometimes the dot product is what is required. The configurable iterators allow
users to specify how the lists of input value should be combined using these cross and dot operators.

service supplied by an alternative service provider or, rarely, a completely different service that
the user deems to be substitutable without damaging the workflow’s intention. As alternates
are few they can be predefined statically before the execution of the workflow. In the case of
long running workflows alternates need to be sought dynamically during execution to ensure
they are available.

3.4. The Processor Invocation layer

While the Scufl language defines the data flow, it does not fully describe the service interactions
to enable this data flow. As we introduced earlier, many bioinformatics services are presented
with a small number of stereotypical invocation patterns. Many of the services are presented
using a simple query/answer interface; in this they are probably reflective of their history
being essentially a programmatic version of a HTML form directed at a CGI script. Other
services are presented using standard toolkits, including Soaplab or the Seqhound services. In
Table I, we show two alternate presentations of the same logical service–in this case a BLAST
service [32]. In this case, the CGI-like service would be a “Document Style” interface, presented
using Web Services; a Soaplab service appears as an Object Style service using Web Services;
and a Seqhound service would appear as a Document Style service presented using a REST
style HTTP access.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

15

Table I. Two different service interfaces to BLAST, a widely used bioinformatics tool. BLAST
operates over a biological sequence, has a number of parameters and returns a single complex BLAST
report. The “Document Style” interface has a single method taking a complex set of parameters,
while the “Object Style” interface uses object identifiers to provide an ad hoc object orientation.

Document Style BlastReport performBlast(Sequence, gap, etc. . .);
Object Style ObjectIdentifier getInstance();

void setSequence(ObjectIdentifier, Sequence);
void setGap(ObjectIdentifier, Gap);
. . .
BlastReport invoke(ObjectIdentifier);

It would be impossible to describe the interaction with all of the different service interfaces
within a language like Scufl. Instead, Scufl is designed to be extensible through the use of
processor types. We define a set of Processor plug-ins that manage service interaction by
presenting a common abstraction over these different styles. Current processors include:

• A WSDL Scufl processor implemented by a single Web Service operation described in a
WSDL file. The fields of the Web Service operation request message correspond to the
input ports and the fields of the return message to the output ports.

• A local Java function processor, where services are provided by directly through a Java
implementation with parameters as input ports and results as output ports.

• A Soaplab processor, implemented through a CORBA-like stateful protocol of the Web
Service operations in a Soaplab service.

• A nested workflow processor, implemented by a Scufl workflow.

• A BioMOBY processor.

• A SeqHound Processor that manages a Representational State Transfer (REST) style
interface, where all information required for the service invocation is encoded in a single
HTTP GET or POST request.

• A BioMart processor that directly accesses predefined queries over a relational database
using a JDBC connection.

• A Styx processor that executes a workflow subgraph containing streamed services using
peer to peer data transfer based on the Styx Grid service protocol [33].

Figure 6 shows a workflow that uses a number of different processor types. We expose this
to the user through a colour scheme.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

16

Figure 6. A Scufl workflow from the Graves’ disease case study. This workflow uses a number of different
Scufl processor types, e.g. WSDL Web service operations and Soaplab services. The GraphViz layout
library has been used to lay the workflow left to right rather than top to bottom as in the previous
diagram. The workflow input is displayed on the left and the outputs along the right edge the diagram.

3.4.1. The Freefluo enactment engine

The Freefluo engine is responsible for the enactment of the workflow. The core of the engine
is language independent, with specific extensions that specialise Freefluo to enable it to enact
Scufl.

3.5. An extensible framework

As stated in Section 3 Taverna provides three levels of extensibility which are explained in
Section 3.5.1 through to Section 3.5.3 below.

3.5.1. Extending the workbench

The Taverna workbench provides a plug-in layer which enables GUI extensions. New extensions
are required to implement a single Java interface and are then discovered using Apache’s
commons-discovery libraries ‡.

‡http://jakarta.apache.org/commons/discovery/

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

17

3.5.2. Extending the behaviour of the workflow execution engine

As stated above in section 3.4, Scufl is designed to be extensible through the use of processor
types. A set of Processors are already defined which manage service interaction by presenting
a common abstraction over different styles. The extensible processor plug-in architecture has
an additional advantage; as well as abstracting over different style of presentation, it also
abstracts away from the technology used to implement these different services. If a new kind
of resource becomes available then this can be incorporated by the addition of a new processor
type.

3.5.3. Extensions via the observer interface for an integrated view

Taverna facilitates integration with external services via a contextualised event observer
framework [13] so that other components may be attached to provide richer capabilities. This is
achieved by another plug-in layer that is integrated into the workflow execution environment,
through which the contextual information and the provenance of the workflow execution is
made available to the integrated components. Two aspects of this framework are important:

• A common information model [34] is combined with the pervasive use of the Life Science
Identifier (LSID) [35] throughout to provide a consistent representation of experimental
objects and to uniquely identify entities such as workflows and data, to record the context
to the experiments and loosely couple the middleware components. As such, components
such as semantic service discovery, provenance gathering and results management enable
myGrid to support the whole experimental lifecycle.

• The workflow execution engine communicates with the integrated components via plug-
ins that observe the events generated as the enactor’s internal state changes. For example,
when an intermediate step in the workflow completes its execution, the enactor generates
an event and makes the intermediate results available to the event listeners. The data
store plug-in responds to this event by obtaining the intermediate results and storing
them in the data store (i.e. MIR) in their appropriate experimental context. As such,
the plug-in architecture is instrumental in facilitating the automatic propagation of the
experimental context across the participating components.

We have used these aspects extensively for those components which support the wider
scientific context of the workflow. For example we have integrated a data (MIR) and a metadata
(KAVE) storage service, which enables components to gather the data generated by services.
These are discussed more fully in Section 4.

The existing framework will be extended further by a mediator service, namely the e-
Science Mediator that acts as an integration broker among independently running myGrid
Services including the workflow enactor service. We propose that each event generated by
important state changes in individual myGrid services is defined by a typed tuple, and that
the type of a data structure is specified using an XMLSchema in conformance to the myGrid
information model. As such the collection of event types for a service is said to delineate
an information space that is externally visible for that component. The e-Science Mediator

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

18

then exposes a higher-level information space that is created by processing (i.e. correlating,
aggregating, filtering etc.) the raw events received from the core services. As such, complex
e-Science applications can be constructed by subscribing to such e-Science events.

The following sections expand on the e-Science life cycle: the design phases, discovering
resources and forming workflows; executing and monitoring workflows and finally the metadata
and provenance associated with managing and sharing results.

4. Discovering resources and designing workflows

Through the plug-in mechanism of both Taverna and Freefluo the scientist can perform tasks
of the extended workflow process directly from the workflow environment.

