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Abstract

We re-examine the optimality of tax smoothing from the point of view of frictional labor

markets. Our central result is that whether or not this cornerstone optimal fiscal policy pre-

scription carries over to an environment with labor market frictions depends crucially on the

cyclical nature of labor force participation. If the participation rate is exogenous at business-

cycle frequencies — as is typically assumed in the literature — we show it is not optimal to

smooth tax rates on labor income in the face of business-cycle shocks. However, if households

do optimize at the participation margin, then tax-smoothing is optimal despite the presence of

matching frictions. To understand these results, we develop a concept of general-equilibrium

efficiency in search-based environments, which builds on existing (partial-equilibrium) search-

efficiency conditions. Using this concept, we develop a notion of search-based labor-market

wedges that allows us to trace the source of the sharply-contrasting fiscal policy prescriptions to

the value of adjusting participation rates. Our results demonstrate that policy prescriptions can

be very sensitive to the cyclical nature of labor-force participation in search-based environments.
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1 Introduction

We have two main aims in this paper. The first is to re-examine a classic issue in the theory of fiscal

policy — the optimality of labor-income tax smoothing — from the point of view of frictional labor

markets. Since Barro’s (1979) partial-equilibrium intuition, Lucas and Stokey’s (1983) general-

equilibrium analysis, and continuing through to today’s quantitative DSGE models used to study

optimal fiscal policy, the prescription that governments ought to hold labor tax rates virtually

constant in the face of aggregate shocks is well-known to macroeconomists. We show that this

cornerstone policy prescription and the intuition underlying it carry over to a general-equilibrium

environment in which search and matching frictions exist in labor markets only if households

optimally adjust their labor-force participation over the business cycle. In contrast, if the labor-

force participation rate is exogenous at business cycle horizons, as is almost uniformly assumed in

the recent vintages of DSGE labor-search models, then purposeful tax-rate volatility is optimal.

The optimal degree of tax-rate variability in this case is one to two orders of magnitude larger than

benchmark results in the Ramsey literature. Nevertheless, the degree of cyclical variability in the

participation rate implied by our model in this case is well within empirical ranges. Our results

demonstrate that a model’s policy prescriptions can be very sensitive to its assumed cyclical nature

of labor-force participation.

The second aim of our work is to provide a general notion of efficiency for use in search-based

general-equilibrium macroeconomic models. As part of the recent surge in popularity in building

DSGE models featuring search and matching frictions in labor markets, many studies have focused

on the transmission channels of macroeconomic policy and the determination of optimal policy.

Efficiency concerns lie at the heart of any model studying optimal policy. In light of this, a

contribution of this paper is that we develop a general-equilibrium notion of efficiency for search-

based models that not only clearly shows the conditions under which tax-smoothing is and is not

optimal, but also may be helpful in casting light on results that are starting to emerge elsewhere

in the literature.

In particular, we develop a precise notion of the marginal rate of transformation (MRT) be-

tween leisure (being outside the labor force) and output that takes into account search frictions

and the long-lived nature of employment relationships that they endogenously generate. With this

concept of MRT, we are able to characterize general-equilibrium efficiency in a search model using

only the basic principle that MRTs should be equated to their associated marginal rates of substi-

tution (MRS). This characterization of efficiency in turn allows us to define a novel type of labor

wedge, which is explicitly search-based, between MRS and MRT. This view of wedges pinpoints the

conditions under which smoothing of labor income tax rates is optimal even though labor markets

are always frictional in our model. Our notion of efficiency has as a necessary, but not sufficient,
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component the well-known Hosios (1990) condition for (partial-equilibrium) search efficiency. Our

definition of the MRT nests as a special case the RBC neoclassical-based notion of the MRT between

leisure and output. Similarly, our notion of the search-based labor wedge nests as a special case

the neoclassical notion of the labor wedge emphasized by Chari, Kehoe, and McGrattan (2007),

Shimer (2008), and others. We view as virtues of our definitions of efficiency and wedges that they

nest their counterparts in the widely-understood RBC model.

Our baseline search and matching environment is identical to the one that has come into

widespread use in recent DSGE modeling efforts. The crucial feature for our analysis is that — in

keeping with nearly all of the existing literature — it assumes the size of the labor force is exoge-

nous. We quantitatively demonstrate the optimality of labor tax-rate volatility in this environment

and trace the source of this volatility directly to the inability of the labor-force-participation rate

to adjust to business-cycle shocks. The inability of the participation rate to adjust is reflected

in cyclical variations in the shadow value of the fixed participation margin. Cyclical variations

in this shadow value shift the search-based labor wedge that we identify. Time-variation in tax

rates is then used to stabilize the overall labor wedge. In a calibrated version of this economy,

the optimal degree of labor tax volatility is large: the standard deviation of the optimal tax rate

is between 2 and 6 percent, depending on precise parameter values, around a mean of about 20

percent. For comparison, the Ramsey literature’s conventional tax-smoothing result entails optimal

tax-rate volatility near 0.1 percent or less — for example, see the overview in Chari and Kehoe

(1999). Thus, optimal labor tax rates are one to two orders of magnitude more volatile in the

widely-used baseline search model than in simple neoclassical-based Ramsey environments.

On the other hand, if participation is endogenous over the business cycle, we show that, despite

the presence of search frictions, the labor tax rate is the only aspect of the economy that creates a

labor wedge. Even though the labor wedge we define is a generalization of the standard notion, the

basic prescription that a Ramsey government should keep wedges nearly constant over time applies,

which in this case calls for tax-rate smoothing. Thus, if participation adjusts, the analytical insights

developed by Werning (2007) and Scott (2007) on the optimality of tax smoothing in a neoclassical

labor market also seem to apply to frictional labor markets. More broadly, endogeneity of labor-

force participation bridges the gap between a frictionless neoclassical environment and frictional

environments (ala Pissarides (2000)) by allowing households a unilateral optimization margin with

respect to some aspect of their labor-market outcomes. Such an optimization margin is at the core

of any neoclassical-based macro model, but is absent in virtually all search-based macro models.

In our model, the optimization margin with respect to labor-market outcomes is the partic-

ipation decision: optimal policy critically depends on whether or not labor-force participation

fluctuates optimally at business cycle horizons. Most of the empirical evidence suggests very small
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fluctuations along the participation margin at business-cycle timeframes. Elsby, Michaels, and

Solon (2008) and many others argue that because cyclical adjustment of participation is so small,

assuming no cyclical fluctuations in participation is a useful approximation in order to focus on

other labor-market transitions. Empirical arguments such as the latter are often used in theoretical

work to justify modeling the size of the labor force as fixed over the business cycle. However, our re-

sults show that modeling small fluctuations in participation as zero fluctuations can lead to sharply

contrasting policy prescriptions. In particular, in the version of our model featuring adjustment of

participation rates, the equilibrium fluctuations along this margin indeed turn out to be very small:

our model predicts that the participation rate varies by about half a percentage point around a

mean of 66 percent. This range of variation is very much in line with what is observed in data.

Thus, using the narrow range of observed participation rates as a basis for ignoring the participation

margin altogether can matter quantitatively and qualitatively for some policy-relevant questions.

It is not the narrow range of fluctuations in participation rates that matters for our results; rather,

it is the fluctuations in associated shadow prices that matter. Veracierto (2008), while focused on

a different range of issues, is another recent example demonstrating that predictions of modern

labor-market models can be sensitive to the assumed cyclical nature of labor force participation.

To conduct our analysis, we formulate a DSGE labor-search model in a way that nests both

the typical exogenous-labor-force specification as well as the endogenous labor-force specification.

We nest these two frameworks by defining a shadow value of adjustment along the participation

margin, and this shadow value appears in key equilibrium conditions of the model, including the

search wedge described above. If participation always adjusts optimally, this shadow value is by

construction zero; if participation does not adjust to shocks, this shadow value fluctuates over time,

thus shifting equilibrium conditions. Because our formulation is easy to use, it can be applied to

any DSGE search model in order to shed light on the economic forces at work.

Finally, we note that tax volatility in our model is not driven by any incompleteness of gov-

ernment debt markets, which is a well-understood point in Ramsey models since Aiyagari, Marcet,

Marimon, and Sargent (2002). Thus, our only point of departure from a neoclassically-based

complete-markets Ramsey setup, such as the textbook Chari and Kehoe (1999) presentation, is

that we model labor trades as governed by primitive search and matching frictions. While search-

based DSGE models have become commonplace in recent years, their ability to shed new insights on

optimal fiscal policy has not yet been much explored.1 Our model features no capital accumulation,

in order to highlight the dynamics of labor taxes. We see no reason why our basic intuition and

results would not extend to the classic case of Ramsey taxation of both labor and capital income.
1To our knowledge, the only work investigating aspects of optimal fiscal policy in labor-search dynamic general

equilibrium models is Domeij (2005), Boone and Bovenberg (2002), and our own previous work, Arseneau and Chugh

(2006, 2008). In none of these is the focus explicitly on tax smoothing.
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The rest of our work is organized as follows. Section 2 lays out the basic search model, in which

we are able to capture in nested form both an environment that does feature and an environment

that does not feature cyclical adjustment of labor-force participation. In Section 3, we develop

our general-equilibrium concepts of MRT and efficiency. In Section 4, we show which features of

the decentralized search economy create wedges in the efficiency condition we propose. Section 5

presents the Ramsey problem. Section 6 presents our main results. Section 7 concludes.

2 Model

As many other recent studies have done, we embed the baseline Pissarides (2000) textbook search

model into a DSGE framework. The baseline Pissarides (2000) framework features no labor-force

participation decision. Virtually all of the recent DSGE models adopting a search-theoretic foun-

dation for labor markets have inherited this structure. We instead consider two variants of the

environment facing households, one in which the number of individuals in the labor force (defined

as individuals either working or actively seeking employment) is exogenous and one in which it

is endogenous. Despite search and matching frictions, the latter setup renders our model close to

DSGE models based on neoclassical labor markets, in which the key equilibrium margin is often the

labor-force participation margin.2 Regardless of whether participation is endogenous or exogenous,

however, transitions into employment are always subject to search and matching frictions in our

model.

We present these two versions of our search model in a unified, nested way. Specifically, rather

than construct essentially two different environments, we construct one very general framework that

allows for an endogenous participation decision but that, by introducing one additional constraint,

can also allow for exogenous participation. As described below, nesting the two environments in

this way allows us to clearly isolate the incentives relevant for optimal policy. These incentives

turn out to be captured by the shadow value of the constraint that allows us to move between the

exogenous- and the endogenous-participation versions of our model.

We present in turn the choice problems of the representative firm, the representative household,

the determination of wages, the actions of the government, and the definition of private-sector

equilibrium.
2Because an RBC model only considers two labor-market states, rather than all three, one can interchangeably

refer to the relevant margin there as either a participation margin or, in the more commonly-used language, a labor-

supply margin. Although the latter terminology has been the most commonly-used, the former characterization seems

equally well-justified. For example, Kydland and Prescott (1982, p. 1350-1351) themselves refer to the time allocated

to non-work as time allocated to non-market activities such as household production. Another example would be

education. From the point of view of macroeconomic models, we think it seems natural to consider individuals

engaged in non-market activities as outside the labor force.
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2.1 Production

The production side of the economy features a representative firm that must open vacancies, which

entail costs, in order to hire workers and produce. The representative firm is “large” in the sense

that it operates many jobs and consequently has many individual workers attached to it through

those jobs.

The firm requires only labor to produce its output. The firm must engage in costly search for

a worker to fill each of its job openings. In each job k that will produce output, the worker and

firm bargain over the pre-tax real wage wkt paid in that position. Output of any job k is given by

ykt = zt, which is subject to a common technology realization zt.

Any two jobs ka and kb at the firm are identical, so from here on we suppress the second

subscript and denote by wt the real wage in any job, and so on. Total output of the firm thus

depends on the technology realization and the measure of matches nft that produce,

yt = ztn
f
t . (1)

The total real wage bill of the firm is the sum of wages paid at all of its positions, nft wt.

The firm begins period t with employment stock nft−1. Its period-t productive employment

stock, nft , depends on its period-t vacancy-posting choices as well as the random matching process

described below.3 With probability kf (θ), taken as given by the firm, a vacancy will be filled by a

worker. Labor-market tightness is θ ≡ v/u, where u denotes the number of individuals searching

for jobs. Matching probabilities for both firms and households depend only on aggregate market

tightness given the Cobb-Douglas matching function assumed below.

Our baseline wage-determination mechanism is Nash bargaining, as described below. In the

firm’s profit maximization problem, the wage-setting protocol is taken as given.4 We employ Nash

bargaining because it has become familiar in DSGE search models, and thus enhances compara-

bility with existing studies. However, as we note below, our results are identical if we employ an
3Labor-market matching thus occurs within a period, which, given the quarterly calibration we will pursue,

is empirically descriptive of U.S. labor-market flows — see, for example, the evidence of Davis, Faberman, and

Haltiwanger (2006). This so-called “instantaneous-hiring” view of labor-market flows has recently become widely

used in this class of models, employed by, among others, Blanchard and Gali (2007, 2008) and Krause, Lopez-Salido,

and Lubik (2007).
4This assumption is without loss of generality in the standard Pissarides-type model because even if the firm

believed it could opportunistically manipulate the wages it paid by under- or over-hiring, the fact that labor’s

marginal product is independent of total employment prevents such opportunistic manipulation of wage-bargaining

sets. Thus, in the standard exogenous-productivity Pissarides model, holdup problems are in principle present, but

there is no lever by which firms can strategically react to them. If firm output exhibited diminishing marginal product

in its total employment level, then the firm would have an incentive to over-hire, and it would not be innocuous to

assume that firms take wages as given when choosing how many vacancies to post. See, for example, Smith (1999),

Cahuc, Marque, and Wasmer (2008), and Krause and Lubik (2006).
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alternative equilibrium concept, competitive search equilibrium, in which wages are determined in

a decentralized fashion rather than through bilateral negotiations.

