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Abstract The classical macroscopic chemotaxis equations have previously been

derived from an individual-based description of the tactic response of cells that use

a “run-and-tumble” strategy in response to environmental cues [17,18]. Here we

derive macroscopic equations for the more complex type of behavioral response

characteristic of crawling cells, which detect a signal, extract directional informa-

tion from a scalar concentration field, and change their motile behavior accord-

ingly. We present several models of increasing complexity for which the deriva-

tion of population-level equations is possible, and we show how experimentally-

measured statistics can be obtained from the transport equation formalism.We also

show that amoeboid cells that do not adapt to constant signals can still aggregate

in steady gradients, but not in response to periodic waves. This is in contrast to the

case of cells that use a “run-and-tumble” strategy, where adaptation is essential.

1. Introduction

Motile organisms sense their environment and can respond to it by (i) directed

movement toward or away from a signal, which is called taxis, (ii) by changing

their speed of movement and/or frequency of turning, which is called kinesis, or

(iii) by a combination of these. Usually these responses are both called taxes, and

we adopt this convention here. Taxis involves three major components: (i) an ex-

ternal signal, (ii) signal transduction machinery for transducing the external signal

into an internal signal, and (iii) internal components that respond to the trans-

duced signal and lead to changes in the pattern of motility. In order to move away

from noxious substances (repellents) or toward food sources (attractants) organ-

isms must extract directional information from an extracellular scalar field, and

there are two distinct strategies that are used to do this. A simple paradigm will

illustrate these.
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Suppose that one is close enough to a bakery to detect the odors, but cannot

see the bakery. To find it, one strategy is to use sensors at the end of each arm that

measure the difference in the signal at the current location and use the difference to

decide on a direction. Clearly humans do not use this strategy, but instead, execute

the “bakery walk”, which is to take a sniff and judge the signal intensity at the

present location, take a step and another sniff, compare the signals, and from the

comparison decide on the next step.

The first strategy is used by amoeboid cells (cells which move by crawling

through their environment), which have receptors on the cell membrane and are

large enough to detect typical differences in the signal over their body length.

Small cells such as bacteria cannot effectively make a “two-point in space” mea-

surement over their body length, and therefore they adopt the second strategy and

measure the temporal variation in the signal as they move through the external

field. In either case, an important consideration in understanding population-level

behavior is whether or not the individual merely detects the signal and responds

to it, or whether the individual alters it as well, for example by consuming it or

by amplifying it so as to relay the signal. In the former case there is no feedback

from the local density of individuals to the external field, but when the individ-

ual produces or degrades the signal, there is coupling between the local density of

individuals and the intensity of the signal. The latter occurs, for example, when

individuals move toward a signal from neighboring cells and relay the signal as

well, as in the aggregation of the cellular slime mold Dictyostelium discoideum

(Dd).

One of the best-characterized systems that adopts the “bakery walk” strategy

is the flagellated bacterium E. coli, for which the signal transduction machinery

is well characterized [5]. E. coli alternates between a more or less linear motion

called a run and a highly erratic motion called tumbling, which produces little

translocation but reorients the cell. Run times are typically much longer than the

tumbling time, and when bacteria move in a favorable direction (i.e., either in

the direction of foodstuffs or away from noxious substances), the run times are

increased further. Since these bacteria are too small to detect spatial differences

in the concentration of an attractant on the scale of a cell length, they choose a

new direction essentially at random at the end of a tumble, although it has some

bias in the direction of the preceding run [4]. The effect of alternating these two

modes of behavior and, in particular, of increasing the run length whenmoving in a

favorable direction, is that a bacterium executes a three-dimensional random walk

with drift in the favorable direction, when observed on a sufficiently long time

scale [3,30]. In addition, these bacteria adapt to constant signal levels and in effect

only alter the run length in response to changes in extracellular signals. Models for

signal transduction and adaptation in this system has been developed [46,2], and a

simplified version of the first model has been incorporated into a population-level

description of behavior [17,18]. The latter analysis shows how parameters that

characterize signal transduction and response in individual cells are embedded in

the macroscopic sensitivity χ in the macroscopic chemotaxis equation described
later. Having the bacterial example in mind, we will call the “bakerywalk” strategy

as a “run-and-tumble” strategy in what follows.
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The directed motion of amoeboid cells (e.g. Dd or leukocytes), which is cru-

cial in embryonic development, wound repair, the immune response to bacterial

invasion, and tumor formation and metastasis, is much more complicated than

bacterial motion. Cells detect extracellular chemical and mechanical signals via

membrane receptors, and these trigger signal transduction cascades that produce

intracellular signals. Small differences in the extracellular signal over the cell are

amplified into large end-to-end intracellular differences that control the motile ma-

chinery of the cell and thereby determine the spatial localization of contact sites

with the substrate and the sites of force-generation needed to produce directed

motion [40,7]. Movement of Dd and other amoeboid cells involves at least four

different stages [36,43]. (1) Cells first extend localized protrusions at the leading

edge, which take the form of lamellipodia, filopodia or pseudopodia. (2) Not all

protrusions are persistent, in that they must anchor to the substrate or to another

cell in order for the remainder of the cell to follow [44]. Protrusions are stabilized

by formation of adhesive complexes, which serve as sites for molecular signaling

and also transmit mechanical force to the substrate. (3) Next, in fibroblasts acto-

myosin filaments contract at the front of the cell and pull the cell body toward the

protrusion, whereas in Dd, contraction is at the rear and the cytoplasm is squeezed

forward. (4) Finally cells detach the adhesive contacts at the rear, allowing the tail

of the cell to follow the main cell body. In Dd the adhesive contacts are relatively

weak and the cells move rapidly (∼ 20µm/min), whereas in fibroblasts they are
very strong and cells move slowly. The coordination and control of this complex

process of direction sensing, amplification of spatial differences in the signal, as-

sembly of the motile machinery, and control of the attachment to the substratum

involves numerous molecules whose spatial distribution serves to distinguish the

front from the rear of the cell, and whose temporal expression is tightly controlled.

In addition, Dd cells adapt to the mean extracellular signal level [40].

Dd is a widely-used model system for studying signal transduction, chemo-

taxis, and cell motility. Dd uses cAMP as a messenger for signaling initiated by

pacemaker cells to control cell movement in various stages of development (re-

viewed in [39]). In the absence of cAMP stimuli Dd cells extend pseudopods

in more-or-less random directions, although not strictly so since formation of a

pseudopod inhibits formation of another one nearby for some time. Aggregation-

competent cells respond to cAMP stimuli by suppressing existing pseudopods and

rounding up (the “cringe response”), which occurs within about 20 secs and lasts

about 30 secs [8]. Under uniform elevation of the ambient cAMP this is followed

by extension of pseudopods in various directions and an increase in the motility

[53,54]. However, one pseudopod usually dominates, even under uniform stimu-

lation. A localized application of cAMP elicits the “cringe response” followed by

a localized extension of a pseudopod near the point of application of the stimulus

[47]. How the cell determines the direction in which the signal is largest, and how

it organizes the motile machinery to polarize and move in that direction, are ma-

jor questions from both the experimental and theoretical viewpoint. Since cAMP

receptors remain uniformly distributed around the cell membrane during a tac-

tic response, receptor localization or aggregation is not part of the response [27].

Well-polarized cells are able to detect and respond to chemoattractant gradients
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with as little as a 2% concentration difference between the anterior and posterior

of the cell [34]. Directional changes of a shallow gradient induce polarized cells to

turn on a time scale of 2-3 seconds [23], whereas large changes lead to large-scale

disassembly of motile components and creation of a new “leading edge” directed

toward the stimulus [22]. Polarity is labile in cells starved for short periods in that

cells can rapidly change their leading edge when the stimulus is moved [47].

There are a number of models for how cells extract directional information

from the cAMP field. Fisher et al. [19] suggest that directional information is

obtained by the extension of pseudopods bearing cAMP receptors and that sensing

the temporal change experienced by a receptor is equivalent to sensing the spatial

gradient. However, Dd cells contain a cAMP-degrading enzyme on their surface,

and it has been shown that as a result, the cAMP concentration increases in all

directions normal to the cell surface [10]. Furthermore, more recent experiments

show that cells in a steady gradient can polarize in the direction of the gradient

without extending pseudopods [40]. Thus cells must rely entirely on differences

in the signal across the cell body for orientation. Moreover, the timing between

different components of the response is critical, because a cell must decide how to

move before it begins to relay the signal. Analysis of a model for the cAMP relay

pathway shows that a cell experiences a significant difference in the front-to-back

ratio of cAMP when a neighboring cell begins to signal [10], which demonstrates

that sufficient end-to-end differences for reliable orientation can be generated for

typical extracellular signals. An activator-inhibitor model for an amplification step

in chemotactically sensitive cells was also postulated [35]. Amplification of small

external differences involves a Turing instability in the activator-inhibitor system,

coupled to a slower inactivator that suppresses the primary activation. While this

model reproduces some of the observed behavior, there is no biochemical basis for

it; it is purely hypothetical and omits some of the major known processes. A model

that takes into account some of the known biochemical steps has been proposed

more recently [31].