Workflow construction is placed in the hands of the domain expert, the scientist. This
corresponds to designing a suitable laboratory protocol for their investigation. Creating a
scientific experimental protocol can be broken down into stages. First, the scientist determines
the overall intention of the experiment. This informs a top-level design, and would be the
overall ’shape’ of the workflow, including its inputs and desired outputs. Second, this design
is translated into a concrete plan. In the laboratory, this translation would consist of choosing
appropriate experimental protocols and conditions. In an e-Science workflow, this maps to the
choice and configuration of data and analysis services.

In the laboratory, scientist rely upon experience and previous work to choose experimental
parameters and protocols, either consulting with colleagues or using laboratory cookbooks. In
moving over to in silico experimentation the challenge is to replicate this process, to enable
service selection when composing or modifying workflows. This is particularly important in
the case of Taverna as it has been designed to support the rapid development of ad hoc,
experimental, workflows.

Service discovery can be conceptually split into two processes: 1. Discovery: finding
available services (or workflows) so that they can be included in a Scufl model; and
2. Selection: selecting the appropriate service (or workflow) from this list for inclusion in
a workflow. . We consider these two processes separately.

4.1. Service Discovery

Taverna uses a variety of different mechanisms for discovery of services, ranging from
lightweight schemes to heavyweight registries. The population of the service list follows an
incremental approach. Flexible approaches to discovering available resources are an essential
part of supporting the experimental life cycle.

Public registries such as UDDI [36]. We are in favour of registries, but their limited
usefulness is due to the lack of widespread deployment. They are generally perceived
by the community to be a heavy-weight solution.

GRIMOIRES , an enriched prototype UDDI registry service developed by myGrid, with the
ability to store semantic metadata about services (see section 4.2).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

19

URL submission. Users can add new services, by directly pointing to a URL containing
WSDL files and the workbench will introspect over the description and add the described
services to a palette of services.

Workflow introspection. Users can exploit existing experience by loading existing
workflows, observing how services have been used in context, adding those services to
the available services palette, and selecting services for inclusion in a new model.

Processor-specific mechanisms. Many of the service types Taverna support through its
processor plug-ins provide their own methods for service discovery. Both Soaplab and
Seqhound services allow introspection over an installation, each installation providing a
potentially large number of services. BioMOBY provides its own central registry. This
mechanism is entirely extensible, so adding a method is relatively straight-forward.

Scavenging. Local disks are scavenged for WSDL files that are introspected over, or users
create a web page containing links to service descriptions and, when pointed at this
page, Taverna explores all available service descriptions, extracts services and makes
them available. While crude, this works surprisingly well, and gives users considerable
flexibility in loading the palette of available services that fit their current requirements.

While these techniques solve the problems of service discovery, Taverna now provides routine
access to over 1000 services. This, in turn, increases the importance of the second step in
discovery–selection of the appropriate service.

4.2. Service Selection

The service palette (as shown in Figure 7) is grouped according to the service locations, which
means that services of the same type are grouped together and colour-coded as in the workflow
diagram, and supported by a simple search by name facility. This approach is adequate so long
as the number of available services was sufficiently small. However, the number of services now
available to Taverna demands more sophisticated search and classification mechanisms based
on the properties and semantics of the services.

A common task is to locate a new service based on some conceptual description of the
service semantics. For example, the scientist may require a component capable of performing a
multiple sequence alignment, an operation whereby similarities between a group of genomic or
proteomic sequences may be identified. The task for Taverna is to allow this kind of semantic
querying across all service components. Service descriptions need to be enriched by additional
metadata as simply scavenging service descriptions does not provide enough information to
help users by identifying similar services.

To enable service selection by bioinformaticians, we must represent their view of the services
and of the domain [37]. We have investigated a number of different mechanisms to drive the
search process, including an RDF-based metadata enriched UDDI registry [38], and a domain
ontology [39] described in the W3C Web Ontology Language OWL. The primary difficulty has
been the high entry cost. There are research challenges in the construction and maintenance
of ontologies to adequately capture task information for a domain as diverse as bioinformatics

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

20

Figure 7. The Taverna service palette

let alone all of science. Although the technology is functional and theoretically capable of
performing the task of locating services based on a precise description of their function, the
expertise required to deploy a registry and register services with appropriate metadata is a
significant cost for user communities. This may change in the future if appropriate tools become
available to make semantic service registries easy for people to exploit.

Feta is our third and most recent version of a component for semantically searching for
candidate services that takes a user-oriented approach to service discovery [40], a path also
being trodden by the BioMOBY project. In practice, this means we describe an abstraction
over the services–provided by the Taverna processors–rather than the services themselves. We
have relatively shallow descriptions of the services. Although richer descriptions might enable
more refined searching and sophisticated reasoning they are expensive and time consuming to

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

21

provide. In practice search results do not have to be precise, as the final choice is made by
the workflow designer (a biologist) not automatically by a machine. Finally, the use of shallow
descriptions enables us to use simpler technologies to answer queries, specifically queries over
an RDF data model rather than classifying over an OWL model using a Description Logic
reasoner. In fact, the descriptions are modelled using OWL, reasoned over to form a service
classification and then deployed into an RDF data model for runtime searching. By limiting
the expressivity of service descriptions, we can ease the difficulty of provision of tooling, and
increase the chances of uptake of such semantic service discovery technology. The architecture
and design of Feta is described in more detail in [9].

4.3. Service composition

Once the appropriate service components have been located, the user requires an interface
allowing them to manually compose these services into a workflow. This is a simpler task
than that of locating the components. There are a variety of tools available that allow users
to work with a graphical representation of the workflow, a form that has a good fit with
the underlying technology and should therefore be relatively intuitive even to a non-expert
user. Most workflow design packages have adopted a view analogous to electric circuit layout,
with services represented as ’chips’ with pins for input and output [2, 41]. However from a
user interface point of view, this arrangement can become less understandable as complexity
increases. If the layout of service components on screen is left under the user’s control then
the user can tailor the workflow appearance, but this can result in an large amount of time
being spent effectively doing graph layout rather than e-Science.

In Taverna, the graphical view of a workflow is read-only; it is generated from the underlying
workflow model. One advantage of this is that it is easy to generate different graphical views
of the workflow showing more or less detail as required (see Section 3.1).