The firm thus chooses vacancies to post vt and a current employment stock nft to maximize

discounted profits starting at date t,

Et

∞∑
t=0

βt
{

Ξt|0
[
ztn

f
t − wtn

f
t − γvt

]}
, (2)

where Ξt|0 is the period-0 value to the representative household of period-t goods, which we assume

the firm uses to discount profit flows because households are the ultimate owners of firms.5 In

period t, the firm’s problem is thus to choose vt and nft to maximize (2) subject to a sequence of

perceived laws of motion for its employment level,

nft = (1− ρx)nft−1 + vtk
f (θt). (3)

Firms incur the real cost γ for each vacancy created, and job separation occurs with exogenous fixed

probability ρx. Note the timing of events embodied in the law of motion (3). Period t begins with

employment stock nft−1, some of whom separate from the firm before period-t production occurs;

the firm posts vacancies and hires a flow of new employees kf (θt)vt, which depends on both the

firm’s decisions and market conditions; the employment stock nft then engages in production.

The firm’s first-order conditions with respect to vt and nft yield a standard job-creation condition

γ

kf (θt)
= zt − wt + (1− ρx)Et

[
Ξt+1|t

γ

kf (θt+1)

]
, (4)

where Ξt+1|t ≡ Ξt+1|0/Ξt|0 is the household discount factor (again, technically, the real interest

rate) between period t and t+ 1. The job-creation condition states that at the optimal choice, the

vacancy-creation cost incurred by the firm is equated to the discounted expected value of profits

from a match. Profits from a match take into account future marginal revenue product from the

match, the wage cost of the match, and the asset value of having a pre-existing relationship with

an employee in period t + 1. This condition is a free-entry condition in the creation of vacancies

and is a standard equilibrium condition in a labor search and matching model.

2.2 Households

There is a representative household in the economy. Each household consists of a continuum of

measure one of family members, and each individual family member is classified as either inside

the labor force or outside the labor force. An individual family member that is outside the labor
5Technically, of course, it is the real interest rate with which firms discount profits, and in equilibrium the real

interest rate between time zero and time t is measured by Ξt|0. Because there will be no confusion using this

equilibrium result “too early,” we skip this intermediate level of notation and structure.
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force enjoys leisure. An individual family member that is part of the labor force is engaged in one

of two activities: working, or not working but actively searching for a job. The convenience of an

“infinitely-large” household is that we can naturally suppose that each individual family member

experiences the same level of consumption regardless of his personal labor-market status. This

tractable way of modeling perfect consumption insurance in general-equilibrium search-theoretic

models of labor markets has been common since Andolfatto (1996) and Merz (1995). We use the

terms “individual” and “family member” interchangeably from here on. Given the basics of the

environment, we also use the terms “leisure” and “outside the labor force” interchangeably from

here on.

As noted above, we construct our model in a flexible way to allow for two cases regarding

labor-force participation. In the first case, which corresponds to the benchmark Pissarides (2000)

model, the size of the labor force is exogenously fixed at the measure nht + uht = l̄ < 1, with l̄

a parameter to be calibrated below. With the labor-force participation rate fixed at l̄, the fixed

measure 1 − l̄ = 1 − uht − nht of family members thus enjoy leisure in every period. For reasons

that will become clear immediately below, we label this version of our model the pseudo-labor-

force-participation model, or pseudo-LFP model for short. In the second case, households each

period optimally choose the size of nht +uht ; the labor-force participation rate is thus endogenous in

every period t. We label this version of the model the labor-force-participation model (LFP model).

As the descriptions below show, with the exception of one constraint, the household problem is

identical in both the pseudo-LFP model and the LFP model.

2.2.1 Pseudo-LFP Model

Although the labor-force participation rate is fixed in the baseline environment, we formulate the

household problem as if there were free choice over the participation rate, but impose a constraint

that ensures it is always l̄. This formulation motivates our label “pseudo” LFP model. Households

are fully aware of the constraint nht + uht = l̄. The advantage of this formulation of the problem is

that the shadow value of this constraint directly sheds light on the mechanism driving our optimal-

policy results and makes quite transparent comparisons with the full LFP model described next.

The representative household maximizes expected lifetime discounted utility

E0

∞∑
t=0

βt
[
u(ct) + g(1− uht − nht )

]
(5)

subject to a sequence of flow budget constraints

ct + bt = nht (1− τnt )wt + uht χ+Rtbt−1 + (1− τd)dt, (6)

a sequence of perceived laws of motion for the measure of family members that are employed,

nht = (1− ρx)nht−1 + uht k
h(θt), (7)
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and the exogenous restriction on the size of the labor force

nht + uht = l̄. (8)

The functions u(.) and g(.) are standard strictly-increasing and strictly-concave subutility functions

over consumption and leisure, respectively.

A utility value of leisure is often what is meant when partial-equilibrium labor-search models

refer casually to the “outside benefit of not working.” Our model formalizes this idea in a way that

is easily comparable to RBC-based models. This way of modeling (part of) the outside benefit

of not working is identical to that in Shi and Wen (1999) and Domeij (2005). As emphasized by

Blanchard and Gali (2008), the fact that, at the household level, the marginal rate of substitution

between consumption and leisure is not an exogenous constant also distinguishes our model from

partial-equilibrium search environments.

A second notion of the “outside benefit of not working” is represented by χ, which is the flow of

unemployment benefits each unemployed individual (actively searching for employment) receives.

We assume the unemployment benefit is time-invariant. Because our model explicitly depicts

three labor-market states, we can meaningfully distinguish between unemployment benefits and the

utility of leisure, which are often referred to and modeled interchangeably in partial-equilibrium

environments and in even some general-equilibrium search environments.

The rest of the terms in the constraints are as follows. The after-tax real wage rate each

employed individual earns is (1 − τnt )wt. The household takes as given the probability kh(θ)

that one of its unemployed and searching individuals will find employment. As with matching

probabilities for firms, kh depends only on aggregate labor-market tightness given the assumption of

a Cobb-Douglas matching technology. Finally, bt−1 is the household’s holdings of a state-contingent

one-period real government bond at the end of period t−1, which has gross state-contingent payoff

Rt at the beginning of period t. Important to note is that the government is able to issue fully

state-contingent debt; thus, none of our optimal policy results will be driven by an inability on

the part of the government to use debt as a shock absorber. Incompleteness of government debt

markets can be an important driver of results in Ramsey models — see, for example, Aiyagari,

Marcet, Marimon, and Sargent (2002). Of course, because this is a Ramsey-taxation model, there

are no lump-sum taxes or transfers between the government and the private sector.

Due to firms’ sunk resource and time costs of finding employees, firms earn positive flows of

economic profits. These profits are transferred to households at the end of each period in lump-

sum fashion: dt is the household’s receipts of firms’ flow profits. We permit government taxation

of households’ receipts of dividends at the fixed tax rate τd. As is well-understood in the Ramsey

literature, flows of untaxed dividends received by households in and of themselves affect optimal-
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policy prescriptions.6 To make our results as comparable as possible to baseline models that

prescribe labor-tax-rate smoothing, in which there are zero economic profits/dividends, our main

analysis is conducted assuming τd = 1. The consequence of this assumption is that any predictions

made by our model regarding optimal labor-income taxation cannot be due to incentives to tax

profits, either in the long-run or the short-run. In robustness exercises presented in Appendix G,

we consider the opposite extreme of τd = 0 and show that our main results are unaffected.

The formal analysis of this problem is presented in Appendix A; here we simply describe intu-

itively the outcome of household optimization. One condition stemming from household optimiza-

tion is a standard consumption-savings condition,

u′(ct) = Et
[
βu′(ct+1)Rt+1

]
. (9)

As usual, this condition defines the stochastic discount factor, Ξt+1|t = βu′(ct+1)/u′(ct), with which

firms, in equilibrium, discount profit flows.

More important for the analysis of the pseudo-LFP model is the household’s pseudo-labor-force

participation condition

g′(1− uht − nht )− u′(ct)χ
kh(θt)

+
φt

kh(θt)
= u′(ct)(1− τnt )wt − g′(1− uht − nht )

− φt + β(1− ρx)Et

{
g′(1− uht+1 − nht+1)− u′(ct+1)χ

kh(θt+1)
+

φt+1

kh(θt+1)

}
, (10)

which is derived in detail in Appendix A. In (10), φt denotes the Lagrange multiplier associated

with the constraint (8). Suppose for a moment that φt = 0, ∀t, which means there is no exogenous

restriction on the participation rate. With φt = 0, condition (10) has a straightforward interpreta-

tion: at the optimum, the household each period sends a measure uht of family members to search

for jobs until the expected cost of search — the left-hand-side of (10) — is equated to the expected

benefit of search — the right-hand-side of (10). The expected cost of search is measured by the

marginal utility of leisure (each unit of search involves forgoing one unit of leisure) net of the direct

unemployment benefits obtained by searchers (converted into appropriate units using the marginal

utility of wealth). The expected benefit of search involves the marginal utility value of after-tax

wage income and the marginal disutility of work (the first two terms on the right-hand-side of (10)),

along with the asset value to the household of having an additional family member engaged in an

ongoing employment relationship (the term in expectations on the right-hand-side of (10)). This

asset value reflects the value to the household of sending one fewer family member out to look for

a job in the future.
6See, for example, Stiglitz and Dasgupta (1971), Jones, Manuelli, and Rossi (1997), Schmitt-Grohe and Uribe

(2004), Siu (2004), and Arseneau, Chugh, and Kurmann (2008) for examples in various contexts of this type of

taxation incentive.
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With φt = 0, condition (10) naturally has the interpretation of a free-entry condition into the

labor force. However, because in the pseudo-LFP model the size of the labor force is fixed at

l̄ < 1, the shadow value φt is non-zero. The shadow value φt measures the value to the household

of being able to freely adjust its participation rate; as such, it can be interpreted as the price of

participation. In equilibrium, this shadow price always adjusts so that condition (10) results in no

net entry into or exit from the labor force. Hence the terminology pseudo labor-force participation

condition to refer to (10). The dynamics of the shadow price φt are crucial in driving the dynamics

of the optimal labor-income tax rate in our analysis below.

We emphasize that in this version of the model, the participation rate nht + uht is indeed fixed

at l̄ every period. Hence, our pseudo-LFP formulation delivers the same household decisions as if

we had taken the more standard approach of specifying the household problem as one of choosing

only ct subject to the budget constraint (6), completely dropping constraints (7) and (8), setting

g(.) = 0, and setting, as is common in DSGE search models, nht + uht = l̄ = 1 ∀t. It is not the

underlying optimal choices of the household that we change by specifying the model this way, it is

only the way we cast the household problem that is different. The important gain our formulation

brings to the analysis is being able to measure the shadow value φt.

2.2.2 LFP Model

If households were instead free to choose the labor-force participation rate, the household’s decision

problem would be exactly as just described, except of course constraint (8) would not bind household

behavior. Household optimal choices would thus be characterized by the consumption-savings

optimality condition (9) and the “true” labor-force participation condition,

g′(1− uht − nht )− u′(ct)χ
kh(θt)

= u′(ct)(1−τnt )wt−g′(1−uht−nht )+β(1−ρx)Et

{
g′(1− uht+1 − nht+1)− u′(ct+1)χ

kh(θt+1)

}
,

(11)

which of course is simply condition (10) with φt = 0 ∀t.
Despite the search frictions and long-lived nature of employment relationships, the labor-force

participation condition (11) has the same interpretation as the labor-supply function in a simple

neoclassical labor market, as exists in standard Ramsey models used to study the optimality of tax-

smoothing. Indeed, we can recover a neoclassical labor market by setting ρx = 1 (all employment

“relationships” are one-period, spot, transactions), setting χ = 0 (because there is no notion

of “unemployment” hence of “unemployment benefits” in a neoclassical market), and fixing the

probability of “finding a job” to kh(θ) = 1 (because in a neoclassical market there of course is

no friction in “finding a job”). Imposing these assumptions and logic on (11), we obtain g′(.)
u′(.) =

(1− τnt )wt, which defines the labor-supply function in a neoclassical market.
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With matching frictions that create a meaningful separation of the labor force into those individ-

uals that are employed and those individuals that are unemployed, condition (11) defines transitions

of individuals from outside the labor force (leisure, in our model) into the pool of searching unem-

ployed, from where the aggregate matching process will pull some individuals into employment. In

the pseudo-LFP model, condition (10) plays the same conceptual role, but, because the participa-

tion rate is exogenous, what it pins down is the shadow price φt rather than the participation rate.

We thus speak of (11) and (10) as labor-force participation functions, rather than labor-supply

functions.