The objective of this paper is to derive equations for the population-level be-

havior of amoeboid cells such as Dd or leukocytes that incorporate details about the

individual-based response to signals. We present several models with the increased

complexity for which the derivation of population-level equations is possible. We

show how experimentally-measured statistics can be obtained from the transport

equation formalism. The paper is organized as follows. We discuss the classical

chemotaxis description and summarize the state of the art of the derivation of

macroscopic equations and population-level statistics from individual-based mod-

els in the remainder of this section. In Section 2, we establish the general setup for

models of amoeboid cells and we present individual-based models which capture

the essential behavioral responses of eukaryotic cells. In Section 3 we derive the

macroscopic moment equations from the microscopic model and the dependence

of the mean speed on the signal strength is studied. Finally, we provide conclusions

and the discussion of the presented approaches in Section 4.
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1.1. Macroscopic descriptions of chemotaxis

The simplest description of cell movement in the presence of both diffusive and

tactic components results by postulating that the flux of cells j is given by

j = −D∇n+ nuc, (1)

where n is the density of cells, uc is the macroscopic chemotactic velocity and D
is the difusion constant. The taxis is positive or negative according as uc is parallel

or anti-parallel to the direction of increase of the chemotactic substance S. Keller
and Segel [28] postulated that the chemotactic velocity is given by uc = χ(S)∇S
and then (1) can be written as

j = −D∇n+ nχ(S)∇S (2)

where χ(S) is called the chemotactic sensitivity. In the absence of cell division or
death the resulting conservation equation for the cell density n(x, t) is

∂n

∂t
= ∇ · (D∇n− nχ(S)∇S) (3)

and this is called a classical chemotaxis equation. Unless the distribution of the

chemotactic substance is fixed, (3) is coupled to an evolution equation for this

substance, and perhaps other governing variables.

Other phenomenological approaches to the derivation of the chemotactic ve-

locity have been taken. For example, by approaching taxis from a mechanical point

of view, Pate and Othmer [41] derived the velocity in terms of forces exerted by an

amoeboid cell. Starting from Newton’s law, neglecting inertial effects, and assum-

ing that the motive force exerted by a cell is a function of the attractant concentra-

tion, they showed how the chemotactic sensitivity is related to the rate of change of

the force with attractant concentration. In this formulation the dependence of the

flux on the gradient of the attractant arises from the difference in the force exerted

in different directions due to different attractant concentrations. Experimental sup-

port for this comes from work of [51], who show that as many pseudopods are

produced down-gradient as up, but those up-gradient are more successful in gen-

erating cell movement. We shall use a version of the mechanical approach to taxis

in a model described in the following section.

The first derivation that directly relates the chemotactic velocity to properties

of individual cells is due to Patlak [42], who used kinetic theory arguments to

express uc in terms of averages of the velocities and run times of individual cells.

This approach was extended by Alt [1], who showed that for a class of receptor-

based models the flux is approximately given by (2). These approaches are based

on velocity-jump processes, which lead to transport equations of the form

∂

∂t
p(x,v, t)+v ·∇p(x,v, t) = −λp(x,v, t)+λ

∫

V

T (v,v′)p(x,v′, t)dv′. (4)

where p(x,v, t) is the density of cells at position x ∈ Ω ⊂ R
n, moving with

velocity v ∈ V ⊂ R
n at time t ≥ 0, λ is the turning rate and kernel T (v,v′)
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gives the probability of a change in velocity from v′ to v, given that a reorienta-

tion occurs [37]. External signals enter either through a direct effect on the turning

rate λ and the turning kernel T , or indirectly via internal variables that reflect the
external signal and in turn influence λ and/or T . The first case arises when exper-
imental results are used to directly estimate parameters in the equation [20], but

the latter approach is more fundamental. The reduction of (4) to the macroscopic

chemotaxis equations for the first case is done in [24,38] and [6].

Some statistics of the density distribution in the first case, wherein the external

field modifies the turning kernel or turning rate directly, can easily be derived and

used to interpret experimental data. To outline the procedure, we consider two-

dimensional motion of amoeboid cells in a constant chemotactic gradient directed

along the positive x1 axis of the plane, i.e.

∇S = ‖∇S‖ e1, where we denoted e1 = [1, 0]. (5)

Moreover, we assume that the gradient only influences the turn angle distribu-

tion T ; details of the procedure are given in [37]. We assume for simplicity that
the individuals move with a constant speed s. i.e. a velocity of an individual can
be expressed as v(φ) ≡ s[cos(φ), sin(φ)] where φ ∈ [0, 2π). We assume that
T (v,v′) ≡ T (φ, φ′) is the sum of a symmetric probability distribution h(φ) and
a bias term k(φ) that results from the gradient of the chemotactic substance. Since
the gradient is directed along the positive x1 axis, we assume that the bias is sym-

metric about φ = 0 and takes its maximum there. Thus we write T (φ, φ′) =
h(φ− φ′) + k(φ) where h and k are normalized as follows.

∫ 2π

0

h(φ)dφ = 1

∫ 2π

0

k(φ)dφ = 0 (6)

Let p(x, φ, t) be the density of cells at position x ∈ R
2, moving with velocity

v(φ) ≡ s[cos(φ), sin(φ)], φ ∈ [0, 2π), at time t ≥ 0. The statistics of interest are
the mean location of cellsX(t), their mean squared displacementD2(t), and their
mean velocityV(t), which are defined as follows.

X(t) =
1

N0

∫

R2

∫ 2π

0

xp(x, φ, t) dφ dx,

D2(t) =
1

N0

∫

R2

∫ 2π

0

‖x‖2 p(x, φ, t) dφ dx,

V(t) =
1

N0

∫

R2

∫ 2π

0

v(φ)p(x, φ, t) dφ dx,

B(t) =
1

N0

∫

R2

∫ 2π

0

(x · v(φ))p(x, φ, t) dφ dx,

where N0 is the total number of individuals present and B(t) is an auxiliary vari-
able that is needed in the analysis. Two further quantities that arise naturally are

the taxis coefficient χ, which is analogous to the chemotactic sensitivity defined
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earlier because it measures the response to a directional signal, and the persistence

index ψd. These are defined as

χ ≡

∫ 2π

0

k(φ) cosφ dφ and ψd = 2

∫ π

0

h(φ) cosφ dφ. (7)

The persistence index measures the tendency of a cell to continue in the current

direction. Since we have assumed that the speed is constant, we must also assume

that χ and ψd satisfy the relation χ < 1−ψd, for otherwise the former assumption

is violated (cf. (10)).

One can now show, by taking moments of (4), using (6) and symmetries of h
and k, that the moments satisfy the following evolution equations [37].

dX

dt
= V

dV

dt
= −λ0V + λχse1 (8)

dD2

dt
= 2B

dB

dt
= s2 − λ0B + λχsX1 (9)

where λ0 ≡ λ(1 − ψd). The solution of (8) subject to zero initial data is

X(t) = sCI

(
t−

1

λ0

(1 − e−λ0t)

)
e1, V(t) = sCI(1 − e−λ0t) e1 (10)

where CI ≡ χ/(1 − ψd) is sometimes called the chemotropism index. Thus the
mean velocity of cell movement is parallel to the direction of the chemotactic

gradient and approaches V∞ = sCIe1 as t → ∞. Thus the asymptotic mean
speed is the cell speed decreased by the factor CI .

A measure of the fluctuations of the cell path around the expected value is

provided by the mean square deviation, which is defined as

σ2(t) =
1

N0

∫

R2

∫ 2π

0

‖x − X(t)‖2 p(x, φ, t) dφdx = D2(t)− ‖X(t)‖2 . (11)

Using (8) – (9), one also finds a differential equation for σ2. Solving this equation,

we find

σ2 ∼
2s2

λ0

{
(1 − C2

I )t+
1

λ0

(
5

2
C2

I − 1

)}
as t→ ∞

and from this one can extract the diffusion coefficient as

D =
2s2

λ0

(1 − C2
I ).

Therefore if the effect of an external gradient can be quantified experimentally and

represented as the distribution k, the macroscopic diffusion coefficient, the persis-
tence index, and the chemotactic sensitivity can be computed from measurements

of the mean displacement, the asymptotic speed and the mean-squared displace-

ment.

However, it is not as straightforward to derive directly the macroscopic evo-

lution equations based on detailed models of signal transduction and response.
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Suppose that the internal dynamics that describe signal detection, transduction,

processing and response are described by the system

dy

dt
= f(y, S) (12)

where y ∈ R
m is the vector of internal variables and S is the chemotactic sub-

stance (S is extracellular cAMP for Dd aggregation). Models that describe the
cAMP transduction pathway exist [33,48,49], but for describing chemotaxis one

would have to formulate a more detailed model. The form of this system can be

very general but it should always have the “adaptive” property that the steady-state

value (corresponding to the constant stimulus) of the appropriate internal variable

(the “response regulator”) is independent of the absolute value of the stimulus, and

that the steady state is globally attracting with respect to the positive cone of Rm.