4.4. Shim services

When composing workflows in an open world, we have no control over the data types used by
the component services. A service, identified by a scientist as being suitable, may not use the
same type as the preceding service in the workflow, even if the data matches at a conceptual
level. Consequently, many of the bioinformatics workflows created in Taverna contain numerous
shim services [42] that reconcile the inevitable type mismatches between autonomous third-
party services. A shim service is analogous to a shim from the physical worlda thin strip of
metal used to align pipes or rails. Likewise, shim services align the inputs and outputs of closely
related but otherwise incompatible services. We are currently building libraries of shims for de-
referencing identifiers, syntax and semantic translation, mapping, parsing, differencing and so
on. WSMO mediators [43] are a similar idea. A serious consideration is how a workflow system
can manage shims, which of these shims can be included on demand based on service metadata
instead of user intervention, and how we might use planning techniques to automatically
discover and invoke shims.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

22

5. Executing and monitoring workflows

In contrast to the design process, which must by definition be exposed to the user, it is
desirable to hide as much as possible of the enactment machinery. This is not to suggest that
the workflow enactment should appear as a ’black box’ process since informing the user of
the progress of any given workflow enactment is a critical component. However, details such
as federation and fail-over between workflow engines, where possible, should not be exposed.
Workflow enactment is a distinct service, whether actually implemented as such or by some
software application programming interface.

A critical requirement of this service approach is that workflow invocation behaviour should
be independent of the workflow enactment service used. To facilitate peer review of novel
results, it is important that other scientists are able to reproduce in silico experiments in their
context and verify that their results confirm the reported novel results. Executing workflows
using different enactment services is given less emphasis in business workflows, which will
typically be carefully negotiated and agreed by the businesses involved, and executed in a fixed,
known context. In contrast, a scientific workflow will be shared and evolved by a community
and executed by many individual scientists using their favoured workflow enactment service.

e-Science is a highly diversified field with respect to the requirements it places on
workflow enactment. At one extreme, particle physics experiments produce vast data sets
and corresponding computational loads, with a corresponding requirement to deal with the
machinery of classical high performance computing (HPC) and networking (HPN). The life
sciences domain is characterized by massive variety in terms of data types and the resources to
operate on them. Workflow enactment systems in this domain must address different concerns
to their HPC counterparts, with a greater emphasis on composing a wide range of services
provided by autonomous groups and supporting the exploratory design and use of workflows.

While workflow solutions can in theory handle any given workflow-oriented problem there
is a merit in specializing the solutions to the anticipated problem domain. For example, there
is a difference in the primary sources of variability addressed by Taverna and Pegasus [44]
which deals with more classical HPC problems. In Taverna, the operational services are fixed
at particular locations. The WSDL description of a web service includes the specific location of
the service endpoint. However, in an open environment, the set of available services will vary.
In Pegasus, the “operational services” as applications owned by the experimental scientists,
do not vary. However, they are not fixed to a specific location and deciding which services
(applications) should run where is a major issue, especially in the context of a changing pool
of computational resources. In short, for Taverna the primary source of variability is the set
of services available, but those services are tied to fixed computational resources. In contrast
for Pegasus, the primary source of variability is the set of computational resources available
and how a fixed set of services is best scheduled over those resources. In Taverna, users may
modify their workflows because “better” services have become available, or previous ones are
no longer on-line. In Pegasus, there is significant workflow modification using the same services
in response to the dynamic availability of computational resources.

Workflows in e-Science may also vary hugely in terms of expected invocation duration.
Current Taverna workflows vary between two seconds and two weeks of runtime. The potential
to invoke workflows over this kind of time scale imposes a strong requirement on any such

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

23

system to keep the user informed as to the progress of their enactment, to allow the user
to interact with the running workflow in terms of inspecting intermediate results, manually
cancelling substructures within the workflow or similar operations, and ideally to do all this
from any physical location with preferably minimal network connectivity.

5.1. Fault tolerance and resilience

Any component-based architecture, where the components are not under a single controlling
authority, contains components that will fail at some point. It is therefore the responsibility of
the aggregating system, here the Freefluo workflow enactment engine, to handle such failures,
retaining data integrity and making a reasonable ’best effort’ to proceed. Should this be
impossible, it is critical that the reporting functionality is sufficient to inform the user of
exactly why the workflow was unable to complete.

Failure modes of a workflow system broadly into the following categories: 1. failure of the
enactment engine itself; 2. failure of component services and; 3. failure of network fabric. .

5.1.1. Failure of the enactment engine

A single point to which workflows are submitted and from which status reports and results may
be obtained, introduces a single point of failure. The possibility of failure increases for long
running workflows. Thus we must deal with problems varying from software failures to wider
system failures (e.g. loss of electricity supply). Failure of the enactment engine has not been a
primary source of the failures reported by users so it has not been a priority in initial Taverna
development. Our future implementation plans are to exploit the serialization of the workflow
state in XML and a peer-to-peer architecture for the enactment engine service. Using these
to replicate state intelligently between enactors within a peer group renders the enactment
process almost immune to single point failures at the engine level.

5.1.2. Failure of services

Service failure is more complex and more likely than enactor failure. If a service failed because
the machine it runs on is down, it is a candidate to be retried. If the service failed because
the input data was invalid, it is inappropriate to try again. In addition to simply retrying the
service invocation, it may be possible to locate an alternate service to invoke should the original
service fail. In an ideal world, this could be discovered and inserted automatically. However, a
great deal of service metadata is needed to make such a choice automatically [37] and users
have expressed scepticism at the prospect of automatic selection of services that they would
consider equivalent [40]. Except in the simplest cases, the context sensitive nature of many
services makes automatic substitution that is acceptable to users extremely difficult. In the
life sciences, many web resources may have very similar functionalities, but people distinguish
between them based on knowledge of the experimental context and their personal preferences.
In reality, only identical services running on an alternate service provider is deemed by our
users to be acceptably interchangeable.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

24

For improved fault tolerance when dealing with unreliable services, users specify an
Alternates list explicitly for any given Scufl processor. Standard fault tolerance techniques
such as retry and exponential back out of retry times are implemented. Thus a Scufl processor
definition therefore includes: the implementing service, the number or retries, the time between
retries, and optionally alternative services to be used if the first-choice service fails.

5.1.3. Failure of network fabric

This is similar to failure of service, but with the additional aspect that it may be possible
to probe the network connectivity to a service host using standard internet protocols. An
example is an enactor running on a laptop moves away from its wireless network. Current
Web Services typically provide no facility to check whether a service is live or not. Currently
Taverna does not currently distinguish between failure of the network fabric and failure of
the services themselves. The introduction of retries and alternatives has provided improved
reliability but we need more sophisticated monitoring to tell whether a long-running service
has failed or is just taking longer than expected to complete.

5.2. Reporting

Given the variety of failure modes and potential remedies, reporting the progress of a workflow
is a complex task. Information about service invocation is unavailable in the general case.
Defining how far a service is through a given invocation, so progress can be displayed, is non-
trivial without the explicit modelling and monitoring of state. The migration of application
services to the Grid’s Web Service Resource Framework [45] is a solution that we are
investigating.

