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Abstract
Metagenome research uses random shotgun sequencing of microbial community DNA to study the genetic
sequences of its members without cultivation. This development has been strongly supported by improvements in
sequencing technologies, which have rendered sequencing cheaper than before. As a consequence, downstream
computational analysis of metagenome sequence samples is now faced with large amounts of complex data.One of
the essential steps in metagenome analysis is reconstruction of draft genomes for populations of a community or
of draft ‘pan-genomes’ for higher level clades. ‘Taxonomic binning’ corresponds to the process of assigning a taxo-
nomic identifier to sequence fragments, based on information such as sequence similarity, sequence composition
or read coverage.This is used for draft genome reconstruction, if sequencing coverage is insufficient for reconstruc-
tion based on assembly information alone. Subsequent functional and metabolic annotation of draft genomes
allows a genome-level analysis of novel uncultured microbial species and even inference of their cultivation
requirements.
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INTRODUCTION
The application of genome sequencing technologies

to the study of an entire community of microbial

organisms, as opposed to a clonal culture of an indi-

vidual isolate strain, is known as metagenomics [1, 2].

Such analysis allows one to determine genome

sequence information for a vast portion of the mi-

crobial world for which cultivation conditions are

unknown or difficult to reproduce under laboratory

conditions [3, 4]. Even the first metagenome studies,

investigating the Sargasso Sea [5] and Minnesota farm

soil [6], were able to demonstrate the enormous

potential of the microbial world to serve as a treasure

trove of genes with novel functionalities, as these

studies resulted in the discovery of many thousands

of new gene sequences that were only remotely

similar to genes of known function. They also

revealed the unexpected complexity of microbial

communities in terms of the number of taxa con-

tained therein. Since then, much research has

explored microbial ecosystems, soil, aquatic and

host associated, in more detail [7–11] and has

revealed a great wealth of novel genetic information

from microbial species that are only distantly related

to well-studied model organisms.

Both amplicon sequencing and random shotgun

sequencing of microbial communities are sometimes

referred to as metagenomics. Amplicon sequencing,

or environmental tag sequencing, is used to deter-

mine the taxonomic composition and phylogenetic

structure of a microbial community. In amplicon

sequencing, informative marker regions of the
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genomes from a microbial community are amplified

by polymerase chain reaction, and used as a proxy to

determine which phylotypes or operational taxo-

nomic units (OTUs) are present in a microbial com-

munity, and their relative abundance. Commonly

used markers regions are the ribosomal genes [12]

and the internal transcribed spacer region [13],

which is positioned between ribosomal genes. In

terms of numbers and the evolutionary closeness of

the distinct species present, microbial community

profiles can be correlated across environments and

communities, linked to environmental parameters.

They can be indicative of the presence of genes

that are relevant for particular metabolic functional-

ities [14], given that the respective genes are already

known. However, the gene inventory and the

encoded functionality of most microbial species are

largely unknown and may also vary considerably

between strains.

Shotgun sequencing can be used to study the gen-

etic information of microbial communities by

sequencing DNA that has been extracted and ran-

domly sheared into smaller fragments. Even though

subject to different technology-dependent biases, this

procedure allows functional and process-level char-

acterization of microbial communities as a whole and

the reconstruction of draft genome sequences for

individual community members.

NEXT-GENERATION SEQUENCING
TECHNOLOGIES
DNA sequencing technologies have rapidly

advanced over the last 5 years and these develop-

ments have substantially shaped the way metagen-

ome research is performed. Post-Sanger sequencing

technologies are commonly referred to as next-

generation sequencing (NGS) [15, 16]. In compari-

son with Sanger sequencing, NGS methods can

sequence DNA more quickly and at lower cost

through massive parallelization. This is generally

achieved by amplification and fixation of millions

of individual template molecules or their enzyme

counterparts on a solid phase prior to sequencing.

Although Sanger sequencing results in read lengths

of �800 bp, the commercially available NGS tech-

nologies (Table 1) currently generate reads of

�50–75 bp (Applied Biosciences/Life Technologies

– SOLiD), 75–150 bp (Solexa/Illumina – Sequen-

cing by Synthesis), 100–200 bp (IonTorrent/Life

Technologies – Semiconductor Chip Sequencing)

and 550–1000 bp (454/Roche – Pyrosequencing).

The upcoming generation [17, 18] of sequencers

using single molecule sequencing produces read

lengths of more than 1 kb (PacBio, SMRT,

15–20% assumed error rate [17]) and of 5–10 kb

(Oxford Nanopore technology, 5% assumed error

rate). Besides different read lengths and amounts of

sequence data produced, each technology has a char-

acteristic profile of sequencing errors, resulting from

the technology-specific preparation and detection

procedures. The choice of an appropriate sequencing

technology depends on the scientific questions asked.