We showed earlier that for non-interacting walkers the internal dynamics can

be incorporated in the transport equation as follows [17]. Let p(x,v,y, t) be the
density of individuals in a (2N +m)−dimensional phase space with coordinates
[x,v,y], where x ∈ R

N is the position of a cell, v ∈ V ⊂ R
N is its velocity and

y ∈ Y ⊂ R
m is its internal state, which evolves according to (12). The evolution

of p is governed by the transport equation

∂p

∂t
+ ∇x · vp+ ∇y · fp = −λ(y)p+

∫

V

λ(y)T (v,v′,y)p(x,v′,y, t)dv′ (13)

where, as before, we assume that the random velocity changes are the result of a

Poisson process of intensity λ(y). The kernel T (v,v′, y) gives the probability of
a change in velocity from v′ to v, given that a reorientation occurs. The kernel T
is non-negative and satisfies the normalization condition

∫
V
T (v,v′, y)dv = 1.

To connect this with the chemotaxis equation (3), we have to derive an evolution

equation for the macroscopic density of individuals

n(x, t) =

∫

Y

∫

V

p(x,v,y, t)dvdy. (14)

The problem turns out to be tractable for systems that execute “run-and-tumble”

motion, such as E. coli. To illustrate this, assume for simplicity that the motion is

restricted to 1D, the signal is time-independent, the speed s is constant, and the
turning phase is neglected; the general cases are treated elsewhere [17,18]. Let p+

(resp. p−) be the density of individuals moving to the right (resp. left). Then (13)
leads to a telegraph process described by the hyperbolic system

∂p+

∂t
+ s

∂p+

∂x
+

m∑

i=1

∂

∂yi

[
fi(y, S)p+

]
= λ(y)

[
−p+ + p−

]
, (15)

∂p−

∂t
− s

∂p−

∂x
+

m∑

i=1

∂

∂yi

[
fi(y, S)p−

]
= λ(y)

[
p+ − p−

]
. (16)
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The essential components of the internal dynamics in the bacterial context are fast

excitation, followed by slower adaptation and return to the basal turning rate, and

these aspects are captured in the system [39]

dy1
dt

=
g(S(x)) − (y1 + y2)

τe
and

dy2
dt

=
g(S(x)) − y2

τa
. (17)

Here g encodes the first step of signal transduction, S is the chemoattractant, and
τe and τa are time constants for excitation and adaptation, respectively. The com-
ponent y1 adapts perfectly to constant stimuli, i.e., the steady state response is
independent of the magnitude of the stimulus S. To obtain a macroscopic limit
equation for the total density n(x, t) we incorporate the variables yi into the state

and derive a system of fourmoment equations for various densities and fluxes [17].

Assuming that the turning rate has the form λ(y) = λ0 − by1, for λ0 > 0, b > 0,
we show that this system reduces to the classical chemotaxis equation for large

times

∂n

∂t
=

∂

∂x

(
s2

2λ0

∂n

∂x
−

[
bs2τag

′(S(x))

λ0(1 + 2λ0τa)(1 + 2λ0τe)

]
S′(x)n

)
(18)

where the chemotactic sensitivity is given explicitly in terms of parameters that

characterize signal transduction and response. We have only used the simplified

dynamics (17) to obtain the macroscopic chemotactic sensitivity, but this model

captures the essential aspects for bacterial taxis [46,17]. An open problem is how

one extracts the elementary processes of excitation and adaptation from a complex

network of the type used for signal transduction in E. coli. Finally, let us note that

the global existence results for (13) which is coupled with the evolution equation

for the extracellular signal were recently given in [14].

Equation (18) was derived for cells such as bacteria, that use the “run-and-

tumble” strategy, and our objective in this paper is to attempt a similar reduction

of the transport equation to a chemotaxis equation for more complex amoeboid

eukaryotic cells. In the following section we introduce the general setup for study-

ing amoeboid taxis. Then we study several “caricature” or “cartoon” models for

amoeboid chemotaxis with the objective of deriving macroscopic population-level

equations in each case. We start with a model which can capture interesting fea-

tures of eukaryotic motility without introducing additional internal state variables,

and then add internal state variables to the model.

2. Amoeboid taxis with internal variables

A fundamental assumption in the use of velocity-jump processes [37] to describe

cell motion is that the jumps are instantaneous, and therefore the forces are Dirac

distributions. This approximates the case in which very large forces act over very

short time intervals, and even if one incorporates a resting or tumbling phase, as

was done in [38], the macroscopic description of motion is unchanged. This is

appropriate for the analysis of bacterial motion (and other systems that use a “run-

and-tumble” strategy), as summarized above, since the effect of the external signal
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is to change the rotational behavior of the flagella, and not, so far as it is under-

stood, to affect the force generation mechanism itself. However, the situation is

very different when analyzing the movement of crawling cells, for here the con-

trol of the force-generation machinery is an essential component of the response.

While amoeboid cells such as Dd extend pseudopods “randomly” in the absence of

signals, the direction of extension is tightly controlled in the presence of a directed

external signal, and the direction in which forces are exerted on the substrate is

controlled via the location of contacts with the substrate. Therefore it is appropri-

ate to incorporate the force-generation machinery as part of the internal state, and

as a first step we condense this all into a description of how the force exerted by a

cell on its surroundings (and vice-versa) depends on the external signal. In reality

amoeboid cells are also highly deformable, and a complete theoretical treatment

of taxis at the single cell level has to take this into account. This is currently under

investigation but will not be pursued here; instead we only describe the motion of

the centroid of the cell. However, the following framework is sufficiently general

to allow distributed internal variables within a cell.

Hereafter we use y as it appears in (19) to denote the chemical variables in-

volved in signal transduction, control of actin polymerization, etc, and we denote

the force per unit mass on the centroid of a cell by F(x,v,y). Therefore the inter-
nal state equations are given by

dy

dt
= G(y, S) (19)

and the velocity evolves according to

dv

dt
= F(x,v,y). (20)

Here G : Y × S → Y is in general a mapping between suitable Banach spaces and

F : R
N × R

N × Y → R
N where N = 1, 2, or 3 is the dimension of the physi-

cal space. This generality is needed because the variable y can include quantities

that depend on the location in the cell or on the membrane, and which may, for

example, satisfy a reaction-diffusion equation or another evolution equation.

The cell is therefore described by the position and velocity of its centroid,

and the internal state y ∈ Y. In some important cases described later there is a
projection P : Y → Z ⊂ Y from Y onto a suitable finite-dimensional subspace Z,

obtained for example by considering the first few modes in a suitable basis for Y,

such that

P(G(y, S)) = G(z, S) and F(x,v,y) = F(x,v, z), where z ≡ Py.
(21)

HereG(·, S) : Z → Z and F(·, ·, ·) : R
N ×R

N ×Z → R
N are mappings between

finite-dimensional spaces. The first equality defines the functionG, though it may

of course be difficult to find when G is nonlinear. The functionF is explicitly given
by the second equality when the reduction is possible.

Given a suitable choice of the projection P , we can reduce the infinite-dimen-
sional system (19) – (20) to the following set of ordinary differential equations in
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finite dimensions for the description of individual cells.

dz

dt
= G(z, S) (22)

dv

dt
= F(x,v, z) (23)

Next, let p(x,v, z, t) be the density of individuals which are at point x, with ve-
locity v and with the vector of reduced internal variables z; then the transport

equation (13) can be written in the form

∂p

∂t
+∇x ·vp+∇v ·Fp+∇z ·Gp = −λ(z)p+

∫

V

λ(z)T (v,v′, z)p(x,v′, z, t)dv′.

(24)

A crucial assumption for using the transport equation formalism is that the pro-

jection P exists; at present we do not know how to extend this framework to an
infinite-dimensional manifold. Examples of models for which the projection P
can be found will be given in the following sections, and in these cases we can use

(24) as the starting point for obtaining macroscopic equations. As described ear-

lier, the right-hand side models the instantaneous changes of direction of motion,

and in the present context we use this to describe the small fluctuations due to ran-

dom “errors” in the sensing of the signal and possibly to an intrinsic mechanism

for random exploration of the local environment. Tranquillo and Lauffenburger

[50] developed a model of amoeboid movement that focuses specifically on the

stochastic component.

A natural question is what can be done if a suitable projection P is not eas-
ily computed, or if the explicit form of G is impossible to obtain because of the

complexity of the mapping G. In some cases it may still be possible to describe
the macroscopic-level dynamics by the evolution of a few slow variables, and by

using computational equation-free methods which are currently being developed,

to obtain populational level quantities without explicitly deriving the macroscopic

equations (see [29,16,15] and references there), using either the full model of the

amoeboid cell or the best available reduction of it.

In the remainder of the paper we give examples of the reduction of (19) –

(20) to the form (22) – (23) and the derivation of macroscopic equations via the

transport equation (24), in order to understand how the population-level dynamics

depends on the characteristics of the individual behavior. We start with a motivat-

ing example in which we further reduce the system (22) – (23) by assuming that

dim Z = 1 and that the functionG transduces the signal directly, i.e., z ≡ S.