The reporting mechanism in Taverna is a stream of events for each processing entity, with
these events corresponding to state transitions of the service component. For example, a
message is emitted when the service is first scheduled, when it has failed for the third time and is
waiting to retry, etc. These message streams are collated into an XML document format and the
results presented to the user in tabular form as shown in figure 8. The introduction of reporting
in Taverna does not alter the workflow results. What it does alter is users understanding of what
is going on, and therefore their confidence that the system is doing what they want. Overall the
feedback from Taverna’s initial users was that workflow execution without suitable monitoring
was not acceptable. They were willing to accept workflows that occasionally failed; their
experience with form-based web services was that these were unreliable. However, workflow
execution could not be a ’black-box’ service, Users need feedback on what is happening,
whether the workflow completed successfully or failed, and they need this recorded in logging
records.

When a workflow may contain fifty or more processing components (e.g. Scufl processors),
and each of these components can be retrying, using alternate implementations etc., the
complete state of a workflow is highly complex. Users require a visualization that allows
them to see at a glance what is happening, acquire intermediate results where appropriate
and control the workflow progress manually should that be required.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

25

Figure 8. Status information. When running a workflow the Taverna workbench displays status
information from the workflow enactor. For each Scufl processor the last event is displayed along with
the appropriate time and additional detail if available. This additional detail can include progress
through an iteration (e.g. ’item 2 of 6’) and retry information. The status information also allows the
selection of a processor and viewing the relevant intermediate inputs and outputs. Each data item has
been assigned an LSID. More detailed trace information is also available using the ’Process report’

tab.

6. Managing and sharing workflows and their results

One of the difficulties created by the automation of the data gathering that Taverna allows,
is that it becomes possible to generate very large quantities of data more easily than was
previously possible. It becomes critically important to enable the storage of this data in
an organised manner. More over, as we are working in the context of scientific in silico
experimentation, we need to be able to store information about the derivation of data, to
potentially enable the rerunning or replication of the experiment.

The extensibility framework enables the storage of data as it is generated by the enactor.
Services might store data in third party database. However, data at each point of the workflow
is stored within the myGrid Information Repository (MIR). While this is backed with a
relational database, the open world assumption within myGrid, means that we cannot formally
structure the data that is placed in the MIR. It is instead stored with respect to an Information
Model based on the experimental process [34].

For scientists, workflows are the means to an end their primary interest is in the results
of experiments. This interest, however, goes beyond examining the results themselves and
extends to the context within which those results exist. Specifically, the scientist will wish to
know from where a particular result was derived, which process was used and what parameters

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

26

were applied to that process. Thus, in addition to the raw data, we have devised a model of
metadata describing the provenance of all aspects of the experiment: the data’s derivation
path, an audit trail of the service’s invoked, the context of the workflow and the knowledge
outcomes as a result of its execution. We have adopted to two key technologies:

Life Science Identifiers. The description of the derivation of data necessitates reference to
the data sets both inside and outside the control of myGrid. Bioinformatics has adopted
view standards for the identification of data, instead using an ad hoc system of accession
numbers. The recent Life Science Identifer (LSID) standard [35] provides a migration path
from the legacy accession numbers, to an identification scheme based on URI’s. While
myGrid originally adopted this specification to enable referencing external entities, it has
since used it for all data being entered into the MIR.

Resource Description Framework (RDF). The MIR has a fixed schema that reflects
the common entities used in e-Science experimental life cycle untied to any scientific
discipline. The use of a fixed schema provides performance benefits. However, RDF’s basic
graph data model is well suited to the task of representing data derivation. Additionally,
it provides a well-defined link to the ontology, described in the previous section, enabling
specialisation and generalisation of queries. The KAVE (Knowledge Annotation and
Verification of Experiments) metadata store has a flexible schema due to its use of RDF.
This allows statements to be added outside the fixed schema of the MIR, as is needed
when providing subject specific information. KAVE enables other components in myGrid
to store statements about resources and later query those statements using RDQL.

One can distinguish between provenance of the data and provenance of the process, although
the two are linked. The primary task for data provenance is to allow the exploration of some
novel result and the determination of the derivation path for the result itself in terms of input
data and intermediate results en route to the final value. ’Side effect’ information, about how
intermediate and final results have been obtained, is generated and stored during workflow
invocation. Thus the workflow engine produces not just results but also provenance metadata
about those results. Side effect information is anything that could be recorded by some agent
observing the workflow invocation, and it implicitly or explicitly links the inputs and outputs
of each service operation within the workflow in some meaningful fashion. The associated
component KAVE-Taverna-Plug-in listens to the events of workflow execution and stores
relevant statements using KAVE, for example, a name for a newly created data item or a
meaningful link between the output of a service and the inputs that were used in its creation.

Process provenance is somewhat simpler than data provenance, and is similar to traditional
event logging. It is complicated somewhat by the requirements for fault tolerance and the
correspondingly larger range of possible events that may occur. In the event of a failure users
should expect access to sufficient information so that they can comprehend the failure and
take appropriate action.

Making all results, indeed all relevant experimental data, identifiable by LSIDs, and using
RDF statements to record metadata about those data, is not specific to a workflow system. Any
applications that scientists use to create in silico data, for example, a laboratory information
management system, could also record provenance information in the same way and allow users

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

27

to query it without having to know the system that produced it. The effective integration of
provenance information that can be automatically generated, and additional metadata, for
example a scientists conclusions based on the experimental results, that is supplied through
manual annotation, is part of our current work. Further details of provenance in myGrid can
be found in [12]. The use of OWL and RDF for service selection and provenance logging makes
myGrid a pioneer of the so called Semantic Grid movement [46].

6.1. Data integration and visualisation

myGrid has mechanisms for recording the intermediate and final outcomes of services executed
by a workflow. Using LSIDs and the provenance model in RDF we link together these results.
Our open world model, however, means that we do not automatically integrate these results.
Thus Taverna supports application interoperation but not application integration. Integration
is special to each collection of chained services and the purpose of the workflow. Integration
steps require a Semantic Mediation mechanism mapping data to a common schema of the
kind adopted by the Kepler [28] toolset in the SEEK and GEON projects. Other techniques
include the use of Shims to incrementally populate data objects that integrate data across
applications, and closing off the open world in situations where it is worth the effort of building
a more strongly typed model across a small number of applications and a static yet permanent
workflow. An interesting research task is the use of the RDF provenance metadata to provide
a more generic solution that can be re-used between related workflows;

7. Related work

The Life Sciences is a field where there are many scientists, unfamiliar with middleware
technologies, who want an easy way of rapidly pulling together third-party services into
prototypical in silico experiments. In contrast, in other fields, such as physics and astronomy,
the prime scenario involves carefully designed workflows linking applications. The goal is to
exploit computational grid resources to enable in silico experiments that were previously
impractical due to resource constraints. It is unsurprising that the range of possible scenarios
and the emerging nature of the technology has led to a variety of different workflow systems.