2.3 Wage Bargaining

Our baseline wage-determination mechanism is Nash bargaining. Specifically, we assume that wages

of all workers, whether newly-hired or not, are set in period-by-period Nash negotiations. This

assumption is common in search-based DSGE models, which is why we use it as our benchmark. A

detailed derivation of the wage-bargaining problem is presented in Appendix B for the pseudo-LFP

model and in Appendix C for the LFP model. In what follows, we simply present the bargaining

outcomes. However, none of our results is sensitive to wages being determined in an explicitly

bilateral fashion, as is the case with Nash bargaining. An alternative equilibrium concept for search

models, due to Moen (1997), is a competitive search equilibrium. In competitive search equilibrium,

wages are determined by decentralized forces and taken as given by all market participants. In

Appendix H, we show that competitive search delivers exactly the same wage outcome as period-

by-period Nash negotiations; hence its policy implications are identical.7

Assuming that η ∈ (0, 1) is a worker’s Nash bargaining power and 1−η a firm’s Nash bargaining

power, the Nash wage outcome in the pseudo-LFP model is given by

wt = ηzt + (1− η)
g′(1− uht − nht )
u′(ct)(1− τnt )

+ (1− η)
φt

u′(ct)(1− τnt )

− η
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

γ

kf (θt+1)

}
+ η(1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
. (12)

The bargained wage is a convex combination of the maximum value to a firm of entering into the

marginal employment relationship and the minimum value required for the household to send a

family member on the margin into a new employment relationship. The first line of (12) shows that

part of the period-t wage payment is a convex combination of the contemporaneous values to the

firm and the household, given, respectively, by the marginal product of a new employment match
7This equivalence is a DSGE extension of the equivalence shown by Moen (1997) between competitive search

outcomes and Nash bargaining under the well-known Hosios (1990) condition. As we discuss below, all of our

analysis of the bargaining economy satisfies the Hosios (1990) condition. See also Rogerson, Shimer, and Wright

(2005) for more on competitive search.
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zt and the after-tax MRS between consumption and participation. This after-tax MRS includes

the usual MRS g′(.)/u′(.) but also a second MRS-like term that reflects the price the household

would be willing to pay to be able to send additional members to search for jobs. This value is

reflected in the shadow price φt. The second line of (12) captures the forward-looking, relationship,

aspect of employment, whose value is also capitalized in the period-t wage payment. Apart from

the fact that expectations of future (period t + 1) tax rates appear in this forward-looking term,

this forward-looking aspect of wages is standard in search models that use Nash bargaining.

If instead participation rates adjust optimally over the business cycle, the Nash wage outcome

is given by

wt = ηzt + (1− η)
g′(1− uht − nht )
u′(ct)(1− τnt )

− η
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

γ

kf (θt+1)

}
+ η(1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
, (13)

which of course is simply (12) with φt = 0. The wage rules (12) and (13) thus differ only in whether

or not the shadow price of the participation restriction affects the bargained wage.

Finally, note that if labor taxes were constant at τnt = τ̄n ∀t, the wage outcome would be

wt = ηzt + (1− η) g
′(1−ut−nt)
u′(ct)(1−τ̄n) + (1− η) φt

u′(ct)(1−τ̄n) . In this case, the presence of the labor tax only

changes firms’ effective bargaining power in a static manner: τ̄n > 0 causes (1−η)/(1− τ̄n) > 1−η.

This kind of static bargaining wedge underpins the results in Arseneau and Chugh (2006); in our

model here, this purely static effect would be unable to offset cyclical variations in the shadow

prices of the participation restriction.

2.4 Government

The government finances an exogenous stream of spending {gt} by collecting labor income taxes,

dividend income taxes, and issuing real state-contingent debt. The period-t government budget

constraint is

τnt wtnt + τddt + bt = gt +Rtbt−1 + utχ. (14)

As noted when we presented the problem of the representative household, the fact that the gov-

ernment is able to issue fully state-contingent real debt means that none of our results is driven by

incompleteness of debt markets.

We include payment of unemployment benefits as a government activity for two reasons. First,

we think it empirically descriptive to view the government as providing such insurance. Second,

from a technical standpoint, including utχ in the government budget constraint means that χ does

not appear in the economy-wide resource constraint (presented below). In DSGE labor-search

models, it is common to include unemployment benefits in the household budget constraint but yet
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exclude them from the economy-wide resource constraint — see, for example, Krause and Lubik

(2007) or Faia (2008). In such models, the government budget constraint is a residual object due to

the presence of a lump-sum tax. In contrast, we rule out lump-sum taxes in order to conduct our

Ramsey analysis and thus cannot treat the government’s budget as residual. A Ramsey problem

requires specifying both the resource constraint and either the government or household budget

constraint as equilibrium objects, and this requires us to take a more precise stand on the source of

unemployment benefits than usually taken in the literature. To make our model setup as close as

possible to existing ones that study tax smoothing, we must assert that payment of unemployment

benefits is a transfer between the government and households.

2.5 Matching Technology

In equilibrium, nt = nft = nht , so we now refer to employment simply as nt. Matches between

unemployed individuals searching for jobs and firms searching to fill vacancies are formed according

to a constant-returns matching technology, m(ut, vt), where ut is the number of searching individuals

and vt is the number of posted vacancies. A fraction ρx of matches that produced in period t− 1

are exogenously destroyed before period t. All newly-formed matches produce at least once before

possibly dissolving. The evolution of aggregate employment is thus given by

nt = (1− ρx)nt−1 +m(ut, vt). (15)

2.6 Private-Sector Equilibrium

Whether considering the pseudo-LFP model or the LFP model, a symmetric private-sector equi-

librium is made up of endogenous processes {ct, wt, nt, vt, ut, Rt, bt}∞t=0 that satisfy the vacancy-

posting condition (4), the consumption-savings optimality condition (9), the government budget

constraint (14), the law of motion for the aggregate stock of employment (15), and the aggregate

resource constraint of the economy

ct + gt + γvt = ztnt. (16)

In (16), total costs of posting vacancies γvt are a resource cost for the economy. As discussed above,

unemployment benefits χ do not absorb any part of market output.

In the LFP model, the labor-force participation condition (11) and the period-by-period Nash

wage outcome (13) complete the set of conditions characterizing equilibrium. In the pseudo-LFP

model, the pseudo-LFP condition (10) and the Nash wage outcome (12) are instead part of the

set of private-sector equilibrium conditions, as is the exogenous restriction on the total size of the

labor force

nt + ut = l̄. (17)
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In the pseudo-LFP model, the endogenous process of shadow prices {φt}∞t=0 is also added to the list

of endogenous equilibrium processes. Finally, in either the pseudo-LFP model or the LFP model,

the private sector takes as given stochastic processes {zt, gt, τnt }∞t=0.

3 Search Efficiency in General Equilibrium

To understand the optimal tax results that emerge from the Ramsey problem, it is useful to first

present the conditions that characterize the constrained-efficient allocation that would be chosen by

a Social Planner that is restricted by the matching technology. Our focus is on developing a general-

equilibrium search-theoretic notion of efficiency along the consumption-leisure margin. Although

Hosios-efficiency is a necessary component of it, the efficiency condition we present below is different

from the well-known Hosios (1990) condition, which, because it describes outcomes only in the labor

market, is a partial-equilibrium efficiency condition. Our efficiency condition links outcomes across

markets. Furthermore, for our general-equilibrium notion of efficiency, the unemployment benefit

χ is irrelevant because, as discussed in Section 2.4, we assume that unemployment benefits do not

appear in the economy-wide resource frontier. As in a model with neoclassical markets, efficiency

only takes into consideration preferences and technologies; in our model, χ is a feature of neither

preferences nor technology, but rather simply a transfer between the government and households.

We assume throughout this discussion (and in the remainder of the paper) that the matching

technology of the economy is Cobb-Douglas, m(u, v) = uξuv1−ξu , with ξu ∈ (0, 1).

The Social Planner’s problem is described by

max
{ct,nt,ut,vt}

E0

∞∑
t=0

βt [u(ct) + g(1− ut − nt)] (18)

subject to the sequence of laws of motion for the employment stock (15) and resource constraints (16).

We do not view the Social Planner here as being restricted by the exogenous participation limit

nt + ut = l̄: we think it most natural and informative to consider a Social Planner that can freely

and efficiently allocate the total number of individuals in the economy between the labor force and

leisure. The full solution of this problem appears in Appendix D; here, we focus only on efficiency

along the consumption-leisure margin, as summarized by the following proposition.

Proposition 1. There exists a constrained-efficient (first-best) allocation in which efficiency along

the consumption-leisure margin is characterized by

g′(1− ut − nt)
u′(ct)

= γθt
ξu

1− ξu
. (19)

The formal proof of this proposition is detailed in Appendix D. Here, we simply provide intuition

by reconstructing condition (19) from the basic tenet that under consumption-leisure efficiency, the
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marginal rate of substitution (MRS) between consumption and leisure (outside the labor force) must

equal the corresponding marginal rate of transformation (MRT). That the left-hand-side of (19) is

the household’s MRS between consumption and leisure (outside the labor force) is obvious. The

right-hand-side of (19) must therefore have the interpretation of the MRT between consumption

and leisure.

Rather than take (19) as prima facie evidence that the right-hand-side must be the MRT, we can

describe the MRT conceptually from first principles as follows. Consider the economy’s resource

frontier (16) and the identity limiting the size of the population (household), nt = 1 − ut − %t,
where %t is the measure of individuals outside the labor force and hence enjoying leisure. There are

two ways the economy can transform a unit of leisure in period t into a unit of output, and hence

consumption, in period t. We trace the MRT in these two possible ways, and then connect them.

One way for the economy to achieve transformation of %t into output (and hence ct) is to first

trade off one unit of %t for vacancy postings vt; doing so yields 1/γ additional vacancy postings,

as (16) shows.8 This marginal addition to the flow of vacancy postings increases the number of

aggregate labor-market matches by (1/γ)∂m(ut, vt)/vt ≡ mvt/γ. Because labor-market matches

are long-lived, this marginal additional to the stock of period-t employment increases output by{
zt + (1− ρx)Et

[
zt+1 + (1− ρx)zt+2 + (1− ρx)2zt+3 + ...

]}
mvt/γ, which can be expressed com-

pactly as

MRT l→v =

[
zt + (1− ρx)Et

∞∑
s=0

zt+1+s

]
mvt

γ
. (20)

Alternatively, the economy can achieve transformation of %t into output by first trading off

one unit of %t for one unit of ut, which follows simply from the restriction nt + ut + %t = 1.

This marginal addition to the flow of searching unemployed individuals increases the number of

aggregate labor-market matches by ∂m(ut, vt)/∂ut ≡ mut. In turn, because labor-market matches

are long-lived, this marginal additional to the stock of period-t employment increases output by{
zt + (1− ρx)Et

[
zt+1 + (1− ρx)zt+2 + (1− ρx)2zt+3 + ...

]}
mut, which can be expressed compactly

as

MRT l→u =

[
zt + (1− ρx)Et

∞∑
s=0

zt+1+s

]
mut. (21)

For the economy to be on its production possibilities frontier, the two ways of transforming

leisure into output must be equivalent. This is satisfied if mut = mvt/γ. Because the matching

technology is Cobb-Douglas, we have mut/mvt = θtξu/(1 − ξu), where, as mentioned above, ξu ∈
(0, 1) is the elasticity of the matching technology with respect to ut and, recall, θt ≡ vt/ut. Using

8To see this, first note that ztnt = zt(1 − ut − %t) Furthermore, because the first time a newly-formed match

produces output is in the period of match-creation, omitted from this transformation is zt; zt only results from a

successful new match formed in t.
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this fact and the efficiency requirement that the two ways of transforming leisure into output must

be identical, we have

MRT = γθt
ξu

1− ξu
, (22)

which indeed is the right-hand-side of (19).

This conceptualization of the MRT between output (consumption) and leisure (outside the labor

force) is novel. It compactly describes the two technologies — the matching technology m(ut, vt)

and the production technology ztnt — that must operate for leisure to be transformed into output

and hence consumption. As search-theoretic frameworks become increasingly popular in general

equilibrium models, it is useful to be able to describe transformation frontiers and the MRTs implied

by them in general ways.9 Our notion of the MRT between consumption and leisure encompasses

that in a standard RBC model. As noted above, one can recover a standard neoclassical labor

market by assuming vacancy-creation costs are zero (γ = 0) (in which case, because they are

costless, the number of vacancies posted is infinite) and that all “employment relationships” last

only one period (ρx = 1). With Cobb-Douglas matching and an infinity of vacancy postings,

mvt = 0 and mut = 1. Imposing these assumptions and results in the preceding logic, we obtain

MRT = zt, obviously identical to that in a simple DSGE model featuring linear-in-labor production.

For the purposes of our Ramsey analysis, we show in the next section how three particular

features of our model’s decentralized economy — proportional labor taxation, the potential inability

by households to freely choose the labor-force participation rate, and, of a bit less importance for

our optimal-policy results, transfers of unemployment benefits from the government to households

— disrupt efficiency along the consumption-leisure margin.

4 Search-Based Labor Wedge

In any Ramsey problem, the basic tension is between raising revenue for the government via pro-

portional taxation and creating wedges between MRS/MRT pairs. We prove the following in

Appendix E:

Proposition 2. In the decentralized economy with Nash bargaining, proportional labor taxation,

and unemployment benefits, the equilibrium consumption-leisure margin can be expressed as

g′(1− ut − nt)
u′(ct)

− χ+
φt

u′(ct)
= (1− τnt )γθt

η

1− η
. (23)

Comparing (27) with the efficiency condition (19), it is clear that for the decentralized economy

with Nash bargaining to achieve efficiency, four conditions must be satisfied:
9In a general-equilibrium search-model of physical capital markets and in a search-theoretic model of monetary

exchange, Arseneau, Chugh, and Kurmann (2008) and Aruoba and Chugh (2008), respectively, develop analogous

search-based notions of intertemporal MRTs.
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• The decentralized economy must feature η = ξu, which corresponds to the Hosios (1990)

condition for search efficiency;

• The transfer of unemployment benefits from the government to households must be zero —

that is, χ = 0;

• Households must be able to optimally choose the labor-force participation rate in every period,

so that φt = 0 ∀t;

• Proportional labor income taxation must be zero — that is, τnt = 0 ∀t.