2.1. A motivating example

To illustrate how the effect of acceleration of the cell can enter into the macro-

scopic equations, we consider the example of motion of a cell in the plane in

response to a wave of a chemotactic substance. The typical response of Dd or

leukocytes to a pulse-like wave of the chemoattractant can be divided into several

phases depending on the position of the cell relative to the wave [21]. In Figure 1

we distinguish five different phases - denoted (A) – (E). Before the wave arrives
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Fig. 1. The notation for the different phases of the wave of chemoattractant seen by a cell at
a fixed spatial position, as a function of time. The horizontal axis is the time and the vertical
axis is the amplitude of the signal.

at the cell, there are no directional cues in the environment and the cell extends

pseudopods in all directions – Phase (E). When the wave arrives the cell experi-

ences an increasing temporal gradient at all points of its surface and can detect a

front-to-back spatial gradient over its length (where front denotes the direction of

the oncoming wave), which causes it to polarize in the direction of the oncoming

wave. This is Phase (A) in Figure 1. In Phase (B) lateral pseudopod formation is

suppressed and the cell moves more-or-less directly towards the aggregation cen-

ter at a speed of 10-20 µm/min. In natural cAMP waves the cAMP concentration
at the peak of the wave is high enough that in Phase (C) the cells stop translocat-

ing and depolarize. In Phase (D) the temporal gradient is negative, although the

spatial gradient is positive in the outgoing direction, and the cell begins to form

pseudopods in all directions. This is presumably due to slow adaptation to the de-

creasing cAMP signal, and as we shall see, if it is too fast the cells may reverse

direction and follow the outgoing wave. In Phase (E), there is no extracellular sig-

nal present and there is not net movement of cells. This last phase is not described

in [21] but it is of interest to include this to describe the motion in the absence

of a stimulus. Formal rules used in the context of an individual-based model of

Dd aggregation show that population-level aspects of chemotaxis such as stream

formation can be reproduced if the foregoing phases are properly incorporated [9].

How to incorporate these characteristics into a continuum description is the ques-

tion addressed here.

The following example is not meant to provide a realistic description of taxis,

but rather to motivate the analysis done later. In a coarse or high-level description

of movement in response to signals, information carried by the external signal

detected by a cell is transduced through the intracellular signaling network, and

during deterministic turns the velocity of the cell follows the external gradient

with some delay. We write Newton’s law for the motion of the centroid as

dv

dt
=

g(∇S) − v

τv(S)
(25)

where we assume that the relaxation (or adaptation) time τv(S) is a functional
of S. Term g(∇S) can be interpreted in terms of the force generated from the
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extracellular signal. Typically g(∇S) vanishes at zero, is monotone increasing,
and saturates for large∇S. The dependence of τv(S) onS could arise, for instance,
from different responses of the intracellular dynamics to increasing and decreasing

signals; or from alterations in the adhesion sites between cell and substrate. In

earlier work the turning behavior was incorporated via rules [9], rather than via an

equation of motion such as (25).

To demonstrate that this model can capture some of the salient features of Dd

aggregation in response to cAMP waves from a pacemaker center, we present the

results of cell-based numerical simulations that use (25) for the velocity, given a

suitable choice of τv(S). We consider a two-dimensional disk (corresponding to a
Petri dish) of radius 5 mm, and we specify a periodic source of cAMP waves at
the center of the domain. The period of the waves is seven minutes, their speed

is 400µm/min, and the maximal speed of a cell is about 20 µm per minute, all of
which are chosen to approximate natural waves in a Dd aggregation field. More

precisely, we choose g(∇S) = s0∇S/(cs+ ‖∇S‖) where s0 = [20µm/min], and
cs measures the sensitivity of the signal transduction mechanism. In the numerical
examples we choose a wave with maximum ‖∇S‖ equal to 1 mm−1 and cs =
10−4mm−1. Initially the cells are distributed uniformly and we investigate under

what conditions the cells aggregate at the source of the waves of chemoattractant

S. We consider the following two choices for the dependence of τv(S) on the
external field.

(1) τv(S) is a constant independent of the signal (cf. Figure 2). In this case there
is no aggregation, and in fact, cells move to the boundary of the Petri dish. This is

not surprising, because cells move in the direction of the increasing gradient of the

attractant, and cells first move toward the source and then turn around. Although

the wave is symmetric, the cell movement creates a cellular “Doppler effect” in

that there is an asymmetry in the time the cell detects the inward-directed gradient

at the front of the wave versus the time it sees the receding wave. Thus in every

cycle it moves away from the source longer than it moves toward it, and cells

eventually accumulate at the boundary.
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Fig. 2. Simulation of 5000 cells that move according to (25) when the relaxation time
τv(S) is constant. We plot the positions of cells at t = 0 (left) and at t = 4000 min (right).
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(2) In this case the relaxation time is specified as a function of the time derivative

of S at the position of the cell, i. e., τv(S) ≡ τv(St). τv is chosen so that cells turn
rapidly when the temporal derivative is positive and slowly when it is negative. In

our numerical example, we simply put τv = 0.5 min for St > 0, and τv = 10
min for St ≤ 0. The results are shown in Figure 3; here one sees that the cells
aggregate at the source of the waves.

These cases show that reorientation that is adaptive with respect to the tempo-

ral gradient of the signal suffices to produce aggregation, as was found earlier in

formal cell-based rules [9] and used previously in macroscopic descriptions based

on the classical chemotaxis equation [45,25].
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Fig. 3. Simulation of cells which move according to (25) when the relaxation time τv(S) ≡
τv(St) is chosen so that τv is small (0.5 min) when St is positive and large (5 min) when
St is not positive. The positions of 5000 cells at different times are plotted.
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Next we address the derivation of a macroscopic description from the transport

equation, using the direct effect of the signal on the turning given by (25). We

denote by p(x,v, t) the density of individuals which are at point x ∈ R
2 and have

velocity v ∈ V ⊂ R
2 at time t. Here, V is a bounded, symmetric set which is

determined by the external signal and by system (25). We also assume that there

is a signal-independent component to the turning for which the kernel T is given
by T (v,v′) = (2πv0)

−1δ(|v− v′| − v0), where v0 > 0 represents the magnitude
of the random component of v. The cells add a small random component to their

velocity at a rate λ. Now p(x,v, t) satisfies the transport equation

∂p

∂t
+ ∇x · vp+ ∇v ·

[(
g(∇S) − v

τv(S)

)
p

]
= (26)

−λp(x,v, t) +
λ

2πv0

∫

V

δ(|v − v′| − v0)p(x,v
′, t)dv′.

We define the macroscopic density n and macroscopic flux j via

n =

∫

V

p(x,v, t)dv, j =

∫

V

vp(x,v, t)dv, (27)

and by integrating (26) over v, and multiplying (26) by v and integrating over v,
we obtain the following evolution equations for n and j:

∂n

∂t
+ ∇x · j = 0 (28)

∂j

∂t
+ ∇x · ĵ−

1

τv(S)
ng(∇S) = −

j

τv(S)
. (29)

The convective flux ĵik =
∫

V
vivkp(x,v, t)dv that appears in (29) introduces a

higher-order moment, and in earlier work on bacterial chemotaxis we could jus-

tify the closure hypothesis jik = s2nδik/2, where s is the speed of a bacterium
(cf. [18]). Since the speed is not constant during “runs” in the amoeboid case, we

must use a different approach here. By constructing the evolution equation for ĵik
and assuming that it relaxes rapidly in time, i. e., neglecting its time derivatives,

and neglecting the third order velocity moments, we find that the 2 × 2 tensor ĵ
has components

ĵik(x, t) =
τv(S)λv2

0

4
nδik +

1

2
(gijk + gkji) , for i, k = 1, 2. (30)

This leads to two possible closures, (i) by keeping only the zero-order moment

(the term involving n), or (ii) by keeping both the zero-order and first-order contri-

butions. We use the first of these here and find that the system (28) – (29) becomes

∂n

∂t
+ ∇x · j = 0 (31)

∂j

∂t
+ ∇

(
τv(S)λv2

0

4
n(x, t)

)
−

1

τv(S)
ng(∇S) = −

j

τv(S)
. (32)
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In this form we identify the chemotactic velocity and the chemotactic sensitivity

as

uc =
1

τv(S)
g(∇S) χ =

1

τv(S)

g(∇S)

∇S
.

where the latter only makes sense if we assume that g(∇S) = g(∇S)∇S. If in
addition g saturates for large arguments, the velocity saturates and the sensitivity
goes to zero in the presence of large gradients, as one should expect.

One sees that at this level of closure, the relaxation rate of the flux on the right

hand side of (32) is signal dependent, but if we were to suppose that τv(S) ≡ τ0
is independent of S then the system (31) – (32) can be written as the second order
equation

∂2n

∂t2
+

1

τ0

∂n

∂t
=
τ0λv

2
0

4
△n−∇x ·

(
1

τ0
ng(∇S)

)
, (33)

which is the hyperbolic form of the classic chemotaxis equation. However, if τ(S)
is signal dependent the system (31)–(32) does not reduce to (33), and this suggests

that one cannot expect to obtain the classical form of the chemotaxis equation

when internal states are taken into account explicitly. On the other hand, as we saw

in the simulations above, one cannot avoid the “back-of-thewave paradox”without

a signal-dependent τv [9,12]. Let us note that we can treat similarly a modification
of (25) where we allow the force to depend directly on the time derivative of the

signal. This can be done by replacing g(∇S) with g(∇S, St).