7.1. Life sciences perspective

The diversity of life sciences research leads to significant interest in techniques for combining
resources. One abstract workflow familiar to most in biology is the annotation pipeline.
This consists of an initial input, usually a DNA or protein sequence, and then a series of
analyses that gives as much information as possible about the input sequence, based on other
experiments and literature which refer to that sequence or biologically similar ones. It is in
essence exploratory: attempting to answer the question, “What is known about this sequence?”
in an environment of rapidly progressing scientific knowledge. A variety of workflow systems
for bioinformatics have been developed; research systems include the PLAN programmable
integrator [47], structural genomic workflows [48], BioOpera [49], and commercial systems

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

28

include Incogen VIBE (Visually Integrated Bioinformatics Environment) [50], TurboWorx [51]
and PipelinePilot [52]. The mine-it bioinformatics modelling tool [53] has taken the same
approach, not for sequence data, but for the advanced analysis of gene-expression and micro-
array data. In contrast to Taverna these have typically been closed systems designed to build
workflows from a fixed suite of analysis tools with specialist programming needed to incorporate
new ones. In a rapidly developing environment where heterogeneous data is the norm, and
many of the most respected tools use their own peculiar input and output formats [18, 54],
many scientists are reluctant to risk becoming locked into an ageing analysis suite.

7.2. Scientific workflow systems

Table II provides a brief comparison of several representative scientific workflow systems.
These vary in terms of their intended scientific scope (the kinds of analyses supported), their
technical scope (the kinds of resources that can be composed), their openness to incorporating
new services, and whether or not they are open source. The strengths of Taverna are its
proven ability to link together a significant range of autonomous bioinformatics services and its
flexibility, particularly in terms of the metadata, including LSIDs and provenance information,
generated to aid scientists manage and share workflow results.

The Kepler workflow system [2] has been developed for scientists with a range of interests in
and is built on Ptolemy II, a mature application from the electrical engineering domain [55].
Like Taverna, Kepler is dataflow oriented, with the core description being the processing of
data through a set of connected actors (processing steps). Kepler’s strengths include its mature
library of actors, which are mainly local applications, and its suite of directors that provide
flexible control strategies for the composition of actors. The Triana [41] system was originally
developed as a data analysis problem-solving environment for a gravitational wave detection
project. It is also dataflow oriented, and is particularly strong at exploiting the structure
available in signal processing data. It is aimed at CPU intensive engineering and scientific
applications, primarily allowing scientists to compose their local applications and distribute the
computation on a set of Triana servers. In contrast, DiscoveryNet, another UK e-Science pilot
project, uses a proprietary workflow engine. DiscoveryNet scientific workflows are used to allow
scientists to plan, manage, share and execute complex knowledge discovery and data analysis
procedures [1]. In DiscoveryNet all services are wrapped to conform to a standard tabular data
model, which gives benefits in exploiting established knowledge discovery techniques.

The Geodise system [56] is similar to Taverna in its emphasis on fitting with the established
working practices of its target users, engineers, and having a language matched to their problem
domain, in its case MatLab. It differs in its focus on engineering design search and optimisation,
where workflow runs use different input parameters and are compared through an explicit
“objective function”. Geodise’s motivation for exploiting a Grid is the computational demands
of established engineering applications, while Taverna’s is the easy access and incorporation
of third-party services into in silico experiments.

The Pegasus system [44] abstracts from the detail of workflow design. The user provides
a workflow template and artificial intelligence planning techniques are used to deal with
the moving of data and execution of applications on a heterogeneous and changing set of
computational resources. The emphasis is on the planning and scheduling the execution of

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

29

Table II. A brief comparison of Grid workflow systems
Taverna Kepler DiscoveryNet Geodise Triana Pegasus

Scientific
domains

biology biology,
ecology
Geology

biology,
chemistry

engineering astronomy astronomy,
biology

Prime
strengths

usability,
low

startup
cost

flexibility usability,
database

integration

engineers
know

MatLab

usability,
P2P

support

automated
planning

Domain
resources
remote

web
services

and
domain
specific

web
services

web services No web
services

application
programs

Domain
resources

local

Java
resources

Java and
PERL

resources

wrapped
applications

MatLab wrapped
Java

resources

n/a

Adding
resources

find and
use

find,
wrap,
deploy
and use

find, wrap
and use

find, wrap
and use

find,
wrap,
deploy
and use

find,
deploy
and use

Linking
disparate
resources

shims shims,
common

data
model

common
data model

n/a common
data

model

shim ap-
plications

Prime data
types

string XML,
string

relational
table

numerical numerical? files

Workflow
language

Scufl MOML DPML MatLab
scripts

Java Chimera’s
VDL

Software
required

Java Java,
(Ptolemy)

commercial
software

MatLab
(commer-

cial)

Java Condor
DAGMan

Open
source

yes yes no no yes yes

large numbers of related jobs on a computational Grid, where users describe the results set
that they require and there are alternative strategies for calculating that result set.

The variety of different scientific workflow systems comes from the variety of different types
of e-Science. At the current time, there are no established standards and the key factor in the
adoption of particular systems is their effectiveness for specific user communities.

The use of workflows for “programming in the large” to compose web services has led to
significant interest in a standard workflow language within the web services stack. There is a
clear candidate in BPEL [57] which has industry support from both IBM and Microsoft, as
it was created through the agreed merge of their earlier web service composition languages
WSFL [58] and XLANG [59] respectively. (BPEL was originally termed BPEL4WS and is being

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

30

promoted as a standard called WSBPEL through OASIS (Organization for the Advancement
of Structured Information Standards), an international consortium for e-business standards.)

One reason why Taverna workflows use their own proprietory language Scufl rather than a
potential standard is historical. In the initial stages of the myGrid project in 2001 BPEL did
not exist; it was still the subject of confidential discussions between IBM and Microsoft. There
were certainly no open-source tools easily available. The more significant reason is conceptual.
We did initially try to use IBM’s WSFL language, but this did not match how our target users
wanted to describe their in silico experiments [60]. WSFL forced users to think in terms of web
service ports and messages rather than passing data between bio-services. The mismatch was
very significant with stateful services that had their own interaction protocol such as Soaplab
services. Scufl processors are a direct result of this experience.