The first condition is the usual Hosios (1990) condition. The standard Hosios efficiency condition

is a partial-equilibrium statement because it focuses only on the labor market and takes as given

outcomes in goods markets and intertemporal markets. Our efficiency condition is a general-

equilibrium one, linking outcomes across markets. Thus, Hosios efficiency is a necessary, though

not sufficient, condition for our general-equilibrium notion of search efficiency. Also required is

zero-taxation of labor income and the absence of any transfers of unemployment benefits between

the government and households, because unemployment benefits are not part of the technology of

the economy. In a Ramsey taxation problem, τn = 0 of course cannot occur.10 Given this, most

important for our results is that for efficiency, households must be able to optimally choose the

participation rate nt + ut, which would render the shadow value φt = 0. If φt 6= 0, as occurs in the

pseudo-LFP model because the participation rate is exogenous, efficiency is disrupted.

In all of our analysis, we assume the Hosios (1990) condition is satisfied. Also, for simplicity,

assume for a moment that χ = 0.11 In this case, we can express (27) as

g′(1− ut − nt)
u′(ct)

= γθt
ξu

1− ξu

[
(1− τnt )− φt

u′(ct)
1− ξu
ξu

1
γθt

]
. (24)

The term in square brackets is the equilibrium wedge between the MRS between consumption and

leisure and the MRT between consumption and leisure, both which we defined in Section 3. Clearly,

if households can freely choose the labor-force participation rate every period — which implies the

shadow value φt = 0 ∀t — then the only wedge between MRS and MRT is the labor-income

tax. Although our model is not a neoclassical one, the basic optimal-taxation principle of (nearly)

equating deadweight losses across (intertemporal) markets (which is the essence of the widely-known

dynamic tax-smoothing result) leads to the natural conjecture that in this case tax-smoothing is

optimal.
10Unless the initial assets of the government were so large, either by assumption or via an effective initial lump-sum

levy on existing assets, that it never needed to impose labor taxes. As usual in the Ramsey literature, we rule out

these possibilities because they assume away the nature of the Ramsey problem.
11Our numerical work is conducted assuming two alternative values for χ: χ = 0 and a χ such that unemployment

transfers represent 40 percent of after-tax wages, which corresponds to Shimer’s (2005) calibration.

20



On the other hand, if households are restricted in their labor-force participation, we would

expect φt in general to be time-varying. In this case, fluctuations in the second term in brackets

would require offsetting fluctuations in τnt in order to keep the total deadweight loss (nearly)

constant over time. As χ rises above zero, the above modifies slightly to

g′(1− ut − nt)
u′(ct)

= γθt
ξu

1− ξu

[
(1− τnt )−

(
φt

u′(ct)
− χ

)
1− ξu
ξu

1
γθt

]
, (25)

but all of the logic still applies.

The term [
(1− τnt )−

(
φt

u′(ct)
− χ

)
1− ξu
ξu

1
γθt

]
(26)

is thus a novel notion of a labor wedge. In particular, it is a more general notion of a labor wedge

than that measured by Chari, Kehoe, and McGrattan (2007), Shimer (2008), Ohanian, Raffo, and

Rogerson (2008), and others. Future empirical work may be able to exploit this way of formulating

the labor wedge. Premised as it is on the idea that employment experiences are fundamentally

long-lived economic phenomena, rather than spot transactions, it offers a new way to understand

what Chari, Kehoe, and McGrattan (2007), Smets and Wouters (2007), Shimer (2008), and others

have identified as perhaps the most important area in macroeconomics where much deeper empirical

and theoretical understanding is required. We leave such empirical investigation to future work.

We mentioned above that our results are invariant to whether wages are determined through

Nash bargaining (at the Hosios condition) or through competitive search. We prove the following

in Appendix H:

Proposition 3. In the decentralized economy with competitive search, proportional labor taxation,

and unemployment benefits, the equilibrium consumption-leisure margin can be expressed as

g′(1− ut − nt)
u′(ct)

− χ+
φt

u′(ct)
= (1− τnt )γθt

ξu
1− ξu

. (27)

Hence, under competitive search, the labor wedge is identical to that presented in (26). Using

this notion of a labor wedge, we now turn to a quantitative assessment of our conjectures regarding

the optimality of tax smoothing. Specifically, we conjecture that in the pseudo-LFP model, tax-

smoothing will not be optimal, whereas in the LFP model tax-smoothing will be optimal. We first

present the Ramsey problem and then present results.

5 Ramsey Problem

A standard approach in Ramsey models based on neoclassical markets is to capture in a single,

present-value implementability constraint (PVIC) all equilibrium conditions of the economy apart

from the resource frontier. The PVIC is the key constraint in any Ramsey problem because it
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governs the welfare loss of using non-lump-sum taxes to finance government expenditures.12 The

PVIC is the household (equivalently, government) budget constraint expressed in intertemporal

form with all prices and policies substituted out using equilibrium conditions. In relatively sim-

ple models, the PVIC encodes all the equilibrium conditions that must be respected by Ramsey

allocations in addition to feasibility. In complicated environments that deviate substantially from

neoclassical markets, however, such as Schmitt-Grohe and Uribe (2005), Chugh (2006), and Arse-

neau and Chugh (2008), it is not always possible to construct such a single constraint, meaning

that, in principle, all of the equilibrium conditions must be imposed explicitly as constraints on the

Ramsey problem.

Our model presents an environment in which it is instructive to construct a PVIC but nonethe-

less leave some equilibrium conditions as separate constraints on the Ramsey planner. As we show

in Appendix F, we can construct a PVIC starting from the household flow budget constraint (6)

and using the household optimality conditions (9) and (10). The PVIC for our model is given by

E0

∞∑
t=0

βt
{
u′(ct)ct −

[
g′(1− ut − nt) + φt

]
(nt + uht )− u′(ct)(1− τpr)dt

}
= A0, (28)

where the time-zero assets of the private-sector are given by

A0 ≡ u′(c0)R0b−1 + (1− ρx)
[
g′0 − u′0χ
kh(θ0)

+
φ0

kh(θ0)

]
n−1. (29)

Several observations about this PVIC are in order. First, because employment is a state variable,

the household’s “ownership” of the initial stock of employment relationships, n−1, is part of its

time-zero assets, as shown in A0. Second, with free choice by households regarding labor-force

participation, we would have φt = 0 ∀t. Third, if labor markets were neoclassical, the sum nt + ut

would be interpreted as total labor in the economy, because a neoclassical environment of course

features no notion of unemployment. Fourth, as we mentioned above, a spot, neoclassical labor

market can be interpreted as featuring ρx = 1 because there is no long-lived aspect to labor-market

transactions. Fifth, with a constant-returns production technology in a neoclassical environment,

dt = 0 ∀t. Imposing the last four of these conditions in our model collapses the PVIC (28), as well

as the initial assets A0, to that in a standard Ramsey model based on neoclassical markets.13

However, unlike in a neoclassical model, the PVIC (28) does not capture all equilibrium con-

ditions of the decentralized economy. In particular, Ramsey allocations must also respect the

vacancy-posting condition (4), the Nash wage outcome ((13) for the LFP model or (12) for the

pseudo-LFP model), the law of motion for the aggregate employment stock (15), and, for the
12See, for example, Ljungqvist and Sargent (2004, p. 494) for more discussion.
13In particular, we would have E0

∑∞
t=0

βt [u′(ct)ct − g′(1− lt)lt] = u′(c0)R0b−1, where lt ≡ nt + ut. This PVIC

is identical to that in Chari and Kehoe (1999) for an environment without physical capital.
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pseudo-LFP model, the participation restriction (17). None of these restrictions is encoded in the

PVIC (28).

The Ramsey problem is thus to choose state-contingent processes

{ct, nt, ut, θt, wt, τnt , φt}∞t=0 to maximize (5) subject to the PVIC (28), the vacancy-posting con-

dition (4), the Nash wage outcome (either (13) or (12)), the law of motion for the aggregate em-

ployment stock (15), the aggregate resource constraint (16), and, if the pseudo-LFP environment

is under consideration, the restriction on the size of the labor force (17). If the LFP environment

is under consideration, the constraint (17) is dropped and the process of shadow values {φt} is

trivially set to zero. For computational convenience, we leave both the bargained real wage and

the labor tax rate as explicit Ramsey choice variables. We instead could have inverted the Nash

wage equation to eliminate one of them; in any case, however, we would still be left with the other

as an explicit Ramsey choice variable.

As is standard in Ramsey taxation problems, we assume full commitment. Thus, we emphasize

that none of our results is driven by the use of a discretionary policy. Finally, throughout our anal-

ysis, we assume that the first-order conditions of the Ramsey problem are necessary and sufficient

and that all allocations are interior.

6 Optimal Taxation

We characterize both the Ramsey steady state and dynamics numerically. Before presenting quan-

titative results, we describe our parameterization.

6.1 Parameterization and Solution Strategy

Parameters are set so that the long-run (deterministic) Ramsey steady state is identical in both

the LFP model and the pseudo-LFP model, which allows us to cleanly focus just on the differential

business-cycle responses of policy in the two cases. For utility, standard functional forms are used,

u(ct) = ln ct (30)

and

g(xt) =
κ

1− ι
x1−ι
t . (31)

We set ι = 1 to deliver a unit elasticity of labor-force participation. This value is a common

compromise in DSGE models because it lies between macro evidence that suggests a very high

elasticity of labor supply and micro evidence that suggests a very low elasticity of labor supply. We

emphasize, however, that ι measures the elasticity of labor-force participation in our environment,

not the elasticity of labor supply per se, due to the search frictions. We nonetheless set ι = 1
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to achieve some comparability with standard DSGE models that study optimal policy, but our

qualitative results are not driven by this choice.

The average labor-force participation rate in the U.S. during the period 1988-2007 was 66

percent, so we set l̄ = 0.66 as the measure of individuals in the representative household that are in

the labor force on average. Thus, in the pseudo-LFP model, the participation rate by construction

is always 66 percent even as the economy is hit by shocks. The parameter κ is then chosen so

that n + u = l̄ = 0.66 in the Ramsey steady-state of the LFP model. The resulting value is

κ = 0.51. Because this setting for κ makes l̄ = 0.66 endogenously optimal in the LFP model, it

has the consequence that in the pseudo-LFP model, in which we exogenously impose n+u = l̄, the

multiplier φ is exactly zero. It is thus this precise setting for κ that, in concert with the rest of the

calibration, makes the Ramsey steady-states identical in the two cases.

Well-understood since Hagedorn and Manovskii (2008) is that the (net-of-tax) social flow gain

from employment is important for dynamics in search models. In partial equilibrium search models,

the flow gain is governed by the difference between the marginal output of a match and a typically-

exogenous “outside benefit” that is interchangeably referred to as “unemployment benefits,” “the

value of leisure,” and “the value of home production.” Because the basic Pissarides (2000) model,

on which the analyses of Shimer (2005), Hall (2005), and Hagedorn and Manovskii (2008) are based,

is partial equilibrium, a precise stand on the nature of the outside benefit is unnecessary. In our

general-equilibrium model, we have well-defined notions of government-provided unemployment

benefits and the value of leisure.14 Measured in terms of goods, the former is χ and the latter is

g′(1−ut−nt)/u′(ct), the MRS between consumption and leisure. Of course, because we have three

groups of individuals — the employed, the searching unemployed, and those outside the labor force

— these outside benefits accrue to different groups. The unemployment benefit χ is received by a

searching unemployed individual, while the MRS g′(.)/u′(.) is received by an individual outside the

labor force.

We use as our baseline parameter setting χ = 0, so that only individuals outside the labor

force receive an outside benefit. This setting makes our results comparable to RBC models in

which it is only the value of leisure — being outside the labor force — that an individual obtains

by not working. Given the rest of our calibration, setting χ = 0 delivers an outside benefit of

nearly 90 percent of the after-tax wage rate. Specifically, in the Ramsey steady state (of either

the pseudo-LFP model or the LFP model), setting χ = 0 delivers g′(.)/u′(c)
(1−τn)w = 0.89, which is close

to Hagedorn and Manovskii’s (2008) preferred calibration of the outside benefit. We also conduct

experiments setting χ at a positive value in the Ramsey steady state such that χ
(1−τn)w = 0.40, the

value suggested by Shimer (2005). The important point is that because our environment explicitly
14We of course have not modeled home production; it may be interesting to extend our model to allow this feature.
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models both the value of leisure and the value of government-provided unemployment benefits, we

can accommodate both the Shimer (2005) view and/or the Hagedorn and Manovskii (2008) view.

Our main results do not hinge on adopting one or the other calibration,

The rest of our calibration is relatively standard in this class of models. We assume a quarterly

subjective discount factor β = 0.99. The matching function is Cobb-Douglas, m(u, v) = ψuξut v
1−ξu
t ,

with ξu = 0.4, in line with the evidence in Blanchard and Diamond (1989), and ψ chosen so

that the quarterly job-finding rate of a searching individual is 90 percent in the model with zero

government-provided unemployment benefits. The resulting value is ψ = 0.9. Given our Cobb-

Douglas matching specification, this also directly fixes the matching rate for an open vacancy at

the same value, kf (θ) = 0.90. The fixed cost γ of opening a vacancy is set so that posting costs

absorb 5 percent of total output in the Ramsey steady state with zero unemployment benefits; the

resulting value is γ = 1.15.