To illustrate the validity of the macroscopic equation (33), let us consider the

cell-based numerical simulations of N0 individuals whose velocity is governed by

(25). We denote the positions of individuals as xi(t), i = 1, . . . , N0. Then the

quantities of interest are the mean position of individuals and the mean square

deviation, and for the discrete-cell analysis these are defined as

X(t) =
1

N0

N0∑

i=1

xi(t) and σ2(t) =
1

N0

N0∑

i=1

‖xi(t) − X(t)‖2 . (34)

By multiplying (33) by x and integrating over x, then computing the variance,

much as in Section 1.1, we find that for long times the macroscopic description

predicts that

X(t) ≈ g(∇S) t and σ2(t) ≈ τ2
0λv

2
0t. (35)

To compare the theoretically-derived results (35) with the cell-based computations,

we choose τ0 = 1min, λ = 1 min−1, v0 = 1 µm/min,N0 = 104 cells, g = ωId,

where ω = 20 µm2/min, and∇S is given by (5) with ‖∇S‖= 1 µm−1. We place

all cells at [0, 0] and set their velocities to 0 initially, compute their subsequent
motion, and plot the first component ofX(t) and σ2(t) (as given by (34)) in Figure
4. We see that after an initial transient period both quantities grow linearly with

time, and the slopes are asymptotically equal to the slopes predicted theoretically

using (35).
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Fig. 4. Time evolution of statistics (34) obtained from the cell-based simulation. (a) First
component of X(t) as a function of time. (b)Mean square displacement σ2(t) as a function
of time.

2.2. The infinite-dimensional model and its finite-dimensional reduction

As discussed earlier, analysis of E.coli chemotaxis shows that the microscopic

behavior can be translated into the macroscopic parameters, and it is desirable

to do the same for amoeboid chemotaxis. However, as noted earlier the internal

state may now live in a Banach space, and a reduction to finite dimensions is

necessary. We start with the description of excitation-adaptation dynamics on the

cellular membrane to model directional sensing and reduce the resulting system.

For simplicity we suppose that a cell is a disk of radius d. The state of a cell will
be described by the position x and velocity v of its centroid, and several internal

variables on the membrane. The membrane of the cell can be described as the set

M =
{
d [cos(θ), sin(θ)] | θ ∈ [0, 2π)

}
. (36)

The local state at each point of the membrane will be specified by the (infinite-

dimensional) internal state variable y(θ, t) ≡ [y1(θ, t), y2(θ, t)]
T , θ ∈ [0, 2π),

whose evolution is governed by the “excitation-adaptation” cartoon model (17).

In the formalism of equations (19) – (20) this means that the internal state y(t) :
[0, 2π) → R

2 can be viewed as an element of the Banach space of 2π-periodic
vector functions Y and evolves according to

∂y

∂t
(θ, t) = S̃(θ, t)τ − T y(θ, t) (37)

for θ ∈ [0, 2π) and t > 0. Here

S̃(θ, t) = S
(
x + d e(θ), t), e(θ) = [cos θ, sin θ]T , τ =

[
τ−1
e , τ−1

a

]T
,

and

T ≡

[
τ−1
e τ−1

e

0 τ−1
a

]
.

The y-variables correspond to those in (19), and we project these to finite dimen-

sions by considering the first Fourier mode of y1 and the first two Fourier modes
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of y2. Thus we define the average internal variables as

z(t) = (z1(t), z2(t))
T

=
1

2π

∫ 2π

0

y(θ, t)dθ, (38)

q(t) = (q1(t), q2(t))
T =

1

dπ

∫ 2π

0

e(θ)y2(θ, t)dθ. (39)

To derive equations for the reduced finite-dimensional set of internal variables z(t)
and q(t), we use the approximation

S̃(θ, t) ∼ S(x, t) + d e(θ) · ∇S, (40)

and consequently, we can write

∂y2
∂t

(θ, t) =
S(x, t) + d e(θ) · ∇S − y2(θ, t)

τa
. (41)

for θ ∈ [0, 2π) , t > 0. Multiplying (41) by 1, cos(θ) or sin(θ) and integrating the
resulting equations with respect to θ, we obtain

dz2
dt

=
S(x, t) − z2

τa
(42)

dq

dt
=

∇S(x, t) − q

τa
, (43)

Thus z2 relaxes to the signal S(x, t) and q relaxes to the directional information

of S, both with the decay rate τa. To interpret z1, we assume fast excitation (i. e.,
τe = 0). Then using the fact that y1 = S̃ − y2 and integrating (41) with respect to
θ, one finds that

dz1
dt

=
∂S

∂t
(x, t) + v · ∇S(x, t) −

z1
τa
, (44)

By integrating this one sees that z1 tracks the Lagrangian derivative of S taken
along the cell’s trajectory, with a memory determined by τa: the smaller τa the
faster the cell forgets the history of this derivative. Taken together, the four vari-

ables (z1, z2, q1, q2) contain information about the rate of change of the signal
along the trajectory (z1), the local value of the signal (z2), and the gradient of the
signal (q). To this set we will add the polarization axis u = (u1, u2) in the next
section, and the result will be the smallest set of variables that is able to capture

the phenomena described earlier. Consequently, the simplest hypothesis is that cel-

lular motility depends only on these six variables, i. e., the z used in (22) has six

components.

2.3. The motility model

The next step is to build this model for the internal dynamics into a description

of cellular movement in order to reproduce some of the experimental behaviors

observed for eukaryotic chemotaxis. As we saw in Section 2.1, Dd or leukocytes

respond to the waves of chemoattractant by moving toward the source of waves,
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Fig. 5. The allowed transitions between cell states. The transition rates depend on the in-
ternal state z1 as follows: k21 = λ1 − b1z1, k12 = λ2 + b2z1, k13 = λ3 + b3z1, k32 = λ0.

and the five different stages of the wave with different behavioral responses of

the cell are schematically shown in Figure 1. These and various other cell types

also polarize after sufficient exposure to a directional signal [26]. In order to build

directional sensing, polarization and response to waves into the model, we dis-

tinguish three distinct states of cells: (1) polarized cells which are motile (MPC),

(2) polarized cells which are resting (i. e., non-motile, denoted RPC), and (3) non-

polarized cells which are resting (RUC). The signal transduction machinery for

all types is described by the membrane-based model (36) – (37); the difference

between the types is in their motility behavior.

We describe a motile polarized cell (an MPC) by its position x, its velocity v

and its internal state y, as before. However, instead of defining the force directly

in terms of the signal, as was done in (25), we assume that the force is proportional

to the projected internal variable q (defined by (39)), which tracks the gradient of

the signal (cf. (43)). Thus we write the equations of motion for a cell as

dx

dt
= v,

dv

dt
=
γq− v

τd
. (45)

In a steady gradient of the signal q relaxes to ∇S on the time-scale τa, and v

relaxes to γq on the time-scale τd; thus the models predicts steady motion in a
constant gradient. One expects that in general τa < τd. However, as we saw earlier,
to explain the back-of-the-wave behavior [21] the response to the wave must be

biased toward moving when the signal is increasing in time, as in the front of the

wave. It is known that Dd cells and leukocytes stop translocating and lose their

polarity in Phase (C) of a wave (cf. Figure 1), which introduces an asymmetry into

the response, and to capture this we introduce a resting state. A resting cell (either

an RPC or an RUC) is described by its position x and its internal state y ∈ Y,

and these cells may also have a polarization axis u = (u1, u2). We assume that
the position of a resting cell is fixed and that the internal state evolves according

to (37).

Finally, we must postulate how transitions between the three states depend on

the signal (cf. Figure 5). We assume that the motile cells retain their polarity upon

stopping, and that the transition rate from the motile to the resting polarized state

depends on z1 as shown in Figure 5. A moving cell “computes” the directional
vector q and the average around the perimeter of the internal variable y1, which is

z1, according to (43) and (44). The interpretation of Figure 5 and the justification
for the postulated dependence of the transition rates between states on z1 are as

follows.
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(i) If the Lagrangian derivative of the signal along a cell’s trajectory is negative,

then z1 decreases and k21, the transition rate from the motile state to the resting

polarized state, increases. The resting polarized cell adopts a polarization equal to

the velocity vector before it stops, i. e., u = v after the transition.

(ii) If a cell is resting and there is an increase in the signal, then z1 increases
and it is more likely to move. It the cell is unpolarized, than its initial velocity

(polarization) is zero and the time τd reflects the time delay needed for polarization
of the cell. If the cell was already polarized than its initial velocity is equal to the

polarization vector, i. e.,. we set v = u, and the time delay τd reflects the relaxation

time for turning, if it is necessary.

(iii) A resting polarized cell looses its polarity at a rate λ0, and thus polarized cells
which do not receive a stimulus for a long time lose their polarity.

Next we demonstrate that the model can successfully solve the back-of-the-wave

problem [12,21], i. e., cells will aggregate at the source of the attractant waves.

2.4. Aggregation when resting states are incorporated

The internal dynamics model y written in terms of (19) is given by (36) – (37), and

every cell is described by its position x ∈ R
2, its velocity v ∈ R

2, its polarization

axis u ∈ R
2 and its internal state function y ∈ Y. To compute z1 and q, the radius

of a cell is set to d = 7.5 µm, and we discretize the cell boundary (36) using m
meshpoints,

θj =
2πj

m
, for j = 1, 2, . . . ,m− 1,m.