The issues of experience of using the BPEL and open-source tools are still present. At the
GGF10 workshop [5] there was clearly very limited experience of using BPEL for scientific
workflows. While open-source tools now exist, the OASIS WSBPEL site also lists the large
number of language issues that are unresolved, so differences between tools are inevitable.

Whether BPEL, or some higher-level that translates to BPEL, will become a standard
workflow language in the life science domain is an open question. The power of BPEL is
that you can program your orchestration of web services in detail. The cost of this power
is that features such as iteration, provided implicitly in Scufl, have to be programmed, and
all services must be web services. The focus of BPEL, and most business-oriented workflow
languages, is control flow. Extensive research on workflow control patterns has shown that all
languages have limitations in terms of what can be easily expressed [61]. The ease of mapping
a dataflow approach, which has proved an appropriate abstraction for many scientists, to
BPEL’s constructs needs further investigation. For Taverna users a migration path, so that
workflows prototyped in Scufl could be transformed to BPEL for more “heavyweight” use,
would be attractive.

8. Lessons Learnt

myGrid set out to build a workflow environment to allow scientists to perform their current
bioinformatics tasks in a more explicit, repeatable, and shareable manner. The resulting
Taverna software package currently has some 500 installations. Our experience with local
users, such as those using it for the Williams Beuren analyses, indicates initial success. Users
with expert scientific knowledge, but little or no knowledge of middleware, have been able to
write workflows that automate their commonly performed bioinformatics analyses. They do so
in a fraction of the time of the previous manual methods, have been verified to produce valid
scientific results, and in fact are now progressing on to find novel results. They do this using
a representation that is straightforward to communicate to other scientists.

8.1. Abstraction is key

One of the keys to its initial success has been the level of abstraction that the workflow
environment allows users to operate at. The structure of a Scufl workflow corresponds well

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

31

to the scientist’s conceptualisation of a bioinformatics task. Each resource being orchestrated
corresponds to a bioinformatics application or access to a database recognised by the scientist.
The links between resources are specified in terms of dataflow, again corresponding to the
way many scientists view a complex task as an analysis pipeline, with data flowing through
that pipeline. Complex control flow constructs such as iteration over data sets are hidden
from the user through the use of implicit but configurable iteration strategies in the Execution
Layer. Complex orchestration of individual application services is achieved through the use of
processor plug-ins. A viable option because whole sets of services follow the same invocation
pattern.

8.2. Finding the limits of abstraction

The abstraction at the Application layer breaks down if the user wants to take control of finer
grained interaction with individual services. For example, a biological simulation service may
run for several days to weeks, and require monitoring and steering. Our current solution is
to handle this service specific interaction independently of the workflow specification. More
complex control flow involving complex conditional branches, or complex parallel iteration
through multiple data sets also breaks the abstraction. As users become more familiar with the
workflow environment they have been tempted to push the current representation to perform
more complex tasks. To some extent the environment has been augmented to support some of
these requirements. For example, simple iteration strategies can now be extended and there is
support within the workflow for a form of conditional branching. There is however a tension
between keeping the language simple for the majority of users, and supporting more advanced
functionality. In some cases we advise that complex business logic should not form part of
the workflow specification, but be encapsulated as a service which is then orchestrated by the
workflow. Multiple levels of abstraction can also make it more difficult for the user to trace the
origin of a failure because each step in the workflow may actually encompass multiple service
interactions, any one of which may have been the point of failure. In many respects this does
not become an issue because the scientific user does not have the skills or authority to resolve
persistent service failures anyway. This role must be left to service or myGrid administrators
who are able to interpret more fine grained debugging information from both the workflow
enactor and service installation.

An alternative approach to implement the abstraction, as taken by other projects such as
Pegasus, would be to compile the abstraction specified in Scufl to a concrete specification. This
would allow user interaction at this more concrete level during workflow enactment.

8.3. Lowering the cost of entry

By coupling a simple workflow language with a straight-forward workflow authoring tool,
scientific workflows can be authored quickly given the ready availability of services. The rate
limiting step is the discovery of existing services or making applications available as a service.
myGrid has mitigated this by (i) treating data as opaque to the workflow system, and so no
effort is needed making a service conform to a common data model; and (ii) providing Soaplab
as a framework to deploy command line applications as services. This approach has meant

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

32

1000+ services are now available that provide broad coverage of functionality, especially in
the commonly performed sequence analysis arena. However, two issues remain (i) the many
small bioinformatics groups that provide analysis tools via the web, have yet to provide Web
Service interfaces to their applications (TwinScan and Genscan gene prediction tools are an
example). Neither does their licensing accommodate others such as myGrid deploying such
a service for general use on their behalf; (ii) these services have not been designed to work
together and so Shim services have to be inserted to ensure flow of compatible data. Until a
significant library of such Shims exists, the authoring of each workflow must be accompanied
by their co-development.

8.4. Supporting the wider context

Much of the initial benefit of the workflow system has been based on this ability of scientists
to rapidly write workflows to automate mundane tasks. However, we are recognising the longer
term success of the workflow system will depend on how effectively users cope with the large
amount of services now available: how easily they can find and reuse other scientists workflows,
and whether the use of a workflow system makes managing analyses results easier not harder.
The core workflow system cannot hope to support all these functions of the wider e-Science
process. By providing an extensible framework to the core system, and developing plug-ins we
are able to support the workflow life cycle solely within the Taverna workbench. Feta supports
user centred discovery of both workflows and services in a UDDI registry, GRIMOIRES, that
can then be rapidly incorporated into a nascent workflow. However, given the rapid expansion
of available services, the number of structured descriptions of these services lags behind the
number of services. Involvement of service providers will be essential in closing this gap. The
novelty of scientific workflows means users are unsure how much they should guard their value.
Although, a key benefit is perceived to be the ease by which they can be shared and re-used,
it is not currently clear how willing scientists will be to actually share these resources widely,
exactly because they could be re-used by a competitor so rapidly. Our users quickly realised
that the know-how embodied in the workflow itself was valuable intellectual property and some
demanded a copyright service be incorporated in all workflows.

8.5. Integrating and visualising results

Taverna and the myGrid suite enables users to rapidly interoperate services. It does not support
the semantic integration of the data outcomes of those services. We underestimated the amount
of data integration and visualisation provided by the existing web delivered applications. They
often integrate information from many different analysis tools, and provide cross references
to other resources. Accessing the analysis tool directly as a service, circumvents this useful
functionality. Although the scientist is presented with results in hours not weeks, it now
takes a significant time to analyse the large amount of often fragmented results. A solution is
complicated by the fact that the workflow environment does not “understand” the data, and
so cannot perform the data integration necessary. We have provided integration steps within
workflows written as scripts that integrate and render results, but are specific to each workflow
design. We are currently investigating a multi-pronged approach: (i) the use of semantic web

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

33

technology to provide more generic solutions that can be re-used between related workflows;
(ii) appropriate workflow designs using Shims and services under the control of the user to
build data objects; and (iii) closing off the open world in situations where the workflows are
know to orchestrate a limited number of services and will be permanent in nature, so it is
worth the effort of building a more strongly typed model.