We fix the Nash bargaining weight at η = 0.40 so that it ostensibly satisfies the well-known

Hosios (1990) condition η = ξu for partial-equilibrium search efficiency. We use this as our main

guidepost, although we point out that because τn 6= 0 in the Ramsey equilibrium, the naive

calibration η = ξu actually does not deliver search efficiency. This point was discussed in Section 4.

Rather, the proper setting must also take into account the steady-state distortionary tax rate.15

Our main focus, though, is not on steady-state inefficiencies, but rather on cyclical policy responses.

Finally, the exogenous productivity and government spending shocks follow AR(1) processes in

logs,

ln zt = ρz ln zt−1 + εzt , (32)

ln gt = (1− ρg) ln ḡ + ρg ln gt−1 + εgt , (33)

where ḡ denotes the steady-state level of government spending, which we calibrate in our baseline

model with a 40-percent replacement rate to constitute 19 percent of steady-state output in the

Ramsey allocation. The resulting value is ḡ = 0.11, which we hold constant across all experi-

ments and all specifications of our model. The innovations εzt and εgt are distributed N(0, σ2
εz)

and N(0, σ2
εg), respectively, and are independent of each other. We choose parameters ρz = 0.95,

ρg = 0.97, σεz = 0.006, and σεg = 0.027, consistent with the RBC literature and Chari and Kehoe

(1999). Also regarding policy, we assume that the steady-state government debt-to-GDP ratio (at

an annual frequency) is 0.4, in line with evidence for the U.S. economy and with the calibrations

of Schmitt-Grohe and Uribe (2005), Chugh (2006), and Arseneau and Chugh (2008).
15Setting a particular η > ξu would restore partial-equilibrium search efficiency, but this value of η is endogenous

to the Ramsey policy. There is little justification for endogenizing the Nash parameter in this way, so we think this

is an uninteresting very special case.
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We use a nonlinear numerical solution algorithm to compute the Ramsey deterministic steady-

state equilibrium. To study dynamics, we perform a second-order approximation of the Ramsey

first-order conditions for time t > 0 in levels around the non-stochastic steady-state of these con-

ditions. We conduct a second-order approximation, rather than a more commonly-employed first-

order approximation, to guard against the computational inaccuracies of Ramsey-optimal policies

pointed out by Chari, Kehoe, and Christiano (1995, p. 383) in a baseline neoclassical model. They

demonstrated that inaccuracies of first-order approximations tend to be more severe for policy vari-

ables than for Ramsey allocation variables. Because our main focus is on the dynamics of optimal

policy — the labor tax rate — we mitigate this computational inaccuracy by approximating the

Ramsey equilibrium to second-order.16 Our numerical method is our own implementation of the

perturbation algorithm described by Schmitt-Grohe and Uribe (2004).

We use our second-order accurate decision rules to simulate time-paths of the Ramsey equi-

librium in the face of TFP and government spending realizations, the shocks to which we draw

according to the parameters of the laws of motion described above. As is common when focusing

on asymptotic policy dynamics, we assume that the initial state of the economy is the asymptotic

Ramsey steady state, thus adopting the timeless perspective. As we mentioned above, we assume

throughout, as is also typical in the literature, that the first-order conditions of the Ramsey problem

are necessary and sufficient and that Ramsey allocations are interior. We conduct 1000 simulations,

each 200 periods long. For each simulation, we then compute first and second moments and report

the medians of these moments across the 1000 simulations.

6.2 Main Results

The main results are presented in Table 1. The top panel presents summary statistics from simula-

tions from the pseudo-LFP model, and the bottom panel presents the same information for the LFP

model. As discussed above, the two models are calibrated such that the long-run Ramsey equilibria

are identical. This allows for sharp focus on the cyclical properties of optimal policy. Accordingly,

the mean realizations for the simulated policy and allocation variables in the first column of Table 1

are identical in the top and bottom panels, with differences only due to numerical differences in

approximation.

As comparison of the first row of each panel of the table shows, the optimal labor-income tax

rate is much more volatile — over an order of magnitude more volatile — in the pseudo-LFP model

than in the LFP model. If there is no adjustment at the participation margin — as is the case in
16However, the results using a first-order approximation were extremely similar to the ones reported here. Moreover,

the deterministic steady state, which is the point around which we conduct the second-order approximation, turned

out to not be very far from the stochastic steady state to which the equilibrium converged using the second-order

accurate decision rules.
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Variable Mean Std. Dev. Auto corr. Corr(x, Y ) Corr(x, Z) Corr(x,G)

Pseudo-labor-force participation

τn 0.2055 0.0183 0.9136 -0.1818 -0.1871 0.9804

gdp 0.5940 0.0092 0.9047 1 0.9941 -0.0407

c 0.4078 0.0062 0.9196 0.7204 0.7257 -0.6597

N 0.5936 0.0006 0.9632 0.8024 0.7842 0.0257

u 0.0661 0.0006 0.9631 -0.8912 -0.8760 -0.0313

N + u 0.6600 0 — — — —

w 0.8606 0.0143 0.9077 0.9885 0.9882 -0.1052

θ 0.9974 0.0193 0.9046 0.9143 0.9022 0.0361

v 0.0659 0.0007 0.8125 0.8920 0.8835 0.0399

φ -0.0040 0.0393 0.9142 0.1826 0.1880 -0.9795

φ/u′(c) -0.0013 0.0160 0.9142 0.1829 0.1884 -0.9797

Full labor-force participation

τn 0.2041 0.0014 0.7638 0.1851 -0.0063 0.6292

gdp 0.5937 0.0092 0.9001 1 0.9383 0.2215

c 0.4082 0.0048 0.8603 0.6091 0.8007 -0.5246

N 0.5932 0.0027 0.9456 0.2970 0.0329 0.8617

u 0.0666 0.0016 0.7082 -0.4540 -0.5659 0.4761

N + u 0.6599 0.0036 0.8985 0.0710 -0.1932 0.9679

w 0.8613 0.0142 0.8927 0.9179 0.9818 -0.1039

θ 0.9823 0.0340 0.8874 0.7268 0.7495 -0.1128

v 0.0653 0.0014 0.6662 0.5938 0.5260 0.2773

φ 0 0 — — — —

Table 1: Ramsey dynamics with zero government-provided unemployment benefits.

the vast majority of the existing literature studying policy in DSGE labor search models — the

standard deviation of the optimal tax rate is near 2 percent. In contrast, if participation adjusts

cyclically, the standard deviation of the tax rate is around 0.1 percent. This latter figure fits right

into the benchmark results of Chari and Kehoe (1999), Werning (2007), and Scott (2007) regarding

the optimal degree of variability in tax rates in neoclassical markets, even though our environment

always features matching frictions. Thus, whether or not cyclical adjustment occurs along the

participation margin can matter a great deal for optimal policy prescriptions.

The bottom two rows of the top panel of Table 1 quantify the cyclical fluctuations in the value

of the binding participation margin in the pseudo-LFP model: the next-to-last row displays the

dynamics of the multiplier φt itself, while the last row converts this into goods by deflating by

u′(ct). It is the goods value of the binding participation restriction, and in particular its fluctuating

nature, that has direct interpretation. Indeed, recall from (12) that it is φt/u′(ct) that affects the

bargained wage and that enters the wedge condition (26).
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The shadow value of the binding participation constraint clearly fluctuates substantially. It is

this variation in the shadow value of participation that gives rise to a role for cyclical variation

in the labor tax rate. Referring back to the labor wedge (26) that we developed, any variation in

τnt is designed to offset variations in the second term of (26), so that the overall labor wedge is

smoothed over time. At its core, smoothing of labor wedges over time is what the basic Ramsey

prescription of tax-smoothing is designed to achieve.17 In a simple neoclassical model of fiscal

policy, it is typically only the labor tax that enters this wedge — wedge-smoothing thus implies tax

smoothing in neoclassical Ramsey environments. Werning (2007) and Scott (2007) recently shed

new analytical insight on this long-established result. In contrast, here, the binding participation

restriction endogenously causes shifts in the labor wedge. To offset this time-variation in labor

wedges, the Ramsey government moves tax rates in offsetting ways. To see this last point clearly,

notice that the contemporaneous correlations between τnt and GDP, the TFP realization, and

the government spending realization are all exactly opposite to the contemporaneous correlations

between φt/u
′(ct) and these aggregates. For example, the correlation between the tax rate and

GDP is -0.193, while the correlation between the shadow value φt/u′(ct) and GDP is 0.193.

As further evidence that the variations in the labor tax rate are designed to offset movements in

the shadow value of the participation constraint, Figure 1 displays the response of the Ramsey policy

to one-standard-deviation positive impulses to government spending and TFP. The countercyclical

nature of the optimal tax rate to the shadow value is obvious; indeed, the correlation between the

two is virtually -1 in the face of either a shock to government spending or to TFP. Corroborating

this evidence is that, in our simulated economies, the median contemporaneous correlation between

τnt and φt/u
′(ct) was -0.998.

The intuition behind the tax volatility result is simple. Suppose a shock hits the economy that,

if there were no restriction on participation, would cause the participation rate to rise. Because of

institutional or other restrictions, however, participation cannot respond, which causes the shadow

value of the constraint to rise instead. This lowers the value of leisure relative to the value of

participating in the formal labor market. From an efficiency standpoint, this misalignment of values

is suboptimal. The Ramsey government can realign these values by raising the reward for work

(the after-tax wage) by lowering the tax rate. In contrast, if there is no institutional impediment

to adjusting participation, the shadow value is of course always zero and the optimality of tax-

smoothing re-emerges.

17Indeed, tax-smoothing in simple Ramsey models is nothing more than an intertemporal application of the basic

optimal-policy prescription to, under certain preference specifications, smooth tax rates across goods in a static

setting.
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Figure 1: Impulse responses of optimal policy to one-standard-deviation positive shock to government

spending (left panels) and TFP (right panels).
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Figure 2: U.S. labor force participation rate, 1959:1 - 2006:2. Blue line is actual participation rate, red

line is HP filter trend (obtained with smoothing parameter 1600). The standard deviation of the cyclical

component of the participation rate is 0.0032.

We mentioned at the outset the conventional empirical view, as recently described by Elsby,

Michaels, and Solon (2008), that cyclical variation in participation is “...miniscule relative to the

cyclical variation in unemployment” (Elsby et al). For our LFP model, the lower panel of Table 1

shows that the participation rate fluctuates very little. Across our simulations, the median standard

deviation of N + u is 0.0035 around a mean of 0.66. Thus, over the business cycle and given that

the optimal fiscal policy is in place, two-thirds of the observations on the participation rate lie

between 65.65 percent and 66.35 percent under the optimal policy. Although our model is not

calibrated to match the observed cyclical volatility of the labor-force participation rate, it matches

extremely well with the data. Shown in Figure 2 is quarterly participation rates (as a fraction of

the entire population) in the U.S. between 1959:1 and 2006:2 along with its HP filter (smoothing

parameter 1600) trend. The standard deviation of the cyclical component of the participation rate

is 0.0032, very close to the volatility implied by our model. Our results are thus not driven by

counterfactually large cyclical fluctuations in participation.

Nevertheless, in our model, very small fluctuations in participation lead to a very different policy

prescription than if there is literally zero adjustment at the participation margin. Our results thus

offer a cautionary note for policy analysis in search-based models: on empirical grounds, modeling
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Variable Mean Std. Dev. Auto corr. Corr(x, Y ) Corr(x, Z) Corr(x,G)

Pseudo-labor-force-participation

τn 0.2520 0.0601 0.9407 -0.6559 -0.4033 0.8162

gdp 0.5735 0.0122 0.9291 1.0000 0.9403 -0.3340

c 0.4035 0.0066 0.9565 0.8961 0.7066 -0.6701

N 0.5730 0.0050 0.9629 0.7762 0.5548 -0.6829

u 0.0867 0.0050 0.9630 -0.8323 -0.6137 0.7472

N + u 0.6600 0 — — —

w 0.8871 0.0129 0.8127 0.5472 0.7297 0.4262

θ 0.5976 0.0716 0.8911 0.8267 0.6288 -0.7599

v 0.0512 0.0034 0.7888 0.7568 0.5924 -0.7139

φ 0.0099 0.1829 0.9506 0.7083 0.4607 -0.8525

φ/u′(c) 0.0060 0.0738 0.9506 0.7084 0.4609 -0.8522

Full labor-force-participation

τn 0.2541 0.0086 -0.6462 0.0713 0.2069 -0.0611

gdp 0.5735 0.0083 0.8730 1.0000 0.8802 0.3615

c 0.4038 0.0046 0.8541 0.4923 0.8020 -0.5670

N 0.5731 0.0038 0.9407 0.1906 -0.2192 0.8507

u 0.0869 0.0027 0.1992 -0.3445 -0.5610 0.3649

N + u 0.6600 0.0056 0.6609 -0.0333 -0.4295 0.7974

w 0.8873 0.0166 0.4639 0.7856 0.8731 -0.1212

θ 0.5953 0.0158 0.6522 0.7667 0.9061 -0.0573

v 0.0517 0.0010 0.3384 0.5158 0.3462 0.5285

φ 0 0 — — — —

Table 2: Ramsey dynamics with government-provided unemployment benefits 40 percent of after-tax wages.
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participation as completely exogenous over the cycle may seem justified. However, even very small

equilibrium adjustments can qualitatively affect the policy insights a model delivers. Given the

simple nested formulations of the seemingly very different models we have developed, it seems at

least worthwhile to check sensitivity of results along this dimension.