Then the state of each cell is described by an (m+ 4)-dimensional vector

(x,v, y(θ1), y(θ2), . . . , y(θm)). (46)

Here, v denotes the velocity for an MPC and the polarization axis for an RPC.

We can simply set this equal to 0 for RUCs, which are in fact described by m +
2 variables. The internal state variables y(θj) evolve according to m equations
of the form (37), which are uncoupled because there is no transport along the

membrane. The evolution of x and v is described in Section 2.3. At each time

step we use the y(θj) to numerically approximate integrals (38) – (39) and thereby
compute z1, which is needed for the computation of the transition rates between
different states as shown in Figure 5, and q, which is necessary for the integration

of (45). Throughout we use m = 50, and therefore every cell is described by a
54−dimensional state vector (46).
As was done for Figures 2 and 3, we consider a two-dimensional disk of ra-

dius 5 mm, and we specify a periodic source of cAMP waves at the center of the
domain. The period of the waves is seven minutes, their speed is 400 µm/min, and
the waves are scaled so that the maximum ‖∇S‖ is 1 mm−1. Initially the cells are

distributed uniformly. We use the following base transition rates and sensitivities

in the transition rates kij given in Figure 5:

λ1 = λ2 = λ3 = 1 min−1, λ0 = 0.2 min−1 and b1 = b2 = b3 ≡ b (47)
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Later the parameter b will be varied (cf. Figures 6 and 7). The time constants are
chosen as

τe = 0 (fast excitation), τa = 0.5 min, τd = 2 min. (48)

The two parameters which have yet to be specified are γ in equation (45) and b.
The parameter γ simply rescales the speed of cells. We know from experiments
that the maximal speed of a cell is about 20 µm per minute, which can be used to
fit the value of the parameter γ. We found that for γ = 0.08mm2/min, the average

speed of cells on the steepest part of the wave front is between 10 µm per minute
and 20 µm per minute in all simulations. Hence, we used γ = 0.08 mm2/min to

compute the plots shown in Figures 6 and 7.

The parameter b specifies how strongly the turning rates depend on z1 and we

tested three possibilities b = 0, b = 1 min−1 and b = 2 min−1. If b = 0 the transi-
tion rates kij are independent of z1, and the time evolution of the cell positions is
shown in Figure 6. We see that in this case there is no aggregation, which is similar

to what was shown earlier in Figure 2 where we considered the model without the

internal dynamics and with a constant relaxation time. The computational results
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Fig. 6. The cell distribution as a function of time for b = 0. Positions of 5000 cells at times
0 min and 1000 min for periodic waves of chemoattractant.

for b = 2 min−1 are shown in Figure 7, where the aggregation time is compara-

ble to the eight hours observed experimentally. The results for b = 1 min−1 are

similar - the only difference is that the aggregation is slower (results not shown).

Using (47), we see that the transition rates (which depend on z1) can be expressed
in units of min−1 as k12 = k13 = 1 + bz1 and k21 = 1 − bz1. Since bz1 is
approximately in range [−0.35, 0.35] min−1 for b = 1 min−1 and in the interval

[−0.7, 0.7]min−1 for b = 2min−1, it implies that the turning rates are in the inter-

val [1−0.35, 1+0.35]min−1 for b = 1min−1 and in the interval [1−0.7, 1+0.7]
min−1 for b = 2 min−1. As will be seen in Section 3, the moment approach used

there is justified when bz1 is small, i. e., for small bias of the turning rates. The
error may increase significantly for large b because the higher order moments may
not be negligible.

In these figures, as in the preceding ones related to aggregation, there is no

stream formation such as is observed during aggregation of Dd. Here cells always
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Fig. 7. The cell distribution as a function of time for b = 2 min−1. Positions of 5000 cells
at times 0 min, 100 min, 200 min, 300 min, 500 min and 1000 min for periodic waves of
chemoattractant.

move radially inward toward the source because the waves are imposed and are ax-

isymmetric. In the presence of signal relay, as in Dd, it was shown earlier [32] that

signal relay combined with a random initial distribution of cells plays an essential

part in stream formation.

3. Transport equations

Next we show that the microscopic model for signal detection, transduction and

movement can be embedded in a system of transport equations and thence into

a system of moment equations for macroscopic quantities. To that end, note that

every cell with the same x,v, z1,q and same polarization state will follow the
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same rules for movement, so it is natural to introduce density functions p1, p2, p3

as follows:

• p1(x,v, z1,q) is the density of moving cells at position x with velocity v and

internal moments z1, q;
• p2(x,u, z1,q) is the density of resting polarized cells at position x with po-

larization axis u and internal moments z1, q. To simplify the form of resulting
transport equations, we denote the polarization axis as u ≡ v in what follows;

• p3(x, z1,q) is the density of resting unpolarized cells at position x and with

internal moments z1, q.

Hereafter we assume excitation is fast, i. e., τe = 0, and we use the approximation
given at (40) for the signal. The evolution of internal variables q, z1 is therefore

given by (43) – (44). In order to simplify the following equations for p1, p2 and

p3, we define an operator L by

Lr =
∂r

∂t
+ ∇q ·

[
1

τa
(∇S − q) r

]
+

∂

∂z1

[(
∂S

∂t
−
z1
τa

)
r

]
, (49)

then the transport equations for p1, p2 and p3 are

Lp1 = −∇x · vp1 −∇v ·

[
1

τd
(γq − v) p1

]
−

∂

∂z1

[
(v · ∇S) p1

]

−(λ1 − b1z1)p
1 + (λ2 + b2z1)p

2 + δv(λ3 + b3z1)p
3, (50)

Lp2 = (λ1 − b1z1)p
1 − (λ2 + b2z1)p

2 − λ0p
2, (51)

Lp3 = λ0

∫

V

p2dv − (λ3 + b3z1)p
3. (52)

where δv is the Dirac function. Next we define the macroscopic densities of parti-
cles in different states as follows:

n1(x, t) =

∫

V

∫

R3

p1(x,v, z1,q) dvdz1dq, (53)

n2(x, t) =

∫

V

∫

R3

p2(x,v, z1,q) dvdz1dq, (54)

n3(x, t) =

∫

R3

p3(x, z1,q) dz1dq, (55)

n(x, t) = n1(x, t) + n2(x, t) + n3(x, t), (56)

where n(x, t) is the total density of cells. Here and hereafter the superscript i
denotes a quantity associated with the ith species, for i = 1, 2, 3. If an evolution
equation in n(x, t) alone could be found the problem would be reduced to the
classical case. However we will see that this is not possible in general. First, we

define some additional moments that arise in the usual manner from (50)-(52)
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during derivation of moment equations. More precisely, we derive the evolution

equations for (53) – (56) and for the following moments

ji
vk

(x, t) =

∫

V

∫

R3

vkp
i(x,v, z1,q)dvdz1dq, i = 1, 2; k = 1, 2; (57)

ni
qk

(x, t) =

∫

V

∫

R3

qkp
i(x,v, z1,q)dvdz1dq i = 1, 2; k = 1, 2; (58)

ni
z(x, t) =

∫

V

∫

R3

z1p
i(x,v, z1,q)dvdz1dq i = 1, 2; (59)

n3
qk

(x, t) =

∫

R3

qkp
3(x, z1,q)dz1dq, (60)

n3
z(x, t) =

∫

R3

z1p
3(x, z1,q)dz1dq. (61)

Multiplying (50)-(52) by 1, v1, v2, q1, q2 or z and integrating with respect to v, q

and z1, we obtain the evolution equations for moments (53) – (61). This system of
partial differential equations is not closed - it contains some higher order moments

of the following form

mi
k1,k2,k3,k4,k5

(x, t) =

∫

V

∫

R3

vk1

1 vk2

2 qk3

1 qk4

2 zk5

1 pi(x,v, z1,q)dvdqdz1,

m3
k1,k2,k3

(x, t) =

∫

R3

qk1

1 qk2

2 zk3

1 pi(x,v, z1,q)dqdz1,

where i = 1, 2, kα, α = 1, 2, 3, 4, 5, are nonnegative integer, and the superscript
kα on terms in the integral denotes the kα-th power of the corresponding vari-

able. The simplest way to close the moment equations is by setting to zero all

higher-order moments which do not appear in (53) – (61). More precisely, we use

the following closure assumption: 0 = m1
1,1,0,0,0 = m1

2,0,0,0,0 = m1
0,2,0,0,0 =

m1
1,0,1,0,0 = m1

0,1,1,0,0 = m1
1,0,0,1,0 = m1

0,1,0,1,0 = m1
1,0,0,0,1 = m1

0,1,0,0,1 =
m1

0,0,1,0,1 = m1
0,0,0,1,1 = m1

0,0,0,0,2 = m2
1,0,0,0,1 = m2

0,1,0,0,1 = m2
0,0,1,0,1 =

m2
0,0,0,1,1 = m2

0,0,0,0,2 = m3
1,0,1 = m3

0,1,1 = m3
0,0,2 = 0. This closure assump-

tion can be justified for shallow gradients of the signal [17].