The field of scientific workflows is rapidly evolving, and as a project in this area myGrid
must also evolve. We engage different user communities (such as biological simulation), new
applications become available, as do novel service frameworks for deploying them. By working
closely with both our users, service providers, and other workflow projects, we continue to
extend the basic core functionality to fulfil a wide range of uses.

9. Acknowledgements

This work is supported by the UK e-Science programme EPSRC GR/R67743. The
authors would like to acknowledge the myGrid team. Hannah Tipney developed workflows
for investigation of Williams-Beuren Syndrome and is supported by The Wellcome
Foundation (G/R:1061183). We also thank our industrial partners: IBM, Sun Microsystems,
GlaxoSmithKline, AstraZeneca, Merck KgaA, geneticXchange, Epistemics Ltd, and Network
Inference.

REFERENCES

1. A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y Guo. The Discovery Net system for high
throughput bioinformatics. Bioinformatics, 19(90001):225i–231, 2003.

2. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludscher, and S. Mock. Kepler: Towards a Grid-Enabled
system for scientific workflows. In Workflow in Grid Systems Workshop in GGF10, Berlin, March 2004.

3. Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Workflow management in GriPhyN. In
J. Nabrzyski, J. Schopf, and J. Weglarz, editors, Grid Resource Management. Kluwer, 2003.

4. Jihie Kim, Yolanda Gil, and Marc Spraragen. A knowledge-based approach to interactive workflow
composition. In 14th International Conference on Automatic Planning and Scheduling (ICAPS 04),
Whistler, Canada, 2004.

5. GGF. GGF10 workflow workshop. http://www.extreme.indiana.edu/groc/ggf10-ww/, March 2004.
6. UK National e Science Centre. NeSC workshop on e-Science workflow services. http://www.nesc.ac.uk/

action/esi/contribution.cfm?Title=303, December 2003.
7. J Devereux, P Haeberli, and O Smithies. A comprehensive set of sequence analysis programs for the VAX.

Nucleic Acids Research, 12:387395, 1984.
8. P Rice, I Longden, and A Bleasby. EMBOSS: the european molecular biology open software suite. Trends

Genetics, 16:276277, 2000.
9. Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble. Feta: A light-weight architecture for user oriented

semantic service discovery. In European Semantic Web Conference, 2005. Accepted for Publication.
10. Peter Li, Keith Hayward, Claire Jennings, Kate Owen, Tom Oinn, Robert Stevens, Simon Pearce, and

Anil Wipat. Association of variations in I kappa B-epsilon with Graves disease using classical and myGrid
methodologies. In Simon J Cox, editor, Proceedings of UK e-Science programme All Hands Meeting,
pages 287–293. EPSRC, September 2004.

11. R.D. Stevens, H.J. Tipney, C.J. Wroe, T.M. Oinn, M. Senger, P.W. Lord, C.A. Goble, A. Brass, and
M. Tassabehji. Exploring Williams Beuren Syndrome Using myGrid. In Bioinformatics, volume 20,
pages i303–310, 2004. Intelligent Systems for Molecular Biology (ISMB) 2004.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

34

12. Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan, and Mark Greenwood. Using Semantic
Web Technologies for Representing e-Science Provenance . In 3rd International Semantic Web Conference
(ISWC2004), 2004. To appear.

13. M.Nedim Alpdemir, Arijit Mukherjee, Norman W. Paton, Alvaro A.A. Fernandes, Paul Watson, Kevin
Glover, Chris Greenhalgh, Tom Oinn, and Hannah Tipney. Contextualised workflow execution in myGrid.
In P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editors, Advances in Grid
Computing: EGC 2005, 2005.

14. The Genome International Sequencing Consortium. Initial sequencing and analysis of the human genome.
Nature, 409:860–921, February 2001.

15. Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and David L. Wheeler.
GenBank. Nucleic Acids Research, 33:D34–D38, 2005. Database issue.

16. Chris Burge and Samuel Karlin. Prediction of complete gene structures in human genomic DNA. Journal
of Molecular Biology, 268:78–94, 1997. See also http://genes.mit.edu/GENSCAN.html.

17. I. Korf, P. Flicek, D. Duan, and M.R. Brent. Integrating genomic homology into gene structure prediction.
Bioinformatics, 17:S140–148, 2001. See also http://genes.cs.wustl.edu/.

18. Lincoln Stein. Creating a bioinformatics nation. Nature, 417:119 – 120, 2002.
19. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Ferris, and

David Orchard. Web Services Architecture, W3C Working Group Note. http://www.w3.org/TR/2004/
NOTE-ws-arch-20040211/, November 2004.

20. Lichun Wang, Jean-Jack Riethoven, and Alan Robinson. XEMBL: distributing EMBL data in XML
format. Bioinformatics, 18(8):1147–1148, 2002.

21. Martin Senger. Bibliographic query service. http://industry.ebi.ac.uk/openBQS/, 2002.
22. S Miyazaki, H Sugawara, K Ikeo, T Gojobori, and Y Tateno. DDBJ in the stream of various biological

data. Nucl. Acids Res., 32(90001):D31–34, 2004.
23. M. D. Wilkinson, D. Gessler, A. Farmer, and L. Stein. The BioMOBY Project Explores Open-Source,

Simple, Extensible Protocols for Enabling Biological Database Interoperability. Proc Virt Conf Genom
and Bioinf, 3:16–26, 2003.

24. J Dana Eckart and Bruno Sobral. A life scientists gateway to distributed data management and computing:
The pathport/toolbus framework. OMICS: A Journal of Integrative Biology, 7(1):79–88, 2003.

25. M Senger, P Rice, and T Oinn. Soaplab - a unified sesame door to analysis tools. In Proceedings UK
OST e-Science 2nd All Hands Meeting, September 2003.

26. Katerina Michalickova, Gary Bader, Michel Dumontier, Hao Lieu, Doron Betel, Ruth Isserlin, and
Christopher Hogue. SeqHound: biological sequence and structure database as a platform for bioinformatics
research. BMC Bioinformatics, 3(1):32, 2002.

27. Roy T. Fielding. Architectural styles and the design of network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

28. Shawn Bowers and Bertram Ludscher. An ontology-driven framework for data transformation in scientific
workflows. In International Workshop on Data Integration in the Life Sciences (DILS’04), Leipzig,
Germany, 2004. Springer.