As Table 1 shows and as we have been discussing, tax volatility arises in the environment in

which the participation rate is inelastic. A natural conjecture is that if labor-supply were inelastic

in a neoclassical labor market and, as in our model, labor were the only input to production,

tax-rate volatility would be optimal there, as well. We agree with this conjecture. However, in

that environment, the labor-income tax would be akin to a lump-sum tax because the equilibrium

quantity of labor is inelastic, not simply households’ supply of labor. Such an environment renders

Ramsey analysis of “optimal taxation” moot because clearly there would be no distortions from any

time-pattern of tax rates. In contrast, in a search and matching environment that acknowledges

there are three labor-market states, not just two, even if participation is inelastic, the equilibrium

quantity of labor is elastic and is governed by search and matching. Thus, while it is true that an

RBC model with inelastic labor would deliver a policy prescription of tax-rate volatility, it would

do so for somewhat trivial reasons.

Finally, Table 2 shows that the main results remain intact if the government provides unem-

ployment benefits. For the experiments presented in Table 2, we choose, as we described above, a

χ so that in the deterministic Ramsey steady state, χ
(1−τn)w = 0.4, which is consistent with the cal-

ibration of Shimer (2005). All other parameter settings are held constant at the values underlying

the results in Table 2. Because unemployment benefits are government-financed, the mean labor

tax rate must rise in both the pseudo-LFP model and the LFP model; as the table shows, the mean

tax rate rises to about 25 percent, compared to about 20 percent if there are zero unemployment

benefits as in Table 1. Unlike the case with zero unemployment benefits, the contemporaneous

correlations between τnt and (gdpt, gt, zt) is not exactly the mirror image of the correlations be-

tween φt/u′(ct) and these aggregates. Nonetheless, the correlation between τnt and φt/u′(ct) is still

highly negative: averaging over our simulated economies, the median contemporaneous correlation

between them was -0.96. Hence, as the wedge condition (26) shows, χ does open up a gap between

the shadow value and the tax rate, but it is still clearly fluctuations in the shadow value that

tax-rate volatility is designed to offset. And, once again, if participation can adjust cyclically, the

optimality of tax-rate smoothing is restored, as the first row of the lower panel of Table 2 shows.
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Figure 3: In economy with lump-sum taxes, impulse responses of optimal policy to one-standard-deviation

positive shock to government spending (left panels) and TFP (right panels).

6.3 Efficiency Considerations and Tax Volatility

We have explained our results regarding optimal tax-rate dynamics in terms of the labor wedge

defined by (26). To demonstrate that the lack of tax-smoothing in our pseudo-LFP model is

indeed fundamentally driven by fluctuations in this wedge and not by some interactions between

search frictions and the Ramsey financing problem itself, we can introduce a lump-sum tax into

our environment. The presence of a lump-sum tax makes identically zero the Ramsey multiplier on

the PVIC (28), which thus means that public-finance considerations are absent.18 Performing our

experiments in the presence of lump-sum taxes therefore isolates the efficiency concerns underlying

the dynamics of tax rates.
18See again Ljungqvist and Sargent (2004, p. 494) for more discussion on this.
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Figure 3 reports the results of the same impulse experiments underlying Figure 1, except with

a lump-sum tax assumed available. All parameters are held constant at their benchmark values,

and we assume χ = 0 for this demonstration. With lump-sum taxation available, there is no reason

to use labor-income taxation, hence in the long-run τn = 0, as the upper row of Figure 3 shows.

Following a shock to either government spending or TFP, however, the labor tax rate deviates

from zero. Although the effect is more dramatic for a government spending impulse than for a

TFP impulse, comparison of Figure 3 with Figure 1 shows that the patterns of responses are the

same, and, in particular, movements in the tax rate are designed to stabilize movements in the

overall wedge. Furthermore, in simulation exercises we conducted with a lump-sum tax assumed

available, we found that the standard deviation of the labor-income tax rate was 2.27 percent,

which is comparable to the 1.83 percentage point standard deviation reported in the first row of

Table 1 for the full Ramsey financing problem.

We conclude from these experiments that it is indeed movements in the search labor wedge (26)

that tax-rate fluctuations are designed to mitigate when the labor-force participation rate is fixed

over the business cycle. This cyclical efficiency concern is not blurred by consideration of the full

Ramsey public-financing problem.

6.4 Alternative Policy Instruments

Finally, one may reasonably ask whether the presence of other policy instruments might re-

instate the optimality of tax-smoothing even if participation is exogenous. Simply inspecting the

wedge (26), it is clear that if the unemployment benefit χ were time-varying and always equal to

φt/u
′(ct), the second part of this wedge condition would drop out, leaving only the labor income

tax rate. Smoothing τnt then follows from standard Ramsey principles.

Alternatively, suppose the government had access to a time-varying proportional vacancy sub-

sidy, which lowers for firms the cost of searching workers. Denoting by τ st > 0 the proportional

vacancy-posting subsidy rate, this subsidy would make the cost faced by the firm for each vacancy

created (1− τ st )γ < γ. It is straightforward to show that in all equilibrium conditions (apart from

the aggregate resource constraint) where γ appears, (1− τ st )γ would instead appear. In particular,

the wedge presented in (26) would modify to[
(1− τnt )−

(
φt

u′(ct)
− χt

)
1− ξu
ξu

1
(1− τ st )γθt

]
, (34)

in which we have also, based on the immediately preceding discussion, also supposed that the

unemployment benefit χ can be time-varying.

With all three instruments τnt , χt, and τ st appearing in the single wedge (34), there is an

infinite number of potential decentralizations for any given allocation. To achieve a given target
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for the overall wedge, one decentralization involves fixing both χ and τ s at time-invariant rates

and allowing fluctuations in τnt to do the job. This is the decentralization we pursued in our

main analysis. Another decentralization is to keep τnt constant (“tax-smoothing”) and allow some

appropriate combination of fluctuations in χt and τ st to stabilize the overall wedge.

If one were to prefer the latter way of “restoring the optimality of tax-smoothing,” it must

be driven by considerations outside the scope of the model. This is because, within the scope

of our model, our baseline specification of policy instruments was already complete, in the sense

understood in the literature on optimal taxation.19 When a tax system is complete, introducing

additional policy instruments does not at all change the Ramsey allocation problem; instead, as in

the example just described, all it does is create indeterminacies about which instruments should be

used in which configurations to support the Ramsey allocation. The model does not provide any

basis for preferring one decentralization over another, which is a well-understood point in Ramsey

models of optimal taxation. Hence, loading redundant policy instruments onto the same, single,

wedge (34) is an uninteresting way of restoring labor-tax-smoothing.

7 Conclusion

We have shown that the optimality of smoothing labor-income tax rates over time, a basic result in

the theory of optimal fiscal policy, does not carry over to the most common DSGE specification of a

search and matching model of labor markets. The crucial missing margin of adjustment in much of

the existing work is household optimization with respect to labor-market outcomes. Such a margin

is at the core of any standard macro model, but absent in a baseline search-based macro model.

By formulating the standard exogenous-participation search model in way that makes it seem as

if a participation margin does exist, we have shown that cyclical fluctuations in the shadow value

associated with the participation restriction disrupt labor-market efficiency. Purposeful tax-rate

volatility is then optimal because it offsets shifts in labor-market wedges. In contrast, if there is

no impediment to adjusting participation at business-cycle frequencies, tax-smoothing is optimal

despite the presence of search and matching frictions.

Clearly, more empirical resolution is needed about the cyclical nature of labor-force participa-

tion. There are many types of individuals for whom participation is difficult to adjust quickly: a

person engaged in child-rearing or education may not be able to make himself available for work

within the few quarters or few years over which business-cycle shocks have their impact. On

the other hand, there are many types of individuals for whom participation may be easy to ad-
19As Chari and Kehoe (1999, p. 1679-1680) define it, an incomplete tax system is in place if, for at least one pair of

goods in the economy, the government has no policy instrument that drives a wedge between its MRS and its MRT.

If this is not the case, then the tax system is instead said to be complete.
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just quickly: a person engaged in short-term schooling or short-term (re-)training may be able to

(re-)join the labor force within weeks or months. With participation endogenous, our quantitative

results show that it may nonetheless fluctuate very little, which in turn may lead one to favor the

exogeneity assumption on the basis of simplicity. But optimal-policy prescriptions are dramatically

different under an exogenous-participation view than under an endogenous-participation view even

though equilibrium fluctuations in this margin may be small. In the end, though, which view of

cyclical fluctuations in participation is more relevant is an open question. Our work raises an im-

portant cautionary note for typical formulations of DSGE labor-search models, especially as they

are increasingly applied to study policy questions.

To understand our optimal-policy results, we have developed a notion of general-equilibrium

efficiency in search-based models. This view of efficiency encompasses the Hosios (1990) condition

for search efficiency, but is especially intended for general-equilibrium analysis. As search-based

quantitative general-equilibrium models become increasingly popular for studying policy questions,

the general notion of efficiency developed here may be useful for gaining insights into existing

and newly-emerging results. We have in mind in particular the growing body of policy analysis

conducted in search-based New Keynesian monetary models.

36



A Deriving the Pseudo-Labor-Force Participation Condition

The household optimization problem is to choose state-contingent processes for {ct}, {bt}, {uht },
and {nht } to maximize

maxE0

∞∑
t=0

βt
[
u(ct) + g(1− uht − nht )

]
(35)

subject to sequences of flow budget constraints

ct + bt = (1− τnt )wtnht + uht χ+Rtbt−1 + dt, (36)

perceived laws of motion for the employment stock

nht = (1− ρx)nht−1 + uht k
h(θt), (37)

and the restriction that the size of the labor force is fixed

nht + uht = l̄. (38)

Denote by {λt}, {µht }, and {φt} the sequences of Lagrange multipliers on the sequences of these

constraints, respectively. The first-order conditions with respect to ct, bt, uht and nht ; they are,

respectively,

u′(ct)− λt = 0, (39)

−λt + βRtEtλt+1 = 0, (40)

−g′(1− uht − nht ) + λtχ+ µht k
h(θt)− φt = 0, (41)

and

−µht + λt(1− τnt )wt − g′(1− uht − nht )− φt + β(1− ρx)Etµht+1 = 0. (42)

Conditions (39) and (40) clearly yield a standard bond-Euler equation, which is expression (9) in

the main text.

To obtain the pseudo-labor-force-participation (LFP) condition, start with (41) and (42). Solv-

ing (41) for µht ,

µht =
g′(1− uht − nht )− u′(ct)χ

kh(θt)
+

φt
kh(θt)

, (43)

in which we have used the result λt = u′(ct), which follows from (39). Using this expression and

its period t+ 1 analog in (42), we have

g′(1− uht − nht )− u′(ct)χ
kh(θt)

+
φt

kh(θt)
= u′(ct)(1− τnt )wt − g′(1− uht − nht )

− φt + β(1− ρx)Et

{
g′(1− uht+1 − nht+1)− u′(ct+1)χ

kh(θt+1)
+

φt+1

kh(θt+1)

}
, (44)

which is the pseudo-LFP condition presented in condition (10) in the main text.
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B Nash Bargaining in Model with Pseudo-Labor-Force Participa-

tion Margin

Starting with the solution to the household problem obtained in Appendix A, we next use the

envelope conditions of the household’s optimization problem to define the value equations relevant

for the Nash bargaining problem. Note that because we refrain from making the substitution

nht +uht = l̄, both nht−1 and uht−1 are state variables in the formulation of the household optimization

problem offered in Appendix A.

Let V(nht−1, u
h
t−1) denote the value function associated with the solution to this problem. The

envelope conditions are thus Vu(nht−1, u
h
t−1) = 0 and

Vn(nht−1, u
h
t−1) = (1− ρx)µht . (45)

Recognizing the relationship at the optimal solution between µht and allocations defined by (43),

and substituting Vn(nht−1, u
h
t−1) into (44), we can write

Vn(nht−1, u
h
t−1)

1− ρx
= u′(ct)(1− τnt )wt − g′(1− uht − nht )− φt + (1− ρx)Et

{
βVn(nht , u

h
t )

1− ρx

}
. (46)

To express things in terms of goods, recognize that λt = u′(ct) at the optimum and define Wt as

Wt ≡
Vn(nht−1, u

h
t−1)

λt(1− ρx)
= (1− τnt )wt −

g′(1− uht − nht )
λt

− φt
λt

+ (1− ρx)Et

{
βVn(nht , u

h
t )

λt(1− ρx)

}

= (1− τnt )wt −
g′(1− uht − nht )

λt
− φt
λt

+ (1− ρx)Et
{

Ξt+1|tWt+1

}
.(47)

In the second line, we have made use of the definition of the one-period-ahead stochastic discount

factor, Ξt+1|t ≡ βλt+1/λt. We have Ut ≡ Vu(nht−1, u
h
t−1)/λt = 0. From the point of view of the

household, it is the surplus Wt −Ut over which it is bargaining.

On the firm side, we have the surplus to a firm of the marginal worker is

Jt = zt − wt + (1− ρx)Et
{

Ξt+1|tJt+1

}
; (48)

for use below, note that Jt = γ
kf (θt)

.

In generalized Nash bargaining, the parties choose wt to maximize

(Wt −Ut)
η Jt

1−η. (49)

The solution to this problem gives the time-t generalized Nash sharing rule, Wt
1−τn

t
= η

1−ηJt.