Under this assumption, we multiply (50)-(52) by 1, v1, v2, q1, q2 or z, we
integrate with respect to v, q and z1, and we discard the higher-order moments;
the result is the following closed system of 16 macroscopic equations.

∂n1

∂t
+
∂j1v1

∂x1

+
∂j1v2

∂x2

= −λ1n
1 + λ2n

2 + λ3n
3 + b1n

1
z + b2n

2
z + b3n

3
z , (62)

∂n2

∂t
= λ1n

1 − (λ2 + λ0)n
2 − b1n

1
z − b2n

2
z, (63)

∂n3

∂t
= λ0n

2 − λ3n
3 − b3n

3
z, (64)
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∂j1vk

∂t
−

1

τd

[
γn1

qk
− j1vk

]
= −λ1j

1
vk

+ λ2j
2
vk
, k = 1, 2, (65)

∂j2vk

∂t
= λ1j

1
vk

− (λ2 + λ0)j
2
vk
, k = 1, 2, (66)

∂n1
qk

∂t
−

1

τa

∂S

∂xk

n1 +
1

τa
n1

qk
= −λ1n

1
qk

+ λ2n
2
qk

+ λ3n
3
qk
, k = 1, 2,(67)

∂n2
qk

∂t
−

1

τa

∂S

∂xk

n2 +
1

τa
n2

qk
= λ1n

1
qk

− (λ2 + λ0)n
2
qk
, k = 1, 2, (68)

∂n3
qk

∂t
−

1

τa

∂S

∂xk

n3 +
1

τa
n3

qk
= λ0n

2
qk

− λ3n
3
qk
, k = 1, 2, (69)

∂n1
z

∂t
−
∂S

∂t
n1 +

1

τa
n1

z −

2∑

i=1

∂S

∂xi

j1vi
= −λ1n

1
z + λ2n

2
z + λ3n

3
z, (70)

∂n2
z

∂t
−
∂S

∂t
n2 +

1

τa
n2

z = λ1n
1
z − (λ2 + λ0)n

2
z, (71)

∂n3
z

∂t
−
∂S

∂t
n3 +

1

τa
n3

z = λ0n
2
z − λ3n

3
z (72)

Note that the sum of equations (62) – (64) is the standard continuity equation for

n, i. e.,

∂n

∂t
+
∂j1v1

∂x1

+
∂j1v2

∂x2

= 0. (73)

The system (62) – (72) can be written more compactly by defining the following

vectors and matrices.

n =(n1, n2, n3)T nz = (n1
z, n

2
z, n

3
z)

T

nq = (nq1
,nq2

) = (n1
q1
, n2

q1
n3

q1
, n1

q2
, n2

q2
, n3

q2
)T

j = (jv1
, jv2

)T = (j1v1
, j2v1

, j1v2
, j2v2

)T ∇ =

(
∂

∂x1

,
∂

∂x2

)T

Λ =



−λ1 λ2 λ3

λ1 −(λ2 + λ0) 0
0 λ0 −λ3


 Λ1 =

[
−λ1 λ2

λ1 −(λ2 + λ0)

]
(74)

B =




b1 b2 b3
−b1 −b2 0
0 0 −b3



 J =




1 0
0 0
0 0



 J1 =

[
1 0
0 0

]
(75)
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We further define the tensor product of an s1 × s2 matrixX = {xik}
s1,s2

i,k=1
with an

s3 × s4 matrixY = {yik}
s3,s4

i,k=1
to be the (s1s3) × (s2s4) matrix

X⊗ Y =



x1,1Y x1,2Y . . . x1,s2

Y

. . . . . . . . . . . .
xs1,1Y xs1,2Y . . . xs1,s2

Y


 .

Then (62) – (72) can be rewritten in the form

∂n

∂t
+

(
∇T ⊗ J

)
j = Λn + Bnz, (76)

∂nz

∂t
=
∂S

∂t
n +

(
Λ−

1

τa
I3

)
nz +

(
∇TS ⊗ J

)
j, (77)

∂nqk

∂t
=

(∇S)k

τa
n +

(
Λ−

1

τa
I3

)
nqk

for k = 1, 2, (78)

∂jvk

∂t
=

γ

τd
JT nqk

+

(
Λ1 −

1

τd
J1

)
jvk

for k = 1, 2. (79)

wherein Ik is k × k identity matrix. This system can in turn be written more com-
pactly as the system

∂U

∂t
+ DU = A(x, t)U (80)

wherein

U =




n

nz

nq

j


 , D =




0 0 0 Ω

0 0 0 0

0 0 0 0

0 0 0 0



, Ω ≡ ∇T ⊗ J, (81)

and

A =




Λ B 0 0

∂S

∂t
I3

(
Λ−

1

τa
I3

)
0 (∇S)T ⊗ J

∇S

τa
⊗ I3 0 I2 ⊗

(
Λ−

1

τa
I3

)
0

0 0
γ

τd
I2 ⊗ JT I2 ⊗

(
Λ1 −

1

τd
J1

)




.

(82)

We should note that discarding higher-ordermoments can be justified for the small

signal gradient case in which the second moments of internal variables are suffi-

ciently small compared to lower- order moments [17]. It is important to note that

the second order velocity momentsm1
1,1,0,0,0, m

1
2,0,0,0,0 and m

1
0,2,0,0,0 were also

set to zero because we do not have an obvious moment closure for them similar to

what was used in the bacterial case [18], where the Cattaneo approximations could

be used.



Taxis Equations for Amoeboid Cells 27

To obtain a better approximation of these moments we can follow the reasoning

that lead to the closure (30) earlier. To illustrate this, let us modify the taxis model

by adding a random component to the cellular movement, namely we change the

transport equation (50) to the following equation for p1:

Lp1 = −∇x · vp1 −∇v ·

[
1

τd
(γq − v) p1

]
−

∂

∂z1

[
(v · ∇S) p1

]

−λp1 + λ

∫

V

T (v,v′)p1(x,v′, t)dv′ − (λ1 − b1z1)p
1 (83)

+(λ2 + b2z1)p
2 + δv(λ3 + b3z1)p

3

where the turning kernel is given by T (v,v′) = (2πv0)
−1δ(|v−v′|−v0) similarly

as before, and v0 and λ are positive constants. The rationale behind this kernel is
to incorporate some noise into the system, and v0 specifies the “strength” of this

noise. If we follow the previous procedure, we would obtain the same system of

equations (80), which are independent of v0. This is not suprising - we already
saw in Section 2.1 that equation (33) contains the diffusion term if the apropriate

closure assumption is derived from (30) and used for the second-order velocity

moments. Similarly as in (30), we can multiply the transport equations (84) and

(51) by vkvl, k, l = 1, 2, and neglect time derivatives of the convective fluxes,
third-order velocity moments and mixed velocity-internal moments to obtain

m1
2,0,0,0,0 = m1

0,2,0,0,0 =
λτd(λ0 + λ2)v

2
0

4(λ0 + λ2) + 2τdλ0λ1

n1(x, t),

(84)

m1
1,1,0,0,0 = 0.

Using the moment closure (84) for the convective momentum flux of p1, we obtain

the following system of moment equations (compare with (80)).

∂U

∂t
+ D̃U = A(x, t)U (85)

HereA(x, t) is given by (82) andU = (n,nz ,nq, j)
T is as in (81), but D̃ is now

given by

D̃ =




0 0 0 Ω

0 0 0 0

0 0 0 0

αΩT 0 0 0




where α =
λτd(λ0 + λ2)v

2
0

4(λ0 + λ2) + 2τdλ0λ1

. (86)
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3.1. Analysis of the statistics of motion

To illustrate the validity of reducing the transport equation to the system of hy-

perbolic equations, we compute the dependence of the mean speed of cells on the

strength of the underlying signal.

Multiplying equation (73) by x and integrating with respect of x, we obtain

the equation for the mean speed vav(t) of the cellular population in the following
form

vav(t) ≡
∂

∂t

[
1

n0

∫

R2

xn(x, t)dx

]
=

j1

n0

(87)

where

n0 =

∫

R2

n(x, t)dx and j1 =

∫

R2

j1(x, t)dx. (88)

Here, n0 denotes the total number of cells in the system and j1 is the spatial average

of the flux j1 = [j1v1
, j2v2

]. Consequently, to estimate the average speed of cells at

a given time we have to estimate j1/n0.
To do this we use a one-parameter family of time-independent linear distribu-

tions of extracellular signal S defined by (5), parametrized by ‖∇S ‖. Then the
matrix A(x, t) ≡ A(‖∇S ‖) is independent of x and t, and we can integrate
equation (80) with respect to x to obtain

∂U

∂t
= A(‖∇S‖)U where U =

∫

R2

U(x, t)dx. (89)

Solving system (89) for U, we can estimate the value of mean speed of the cells

as

vav(t) =
j1

n0

=
U13

U1 + U2 + U3

,

and we see that vav(t) will asymptotically approach the velocity v∞

av given by

v∞

av =
ψ13

ψ1 + ψ2 + ψ3

(90)

where ψ is a solution of

A(‖∇S‖)ψ = 0.