29. Ewa Deelmana, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil, , Mei-Hui Su,
Karan Vahi, and Miron Livny. Pegasus : Mapping scientific workflows onto the Grid. In Across Grids
Conference, Nicosia, Cyprus, 2004.

30. Emden R. Gansner and Stephen C. North. An open graph visualization system and its applications to
software engineering. Software Practice and Experience, 30(11):1203–1233, 2000.

31. William Sanchez, Brian Gilman, Manav Kher, Steven Lagou, and Peter Covitz. caGRID White Paper.
http://cabig.nci.nih.gov/guidelines documentation/caGRIDWhitepaper.pdf, July 2004.

32. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215:403–410, 1990.

33. Rob Pike and Dennis M. Ritchie. The Styx- Architecture for distributed systems. Bell Labs Technical
Journal, 4(2):146–152, 1999.

34. Nick Sharman, Nedim Alpdemir, Justin Ferris, Mark Greenwood, Peter Li, and Chris Wroe. The myGrid
Information Model. In Simon J Cox, editor, Proceedings of UK e-Science programme All Hands Meeting,
pages 287–293. EPSRC, September 2004.

35. Tim Clark, Sean Martin, and Ted Liefeld. Globally distributed object identification for biological
knowledgebases. Briefings in Bioinformatics, 5(1):59–70, 2004.

36. Universal Description Discovery and Integration (UDDI) Technical Whitepaper. http://www.uddi.org/
pubs/Iru UDDI Technical White Paper.pdf.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

35

37. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and L. Moreau. Automating
experiments using semantic data on a bioinformatics grid. IEEE Intelligent Systems, 19(1):48–55, 2004.

38. Phillip Lord, Chris Wroe, Robert Stevens, Carole Goble, Simon Miles, Luc Moreau, Keith Decker, Terry
Payne, and Juri Papay. Semantic and Personalised Service Discovery. In W. K. Cheung and Y. Ye, editors,
WI/IAT 2003 Workshop on Knowledge Grid and Grid Intelligence, pages 100–107, Halifax, Canada,
October 2003.

39. Chris Wroe, Robert Stevens, Carole Goble, Angus Roberts, and Mark Greenwood. A Suite of DAML+OIL
Ontologies to Describe Bioinformatics Web Services and Data. The International Journal of Cooperative
Information Systems, 12(2):597–624, 2003.

40. Phillip Lord, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz, Damian Gessler, Duncan Hull, Carole
Goble, and Lincoln Stein. Applying semantic web services to bioinformatics: Experiences gained, lessons
learnt. In International Semantic Web Conference, 2004. Accepted For Publication.

41. M. Shields and I. Taylor. Programming Scientific and Distributed Workflow with Triana Services. In
Workflow in Grid Systems Workshop in GGF10, Berlin, March 2004.

42. Duncan Hull, Robert Stevens, Phillip Lord, Chris Wroe, and Carole Goble. Treating shimantic web
syndrome with ontologies. In First AKT workshop on Semantic Web Services (AKT-SWS04) KMi, The
Open University, Milton Keynes, UK. December 8, 2004, 2004. Workshop proceedings CEUR-WS.org
ISSN:1613-0073.

43. Emilia Cimpian, Adrian Mocan, Dumitru Roman, Francois Scharffe, and James Scicluna. WSMO
Mediators. http://www.wsmo.org/TR/d29/v0.1/, March 2005.

44. Y. Gil, E. Deelman, J. Blythe, C. Kessleman, and H. Tangmunarunkit. Artificial Intelligence and Grids:
Workflow Planning and Beyond. IEEE Intelligent Systems special issue on e-science, 19(1):26–33, 2004.

45. Karl Czajkowski, Donald F. Ferguson, Ian Foster, Jeffrey Frey, Steve Graham, Igor Sedukhin, David
Snelling, Steve Tuecke, and William Vambenepe. The WS-Resource framework, March 2004.

46. Carole Goble and David De Roure. The Semantic Grid: Myth busting and bridge building. In Proceedings
of the 16th European Conference on Artificial Intelligence (ECAI-2004), Valencia, Spain, 2004.

47. M. Chagoyen, M.E. Kurul, P.A. De-Alarcn, J.M. Carazo, and A. Gupta. Designing and executing scientific
workflows with a programmable integrator. Bioinformatics, 20(13):2092–2100, 2004.

48. M. Cavalcanti, F. Baio, S. Rssle, P. Bisch, R. Targino, P. Pires, M. Campos, and M. Mattoso. Structural
genomic workflows supported by Web Services. In Proceedings of the 14th International Conference on
Database and Expert Systems Applications (DEXA 2003) International Workshop on Biological Data
Management (BIDM’03), pages 45–49, Prague, Czech Republic, September 2003.

49. BioOpera. Process Support for Bioinformatics. http://ikplab12.inf.ethz.ch:8888/bioopera/website/
main.html, 04 June 2004.

50. INCOGEN VIBE. (Visual Integrated Bioinformatics Environment). http://www.incogen.com/VIBE, 04
June 2004.

51. TurboWorx. Enterprise. http://www.turboworx.com, 04 June 2004.
52. Pipeline Pilot. http://www.scitegic.com/products services/pipeline pilot.htm, 03 June 2004.
53. S. Frank, J. Moore, and R. Eils. A question of scale: Bringing an existing bio-science workflow engine to

the grid. In Workflow in Grid Systems Workshop in GGF10, Berlin, March 2004.
54. R.D. Stevens, C.A. Goble, P. Baker, and A. Brass. A Classification of Tasks in Bioinformatics.

Bioinformatics, 17(2):180–188, 2001.
55. Ptolemy Project. PtolemyII. http://ptolemy.eecs.berkley.edu, 11 May 2004.
56. Z. Jiao, J.L. Wason, W. Song, F. Xu, H. Eres, A.J. Keane, and S.J. Cox. Databases, Workflows and the

Grid in a Service Oriented Environment. In Euro-Par 2004, Parallel Processing, pages 972–979, Pisa,
August 2004.

57. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann,
Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business
Process Execution Language for Web Services (Version 1.1). ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf, May 2003.

58. F. Leymann. Web Services Flow Language (WSFL 1.0). http://www-306.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf, May 2001.

59. S. Thatte. XLANG Web Services for Business Process Design. http://www.gotdotnet.com/team/
xml wsspecs/xlang-c/default.htm, 2001.

60. Matthew Addis, Justin Ferris, Mark Greenwood, Darren Marvin, Peter Li, Tom Oinn, and Anil Wipat.
Experiences with escience workflow specification and enactment in bioinformatics. In Proceedings of UK
e-Science All Hands Meeting, pages 459–467, 2003.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

36

61. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns. Distributed and
Parallel Databases, 14(1):5–51, 2003.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