Now proceed to derive an explicit expression for wt. Inserting the definition of Wt into the

Nash sharing rule,

−g
′(1− uht − nht )
λt(1− τnt )

+ wt −
φt

λt(1− τnt )
+

1− ρx

1− τnt
Et
{

Ξt+1|tWt+1

}
=

η

1− η
Jt, (50)
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and then using the time-t+ 1 Nash sharing rule,

−g
′(1− uht − nht )
λt(1− τnt )

+ wt −
φt

λt(1− τnt )
+

1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

η

1− η
Jt+1

}
=

η

1− η
Jt. (51)

Make the substitution Jt = γ
kf (θt)

, and similarly for Jt+1, which yields

−g
′(1− uht − nht )
λt(1− τnt )

+ wt −
φt

λt(1− τnt )
+

1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

η

1− η
γ

kf (θt+1)

}
=

η

1− η
γ

kf (θt)
.

(52)

Next, use the job-creation condition γ
kf (θt)

= zt −wt + (1− ρx)Et
{

Ξt+1|t
γ

kf (θt+1)

}
to substitute on

the right-hand-side, which gives

−
g′(1− uh

t − nh
t )

λt(1− τn
t )

+wt−
φt

λt(1− τn
t )

+
1− ρx

1− τn
t

Et

{
Ξt+1|t(1− τn

t+1)
η

1− η
γ

kf (θt+1)

}
=

η

1− η

[
zt − wt + (1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}]
.

(53)

Grouping terms involving wt,

wt

[
1 +

η

1− η

]
=

η

1− η
zt +

g′(1− uht − nht )
λt(1− τnt )

+
φt

λt(1− τnt )

− η

1− η
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

γ

kf (θt+1)

}
+

η

1− η
(1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
. (54)

Finally, multiplying by 1− η gives the wage equation

wt = ηzt + (1− η)
g′(1− uht − nht )
λt(1− τnt )

+ (1− η)
φt

λt(1− τnt )

− η
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

γ

kf (θt+1)

}
+ η(1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
, (55)

which is expression (12) in the main text.

If tax rates never fluctuated, so that τnt+1 = τnt = τn, the last two terms would cancel, leaving

wt = ηzt + (1− η)
g′(1− uht − nht )
λt(1− τn)

+ (1− η)
φt

λt(1− τn)
. (56)

The last term reflects the value to the household of not being able to resize the labor force, and

this value is shared between firms and households via bargaining.

39



C Nash Bargaining in Model with Labor-Force Participation Mar-

gin

With endogenous labor-force-participation and instantaneous hiring, the household problem is as

described above, except the perceived law of motion is now

nht = (1− ρx)nht−1 + kh(θt)uht . (57)

We again define the bargaining-relevant value equations using the household-level envelope con-

dition. Define V(nht−1) as the value function associated with the optimal plan that solves the

household problem. The envelope condition is thus V′(nht−1) = (1 − ρx)µht , where µht is the La-

grange multiplier associated with the time-t perceived law of motion. Next, use the household’s

optimality condition on nt, which is µht = λt(1 − τnt )wt − g′(1 − uht − nht ) + β(1 − ρx)Etµht+1, to

express the envelope condition as

V′(nht−1)
1− ρx

= λt(1− τnt )wt − g′(1− uht − nht ) + β(1− ρx)Et

{
V′(nht )
1− ρx

}
, (58)

in which we have normalized by 1− ρx due to the timing of events.

To express things in units of goods, define Wt as

Wt ≡
V′(nht−1)
λt(1− ρx)

= −g
′(1− uht − nht )

λt
+ (1− τnt )wt + (1− ρx)Et

{
βV′(nht−1)
λt(1− ρx)

}

= −g
′(1− uht − nht )

λt
+ (1− τnt )wt + (1− ρx)Et

{
Ξt+1|tWt+1

}
. (59)

As before, the second line makes use of the definition of the one-period-ahead stochastic discount

factor, Ξt+1|t ≡ βλt+1/λt.

On the firm side, we still have

Jt = zt − wt + (1− ρx)Et
{

Ξt+1|tJt+1

}
; (60)

and, for use below, note that Jt = γ
kf (θt)

.

As above, we have Ut ≡
(
∂Vt/∂u

h
t

)
/λt = 0; and, as above, the time-t generalized Nash sharing

rule is Wt
1−τn

t
= η

1−ηJt.

Now proceed to derive an explicit expression for wt. Inserting the definition of Wt into the

Nash sharing rule,

−g
′(1− uht − nht )
λt(1− τnt )

+ wt +
1− ρx

1− τnt
Et
{

Ξt+1|tWt+1

}
=

η

1− η
Jt, (61)

and then using the time-t+ 1 Nash sharing rule,

−g
′(1− uht − nht )
λt(1− τnt )

+ wt +
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

η

1− η
Jt+1

}
=

η

1− η
Jt. (62)
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Make the substitution Jt = γ
kf (θt)

, and similarly for Jt+1, which yields

−g
′(1− uht − nht )
λt(1− τnt )

+ wt +
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

η

1− η
γ

kf (θt+1)

}
=

η

1− η
γ

kf (θt)
. (63)

Next, use the job-creation condition γ
kf (θt)

= zt −wt + (1− ρx)Et
{

Ξt+1|t
γ

kf (θt+1)

}
to substitute on

the right-hand-side, which gives

−
g′(1− uh

t − nh
t )

λt(1− τn
t )

+ wt +
1− ρx

1− τn
t

Et

{
Ξt+1|t(1− τn

t+1)
η

1− η
γ

kf (θt+1)

}
=

η

1− η

[
zt − wt + (1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}]
.

(64)

Grouping terms involving wt,

wt

[
1 +

η

1− η

]
=

η

1− η
zt +

g′(1− uht − nht )
λt(1− τnt )

− η

1− η
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

γ

kf (θt+1)

}
+

η

1− η
(1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
. (65)

Finally, multiplying by 1− η gives the wage equation

wt = ηzt + (1− η)
g′(1− uht − nht )
λt(1− τnt )

− η
1− ρx

1− τnt
Et

{
Ξt+1|t(1− τnt+1)

γ

kf (θt+1)

}
+ η(1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
, (66)

which is expression (13) in the main text. As in the case of model with a one-period delay before

new matches become productive, if τnt+1 = τnt = τn, the last two terms cancel with each other and

the wage collapses to a simple static split,

wt = ηzt + (1− η)
g′(1− uht − nht )
λt(1− τn)

(67)
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D Social Planner Problem

Here we prove the efficiency condition presented in Proposition 1. A Social Planner in our economy

optimally allocates the measure one of individuals in the representative household to leisure and

the labor force. Denote by %t the measure of individuals that enjoy leisure in period t. That is,

%t = 1− ut − nt is the measure of individuals outside the labor force, neither working nor actively

in the pool of searching unemployed. Our main interest in the social-planning problem is on

developing a search-theoretic notion of static efficiency between leisure (search) and consumption.

To emphasize static variables, and move the focus away from the endogenously-evolving stock of

employment nt, we cast the social planning problem as one of choosing ut and %t, rather than as

one of choosing nt. Of course, a choice of ut and %t implies a choice of nt.

The social-planning problem is thus

maxE0

∞∑
t=0

βt [u(ct) + g(%t)] (68)

subject to the sequence of resource constraints

ct + gt + γvt = zt(1− %t − ut) (69)

and laws of motion for the employment stock

(1− %t − ut) = (1− ρx)(1− %t−1 − ut−1) +m(ut, vt). (70)

As noted above, because our focus is on the margin within a period between ct and ut, we have

expressed nt in the constraints as 1− %t − ut.
Denote by λ1

t and λ2
t the Lagrange multipliers on these two constraints, respectively. The

first-order conditions with respect to ct, vt, ut, and %t are thus

u′(ct)− λ1
t = 0, (71)

−γλ1
t + λ2

tmv(ut, vt) = 0, (72)

−λ1
t zt + λ2

tmu(ut, vt) + λ2
t − (1− ρx)βEtλ2

t+1 = 0, (73)

and

g′(%t)− λ1
t zt + λ2

t − (1− ρx)βEtλ2
t+1 = 0. (74)

Conditions (73) and (74) imply

g′(%t) = λ2
tmu(ut, vt). (75)

Using (72), this can be expressed as

g′(%t) = γλ1
t

mu(ut, vt)
mv(ut, vt)

. (76)
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Using (71), this can be expressed as

g′(%t)
u′(ct)

= γ
mu(ut, vt)
mv(ut, vt)

. (77)

Given a Cobb-Douglas matching technology m(u, v) = uξuv1−ξu , we have that mu
mv

= ξu
1−ξu θ (where

θ ≡ v/u).

We thus can express static efficiency along the consumption-leisure margin as

g′(1− ut − nt)
u′(ct)

= γθt
ξu

1− ξu
, (78)

in which we have re-inserted the identity %t = 1 − ut − nt. Condition (78) characterizes efficiency

along the static consumption-leisure margin. The left-hand-side is clearly the marginal rate of

substitution (MRS) for the household between consumption and leisure. Under the basic tenet

that efficiency occurs where MRS is equated to the associated marginal rate of transformation

(MRT), the right-hand-side of (78) is thus the MRT between consumption and leisure in a search-

based environment.
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E General Equilibrium Consumption-Leisure Wedges

Here we prove Proposition 2. To derive the equilibrium margin between consumption and leisure

and to see which features of the decentralized economy disrupt consumption-leisure efficiency, start

with the pseudo-labor-force participation condition

g′(1− ut − nt)− u′(ct)χ
kh(θt)

+
φt

kh(θt)
= u′(ct)(1− τnt )wt − g′(1− ut − nt)

− φt + β(1− ρx)Et
{
g′(1− ut+1 − nt+1)− u′(ct+1)χ

kh(θt+1)
+

φt+1

kh(θt+1)

}
. (79)

and the job-creation condition

γ

kf (θt)
= zt − wt + (1− ρx)Et

{
Ξt+1|t

γ

kf (θt+1)

}
. (80)

Divide (79) by (80) to get

kf (θt)
[
g′(1−ut−nt)−u′(ct)χ

kh(θt)
+ φt

kh(θt)

]
γ

=
u′(ct)(1− τnt )wt − g′(1− ut − nt)− φt + β(1− ρx)Et

{
g′(1−ut+1−nt+1)−u′(ct+1)χ

kh(θt+1)
+ φt+1

kh(θt+1)

}
zt − wt + (1− ρx)Et

{
Ξt+1|t

γ
kf (θt+1)

} .(81)

Using the result that kf (θt)/kh(θt) = θ−1
t due to the assumption of Cobb-Douglas matching, we

can re-arrange the left-hand-side as

g′(1− ut − nt)− u′(ct)χ+ φt
γθt

=
u′(ct)(1− τnt )wt − g′(1− ut − nt)− φt + β(1− ρx)Et

{
g′(1−ut+1−nt+1)−u′(ct+1)χ

kh(θt+1)
+ φt+1

kh(θt+1)

}
zt − wt + (1− ρx)Et

{
Ξt+1|t

γ
kf (θt+1)

} .(82)

Next, note from our work in Appendix B that the numerator on the right-hand-side is u′(ct) [Wt −Ut] =

u′(ct)Wt, the surplus to the household (expressed in terms of utility) of having the marginal mem-

ber enter into an employment relationship. Also note that the denominator on the right-hand-side

of the previous expression is Jt, the surplus to the firm of entering into an employment relationship

with one additional worker.

Thus, the last expression can be simplified to

g′(1− ut − nt)− u′(ct)χ+ φt
γθt

=
u′(ct)Wt

Jt
. (83)

Using in this expression the private economy’s Nash-bargaining outcome Wt
1−τn

t
= η

1−ηJt, we have

g′(1− ut − nt)− u′(ct)χ+ φt
γθt

= u′(ct)
η

1− η
(1− τnt ). (84)
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Rearranging, we have that in the decentralized Nash-bargaining economy with taxes, unemployment

benefits, and no ability for households to enter or exit the labor force,

g′(1− ut − nt)− u′(ct)χ+ φt
u′(ct)

= (1− τnt )γθt
η

1− η
, (85)

in which, recall, η ∈ (0, 1) is the Nash bargaining power of households.

Comparing (85) with the efficiency condition (78), it is clear that four things are needed in the

decentralized economy in order for consumption-leisure efficiency to be achieved:

• The decentralized economy must feature η = ξu, which corresponds to the Hosios (1990)

condition for search efficiency

• The transfer of unemployment benefits from the government to households must be zero —

that is, χ = 0

• Households must be able to optimize with respect to the size of the total labor force every

period — that is, φt = 0 ∀t

• Proportional labor income taxation must be zero — that is, τnt = 0 ∀t
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F Derivation of Implementability Constraint

The derivation of the implementability constraint follows that laid out in Lucas and Stokey (1983)

and Chari and Kehoe (1999). The derivation presented here nests that for the both the pseudo-

LFP model and the LFP model — obtaining the implementability constraint for the latter from

the former requires setting the shadow value on the exogenous labor-force size restriction to zero,

as has been discussed in the text.