Using parameter values (47) – (48) with b = 1 min−1 and γ = 0.08 mm2/min,

we can compute the asymptotic average speed v∞

av by (90) for different values of

‖∇S‖. The solid curve in Figure 8(a) shows v∞

av as a function of ‖∇S‖.
The theoretical result (90) can be verified by stochastic simulations, and to

that end we consider an ensemble of 500 cells. We discretize the boundary (36)

of each cell usingm = 50 mesh points. Hence, the state of each cell is described
by 54-dimensional vector (46) similarly as in Section 2.4. The internal dynamics

model y written in terms of (19) is given by (36) – (37). The radius of a cell is set

to d = 7.5 µm and we use parameter values (47) – (48) with b = 1 min−1 and

γ = 0.08 mm2/min. The initial conditions are the same for all cells: namely all

cells begin at position x = 0, their initial velocities satisfy v = 0, their internal



Taxis Equations for Amoeboid Cells 29

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

a
v
e

ra
g

e
 s

p
e

e
d

  
[µ

m
/m

in
]

signal size ||∇S||  [mm
−1

]

 

 

 transport equations
stochastic simulation

(b)

0 5 10 15 20
0

20

40

60

80

100

120

slope=6 µm/min

time  [min]

m
e

a
n

 p
o

s
it
io

n
 (

x
1
 c

o
o

rd
in

a
te

) 
 [

µ
m

]

Fig. 8. (a) Comparison of v∞

av computed by (90) (solid curve) with results obtained by
stochastic simulations (circles) for different values of ‖∇S‖. (b) Average position of indi-
viduals (given by stochastic simulation) as a function of time for ‖∇S‖= 0.2 mm−1.

variables are equal to 0 around the entire membrane, and cells are initially unpo-
larized. The average position of cells as a function of time is given in Figure 8(b)

for ‖∇S‖= 0.2 mm−1. Since cells are initially unpolarized and resting, the initial

cellular flux is zero. If we wait for a sufficiently long time, the average speed of the

cells relaxes to a constant, and when we estimate this from long-time simulations,

we obtain the values which are shown as circles in Figure 8(a). Comparing data in

Figure 8(a), we see that the theoretical result (90) gives a very good approximation

of the mean asymptotic speed estimated from simulations. This demonstrates the

fact that one can extract population level information from the moment equations

derived earlier.

Finally, we note that the previous analysis can be repeated for (85). The differ-

ence between (80) and (85) is the additional noise in the latter, which leads to the

system (85). However, this noise will only influence the diffusion constant and the

average speed of the population will be unchanged.

3.2. Further reduction of moment equations

One can further reduce the size of the system of moment equations (80) by sup-

posing that the internal dynamics evolve much faster than changes in cytoskeleton

and movement. Considering the excitation time τe = 0 and that the adaptation
time τa ≪ τd, we can assume the quasi-equilibrium in the equations for nq and

nz in (80), i. e.,

nz = τa (I3 − τaΛ)−1

[
∂S

∂t
n +

{
(∇S)T ⊗ J

}
j

]
(91)

and

nq = [I2 ⊗ (I3 − τaΛ)]−1 [∇S ⊗ n] (92)

Substituting formulas (91) – (92) into (80), we can formally derive the reduced

system of 7 moment equations for n and j only. These equations are derived under

the assumption that τa is small. Passing formally to the limit τa → 0 in (91) –
(92), we obtain nz → 0 and nq → ∇S ⊗ n. As one would expect in light of the
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Fig. 9. The real parts of the eigenvalues of A(‖∇S‖) for (a) ‖∇S‖∈ [0, 1] mm−1; (b)
‖∇S‖∈ [0, 10] mm−1.

discussion following (45), the reduced equations predict movement up a steady

gradient, but not in a periodic wave for τa = 0.

Another approach to eliminate the internal dynamics is to assume the quasi-

equilibrium assumption directly in (43) – (44), i.e.

q(x, t) ≈ ∇S(x, t) and z1(x, t) ≈ τa
∂S

∂t
(x, t) + τav · ∇S(x, t).

Denoting p1(x,v) the density of motile cells at position x ∈ R
2 with velocity

v ∈ V ⊂ R
2, p2(x,v) the density of resting polarized cells at position x with

polarization axis v and n3(x) the density of resting unpolarized cells, we can
write transport equation for p1, p2 and n3. Again 7 moment equations for n and

j can be derived. Such equations were derived and analysed for one-dimensional

case in [13]. It was shown that in some parameter regimes, the reduced system

approximates the simulation with a reasonable precision. See [13] for details. The

precision of the approximation depends on the parameter values chosen.

Finally one can ask whether the method developed in [17,18], for reducing

a hyperbolic system similar to (80) to the classical chemotaxis equations, can be

applied here as well. In the context of chemotaxis based on a “run-and-tumble”

strategy we were able to analytically compute the eigenvalues and eigenvectors

of A(x, t), and it was shown that they are independent of the chemotactic signal.
By exploiting the facts that the spectral gaps are signal-independent, and that rea-

sonably simple formulas for eigenvectors are available, we reduced the hyperbolic

system of moment equations to the classical chemotaxis description in the bacte-

rial case [17,18]. In the case of system (80), the resulting slow eigenvalues are, for

general values of parameters, very complicated functions of the parameters, and in

particular they depend on the signal. To illustrate this, we consider the linear sig-

nal distribution (5) that leads to (89), we consider parameters from Section 3.1 and

plot the real parts of the eigenvalues ofA(‖∇S‖) as functions of ‖∇S‖ in Figure
9. One sees there that the eigenvalues vary significantly with the signal strength.

Further analysis is needed to better define the conditions under which the hy-

perbolic system can be reduced further. In that vein, we note that ignoring the term∑2

i=1
(∇S)ij

1
vi
in equation (70) leads to the matrix A(‖∇S‖) which has signal-
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independent eigenvalues. Thus the possibility of further reduction clearly depends

on the closure assumptions.

4. Discussion and conclusions

The goal in this paper was to derive macroscopic equations for the collective be-

havior of amoeboid cells based on models for individual-level behavior. In pre-

vious work we developed a moment closure approach to the transport equation

for a velocity jump process that describes cell motion for cells that use a “run-

and-tumble” strategy [17,18]. Here we demonstrated that this approach can also

be applied to the more complex processes involved in the movement of crawling

cells, and showed that one can predict important macroscopic characteristics from

knowledge of the individual-level properties of these cells. We focused on chemo-

taxis in Dd as the model system because much is known about this system, but

the general approach can be applied to any type of extracellular signal, including

those that arise from all receptor-based interactions of a cell with its environment.

Here we summarize the approach and discuss its advantages and limitations.

In Section 2 we introduced the general model (19) – (20) for the behavior of an

individual eukaryotic cell. Since this model is often infinite-dimensional, we have

to first reduce it to the finite-dimensional form (22) – (23). If such a reduction is

possible, we can apply the transport equation framework (24) for the reduced set

of variables. In this case we can derive the appropriate moment equations (80) and

use them to study the macroscopic collective properties of cells, as we illustrated in

Section 3.1 where we studied the dependence of the average speed of the cellular

population on the strength of the extracellular signal.

Therefore the crucial assumption for a model which can be treated in the frame-

work developed here is that the projection P from (21) exists and the equations
(22) – (23) can be easily written. If this is not the case, it may be still possible to

reduce the individual-level dynamics to a low-dimensional description of an indi-

vidual cell. The behavior of these coarse (intracellular) observables (on the level of

a cell) can be studied by computational equation-free methods which are currently

being developed [29,15]. The similar computational methods can be then used to

study the population-level properties of the amoeboid cells using either the full

model of an individual cell or the best available reduction of it [29,16].

The moment closure reduction of the transport equation used here can be jus-

tified for small signal gradients [17], but in the case of large signal gradients, the

higher order moments may not be negligible and cannot be discarded. Similar mo-

ment methods can be used for any model assuming that the internal dynamics is

close to its quasi-equilibrium. If the original internal dynamics model is nonlinear,

it can be linearized around its equilibrium value for small signal gradients and the

moment approach can be applied. Hence, the reader should view our linear model

as an example of the linearization of more complex nonlinear problems. Of course,

the linear model is clearly not valid for large signal gradients, but this is not the

parameter regime studied in this paper. However, even some strongly-nonlinear

models for internal dynamics produce simple input-output behavior that can be

captured by a linear model with possibly signal-dependent parameters [18], and
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thus the results presented here may have broader applicability than the deriviation

would suggest if applied strictly.

In the case of a constant external signal gradient we were able to derive explicit

expressions for various statistics of the motion from the hyperbolic system derived

from the transport equation. We also discussed the predicted behavior of models

for experimental conditions such as spatio-temporal waves of chemoattractant. It

is known that eukaryotic cells such as Dd or leukocytes aggregate at the source of

the waves, and the models studied here include the processes, such as adaptation,

that are necessary to reproduce this behavior.

The models described here are all based on deterministic extracellular signals

and deterministic signal transduction pathways, although a small random compo-

nent was added to the choice of direction. The effects of stochastic fluctuations

in signal detection and processing on movement were introduced in [11], where

stochastic differential equations are postulated to model cell movement on the time

scale of the molecular processes that govern locomotion. Some concrete estimates

of the probable role of noise in the signal seen be a Dd cell were made in [39].

However a much more detailed analysis of stochastic effects in all components of

the movement response is needed.
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