From the pseudo-labor-force participation model, we will be able to use the household’s (pseudo)

perceived law of motion for employment,

nt = (1− ρx)nt−1 + kh(θt)uht , (86)

the size restriction

nt + uht = l̄, (87)

and the pseudo-labor-force-participation condition

g′(1− uht − nht )− u′(ct)χ
kh(θt)

+
φt

kh(θt)
= u′(ct)(1− τnt )wt − g′(1− uht − nht )

− φt + β(1− ρx)Et

{
g′(1− uht+1 − nht+1)− u′(ct+1)χ

kh(θt+1)
+

φt+1

kh(θt+1)

}
. (88)

Start with the household flow budget constraint in equilibrium

ct + bt = (1− τnt )wtnt + uht χ+Rtbt−1 + (1− τd)dt. (89)

Multiply by βtu′(ct) and sum over dates and states starting from t = 0,

E0

∞∑
t=0

βtu′(ct)ct + E0

∞∑
t=0

βtu′(ct)bt = E0

∞∑
t=0

βtu′(ct)(1− τnt )wtnt

+E0

∞∑
t=0

βtu′(ct)uht χ+ E0

∞∑
t=0

βtu′(ct)Rtbt−1 + E0

∞∑
t=0

βtu′(ct)(1− τd)dt.

Use the household’s Euler equation, u′(ct) = Et [βu′(ct+1)Rt+1], to substitute for u′(ct) in the term

on the left-hand-side involving bt,

E0

∞∑
t=0

βtu′(ct)ct + E0

∞∑
t=0

βt+1u′(ct+1)Rt+1bt = E0

∞∑
t=0

βtu′(ct)(1− τnt )wtnt

+E0

∞∑
t=0

βtu′(ct)uht χ+ E0

∞∑
t=0

βtu′(ct)Rtbt−1 + E0

∞∑
t=0

βtu′(ct)(1− τd)dt.

From here on, we suppress the E0 operator to conserve on notation.

Canceling terms in the second summation on the left-hand-side with the third summation on

the right-hand-side leaves only the time-zero bond position,
∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βtu′(ct)(1−τnt )wtnt+
∞∑
t=0

βtu′(ct)uht χ+
∞∑
t=0

βtu′(ct)(1−τd)dt+u′(c0)R0b−1. (90)
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Next, use (88) to substitute for the sequence of terms u′(ct)(1 − τnt )wt in the first summation

on the right-hand-side, which gives

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βt
[
g′t − u′(ct)χ
kh(θt)

+
φt

kh(θt)

]
nt +

∞∑
t=0

βt
[
g′t + φt

]
nt (91)

− (1− ρx)
∞∑
t=0

βt+1

[
g′t+1 − u′(ct+1)χ

kh(θt+1)
+

φt+1

kh(θt+1)

]
nt +

∞∑
t=0

βtu′(ct)uht χ+
∞∑
t=0

βtu′(ct)(1− τd)dt + u′(c0)R0b−1.(92)

To further conserve on notation, we now use g′t to stand for g′(1− uht − nht ).

Next, use nt = (1 − ρx)nt−1 + kh(θt)uht to substitute for the sequence of nt terms that appear

in the first summation on the right-hand-side, which gives

∞∑
t=0

βtu′(ct)ct = (1− ρx)
∞∑
t=0

βt
[
g′t − u′(ct)χ
kh(θt)

+
φt

kh(θt)

]
nt−1 (93)

+
∞∑
t=0

βt
[
g′t − u′(ct)χ
kh(θt)

+
φt

kh(θt)

]
kh(θt)uht +

∞∑
t=0

βt
[
g′t + φt

]
nt (94)

− (1− ρx)
∞∑
t=0

βt+1

[
g′t+1 − u′(ct+1)χ

kh(θt+1)
+

φt+1

kh(θt+1)

]
nt +

∞∑
t=0

βtu′(ct)uht χ+
∞∑
t=0

βtu′(ct)(1− τd)dt + u′(c0)R0b−1.(95)

The first summation on the right-hand-side cancels with the fourth summation on the right-hand-

side, leaving only the time-zero term:

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βt
[
g′t − u′(ct)χ
kh(θt)

+
φt

kh(θt)

]
kh(θt)uht +

∞∑
t=0

βt
[
g′t + φt

]
nt (96)

+
∞∑
t=0

βtu′(ct)uht χ+
∞∑
t=0

βtu′(ct)(1− τd)dt + u′(c0)R0b−1 + (1− ρx)
[
g′0 − u′(c0)χ
kh(θ0)

+
φ0

kh(θ0)

]
n−1.(97)

Expanding and rearranging the first summation on the right-hand-side,

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βt
[
g′t + φt

]
uht +

∞∑
t=0

βt
[
g′t + φt

]
nt −

∞∑
t=0

βtu′(ct)uht χ (98)

+
∞∑
t=0

βtu′(ct)uht χ+
∞∑
t=0

βtu′(ct)(1− τd)dt + u′(c0)R0b−1 + (1− ρx)
[
g′0 − u′(c0)χ
kh(θ0)

+
φ0

kh(θ0)

]
n−1.(99)

Finally, canceling the third and fourth summations on the right-hand-side and re-introducing the

conditional expectation E0, we have the present-value implementability constraint

E0

∞∑
t=0

βt
{
u′(ct)ct −

[
g′(1− uht − nt) + φt

]
(nt + uht )− u′(ct)(1− τd)dt

}
= A0, (100)

where

A0 ≡ u′(c0)R0b−1 + (1− ρx)
[
g′0 − u′(c0)χ
kh(θ0)

+
φ0

kh(θ0)

]
n−1. (101)
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G Zero Taxation of Dividend Income

We briefly explore the sensitivity of our results to the assumption of zero dividend taxation. All the

quantitative results presented thus far have assumed 100-percent taxation of the dividend income

received by households. As we noted in Section 2.2, it is well-understood in Ramsey models that the

unavailability of profit taxes can affect policy prescriptions. This is because, following production,

profit flows (which is what households’ dividend income reflects) represent an inelastic source of

revenue which the government would like to tax heavily. A 100-percent profit/dividend tax is thus

trivially optimal, and this is the case on which we have focused. To demonstrate the robustness of

our main results to the absence of a profit tax, we report in Table 3 simulation-based results under

the polar opposite assumption of zero dividend taxation, τd = 0. As comparison of the results

in Table 3 with those reported in Table 1 shows, the cyclical properties of optimal policy in both

the pseudo-LFP model and the LFP model are virtually identical under zero or full taxation of

dividend income. Table 3 tabulates results for the case of zero government-provided unemployment

benefits. For the case of positive government-provided unemployment benefits, we find results very

nearly the same as those reported in Table 2; for brevity, though, we do not report these results.
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Variable Mean Std. Dev. Auto corr. Corr(x, Y ) Corr(x, Z) Corr(x,G)

Pseudo-labor-force-participation

τn 0.2176 0.0179 0.8324 -0.2243 -0.2263 0.9660

gdp 0.5942 0.0092 0.9059 1.0000 0.9998 -0.0496

c 0.4080 0.0060 0.9133 0.7354 0.7358 -0.6639

N 0.5937 0.0006 0.9580 0.8623 0.8532 -0.0363

u 0.0659 0.0006 0.9580 -0.9585 -0.9527 0.0395

N + u 0 — — — —

w 0.8612 0.0150 0.7677 0.9647 0.9675 -0.1142

θ 1.0007 0.0180 0.8824 0.9781 0.9756 -0.0385

v 0.0660 0.0006 0.7659 0.9454 0.9463 -0.0349

φ -0.0245 0.0371 0.8580 0.2426 0.2442 -0.9664

Full labor-force-participation

τn 0.2194 0.0009 0.0392 0.6254 0.5896 0.1612

gdp 0.5906 0.0089 0.9008 1.0000 0.9237 0.2848

c 0.4049 0.0050 0.8766 0.5692 0.8141 -0.5594

N 0.5902 0.0032 0.9634 0.2444 -0.0848 0.8942

u 0.0655 0.0013 0.5554 -0.3980 -0.5849 0.5341

N + u 0.6557 0.0040 0.8761 0.0750 -0.2569 0.9679

w 0.8611 0.0142 0.9096 0.9006 0.9957 -0.1073

θ 1.0008 0.0189 0.8511 0.8724 0.9777 -0.1541

v 0.0656 0.0009 0.5621 0.6033 0.4653 0.5650

φ 0 0 — — — —

Table 3: Ramsey dynamics with zero government-provided unemployment benefits and zero taxation of

dividend income (τd = 0).
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H Competitive Search Equilibrium

While Nash bargaining has become the standard wage-determination mechanism in DSGE search

models, many other models of wage determination have been developed and usefully employed in

the literature on labor-market theory. One particularly appealing alternative is competitive search

equilibrium, which entails decentralized determination of wages which are taken as given by both

firms and households in their optimal search behavior. From the point of view of standard DSGE

macroeconomic models, this equilibrium concept is appealing because there are no bilateral negoti-

ations whatsoever; wages are always determined in a market-clearing fashion. Because competitive

search has not yet found its way to mainstream DSGE macro models, we show here how to im-

plement a competitive search equilibrium. Our treatment adapts Moen’s (1997) implementation

for a full general-equilibrium environment. As we show, the condition characterizing equilibrium

along the consumption-leisure (outside the labor force) margin that arises from competitive search

is identical to that which arises under Nash bargaining under the Hosios (1990) parameterization

for bargaining power. Because the Hosios parameterization is the case for which our main results

are obtained, all of our optimal-policy results are thus identical under competitive search. Indeed,

the derivations below can be viewed as extending the equivalence shown by Moen (1997) between

competitive search equilibrium and Nash-Hosios bargaining.

To implement competitive search equilibrium, we must first define payoff functions to search for

both firms and households. In a particular labor submarket i, any firm j that pays the vacancy-

posting cost γ has expected payoff of matching with a worker

kf (θijt)
[
zt − wijt + (1− ρx)Et

{
Ξt+1|t

γ

θit+1

}]
. (102)

As in Moen (1997), the matching probability in period t, kf (θijt), and the wage payment in period

t, wijt, are firm ij-specific. The continuation value captured by γ/kf (θit+1), however, is a sub-

market-specific value, reflecting the replacement value of a given worker at sub-market i prices

(because there are no match-specific idiosyncracies regarding employment in our model).

For the representative household, payoff functions, defined in terms of goods, for searching for

(“applying to”) a job at firm j in labor submarket i are given by

kh(θijt)

[
−g
′(1− uht − nht )

λt
+ (1− τnt )wijt + (1− ρx)Et

{
Ξt+1|tWt+1

}]
(103)

if match-formation at firm ij is successful, which occurs with probability kh(θijt), and

(1− kh(θijt)) [0] (104)

if match-formation is unsuccessful, which occurs with probability 1 − kh(θijt). Note that these

payoffs are from the point of view of the household — i.e., they reflect the gain to the household
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of having one more household member search for a job at firm ij — and are straightforward

generalizations of the payoff functions defined in Appendix C. As derived in Appendix C, there is

zero payoff to the household if search is unsuccessful.

For the concept of competitive search equilibrium, directed search, rather than random search,

is a critical component.20 The consequence of optimally-directed job search at firm ij is thus that

kh(θijt)Wijt + (1− kh(θijt)) [0] = X, (105)

where X is the expected payoff of searching for a job at a firm different from ij (at either a different

firm in labor submarket i or in another labor submarket altogether) and hence is independent of

firm ij outcomes. In writing (105), we have used Wijt = −g′(1−uh
t −nh

t )
λt

+ (1 − τnt )wijt + (1 −
ρx)Et

{
Ξt+1|tWt+1

}
from Appendix C. The competitive-search wage wijt and tightness θijt are

the solutions to maximization of (102) subject to (105).

Denoting by ϕijt the multiplier on the constraint, the first-order condition with respect to wijt

yields

ϕijt =
kf (θijt)
kh(θijt)

1
1− τnt

. (106)

Given constant-returns-to-scale matching, this reduces to

ϕijt =
1
θijt

1
1− τnt

. (107)

Then, using this expression in the first-order condition with respect to θijt, we have

∂kf (θijt)
∂θijt

[
zt − wijt + (1− ρx)Et

{
Ξt+1|t

γ

kf (θit+1)

}]
= − 1

θijt

1
1− τnt

∂kh(θijt)
∂θijt

Wijt. (108)

We now restrict attention to equilibria that are symmetric across firms in a given submarket

and across submarkets, so we drop ij indexes. Given Cobb-Douglas matching m(u, v) = uξuv1−ξu ,

we have (∂kh(θ)/∂θ)/(∂kf (θ)/∂θ) = −θ(1− ξu)/ξu. Also, using the symmetric-equilibrium version

of the vacancy-creation condition, we can replace the term in brackets on the left hand side of the

previous expression with γ/kf (θt); making these substitutions,

γ

kf (θt)
=

1− ξu
ξu

1
1− τnt

Wt. (109)

Next, from optimal household labor-force-participation and the definition of Wt above, this can

be written as

γ
kh(θt)
kf (θt)

ξu
1− ξu

(1− τnt ) =
g′(1− ut − nt)− u′(ct)χ+ φt

u′(ct)
. (110)

Once again recognizing that kh(θ)
kf (θ)

= θ because of constant-returns matching, we have that period-t

equilibrium outcomes under competitive search are described by

g′(1− ut − nt)− u′(ct)χ+ φt
u′(ct)

= (1− τnt )γθt
ξu

1− ξu
. (111)

20See Rogerson, Shimer, and Wright (2005, p. 972-976) for more discussion.
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Comparing this with the outcome in the decentralized bargaining economy (under the Hosios pa-

rameterization η = ξu) presented in condition (27) shows that they are identical. Hence, the

search-based labor wedge in the competitive search economy is identical to the wedge in the bar-

gaining economy, which necessarily implies that optimal policy in the competitive search economy

is identical to that in the bargaining economy.
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