For instance, while an 80 bp read is sufficient to

cover a hypervariable region in the 16S gene [12]

for analysis of microbial community composition,

denovo recovery of draft microbial genome sequences

by taxonomic binning from a complex organismal

mixture requires substantially longer reads or higher

sequencing depth and sequencing of short paired

reads [9, 11, 19, 20].

BIOINFORMATICANALYSIS OF
METAGENOME SAMPLES
NGS produces large volumes of sequence data

(Table 1). Currently, a single run of an Illumina

HiSeq machine generates up to 600 Gb per run

(www.illumina.com), which is of the order of 104

times the amount of data produced in a similar time-

frame by a Sanger sequencing chemistry based se-

quencer (Table 1). This, in turn, results in

drastically increased runtimes for all the bioinfor-

matics procedures applied in metagenomics [21],

such as assembly of sequence fragments, taxonomic

binning, prediction of protein encoding genes, as

well as functional and process-level gene annotation.

Together, taxonomic binning and assembly allow

draft genome reconstructions for community mem-

bers for which sequencing has recovered substantial

amounts of sequence. Assembly corresponds to the

computational process of placing individual reads

into longer pieces of contiguous sequences, known

as contigs, based on sequence overlaps and paired

read information. Taxonomic binning sorts the con-

tigs of a metagenome sample into ‘bins’ that repre-

sent the populations or higher-level clades of

community members. Though both tasks are per-

formed independently and evaluate different types

of information, the problem of metagenome

sequence assembly is closely related to taxonomic

binning, as both allow the reconstruction of draft
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genome sequences. The terms ‘taxonomic’ and

‘phylogenetic’ binning are both used in the litera-

ture, as modern taxonomies such as the NCBI tax-

onomy [22] or the ribosomal gene based RDP-II

[23], GreenGenes [24] and ARB-SILVA [25] taxo-

nomies are built upon phylogenetic principles. Even

though it is less consistent, taxonomic binning soft-

ware for shotgun metagenomics most frequently

relies on the NCBI taxonomy, probably due to its

widespread use in annotation of public sequence

data.

Similar to the assembly of individual isolated

genomes [26], assembly in metagenomics aims to

recover long contiguous pieces of sequence from

the sequence collection of reads that represent parts

of the genomes of individual community members.

Massively increased amounts of data, varying organ-

ism abundances within a sampled community, dif-

fering complexities in terms of the overall number of

organisms contained and the presence of multiple

closely related organisms all challenge the sequence

assemblers that were originally designed for isolated

genomes. To address these challenges, methods de-

signed for assembly of microbial community NGS

data [27–30] are being developed. Paired-end or

mate-pair protocols, which add distance information

between two individual reads, can greatly aid in the

assembly process. Assembly information such as the

ordering of contigs within a scaffold can also be used

to check binning quality, and binning has been used

to refine assembly in a feedback process. In recent

studies, the joint analysis of assembly information and

sequence composition allowed the reconstruction of

several partial genomes by taxonomic binning

[19, 20]. Thus, a closer integration of the two

approaches appears promising for draft genome

reconstruction from NGS metagenome data.

Following assembly and binning, further bioinfor-

matic analyses include the prediction of genes, as

well as functional annotation and reconstruction of

potential pathways. For these steps, dedicated web

servers exist, such as MG-RAST [31], IMG/M

[32] and CAMERA [33]. Analysis of the gene con-

tent of individual bins allows inference of the func-

tional and metabolic capabilities of individual

community members, and allows a metagenome

sample to be studied in its entirety. If read lengths

or sequencing depth are insufficient for assembly, the

functional analysis of a metagenome sample is re-

stricted to what can be inferred without partial

genome reconstructions for individual community

members.

BINNING STRATEGIES
The term binning was originally coined for the prob-

lem of separating the sequence fragments of a meta-

genome according to the microbial populations they

originate from [7, 34]. The definition has been ex-

tended to include bins that represent all fragments

that originate from a common higher level clade,

in cases where resolution down to individual popu-

lations is not possible. For placement of sequence

fragments into taxonomic bins, attributes which are

Table 1: Throughput and read lengths of different sequencing technologies

Manufacturer and technology Length (bp) Throughput* Normalized
throughput** (Mb/h)

Throughput
scale***

Time
per run

Solexa/Illumina Sequencing by Synthesis 100 300Gb/8.5 days 1500 104 8.5 days
^150 ^ 600Gb/11 days ^2300 ^11 days

LifeTechnologies/Applied Biosystems SOLiD 50 7Gb/day 300 103^104 2 days
^75 ^20Gb/day ^800 ^7 days

LifeTechnologies/IonTorrent 100 10Mb/2h 5 101^103 2h
^200 ^1Gb/2h ^500

Roche/454 Pyrosequencing 550 450 Mb/10h 30 102 10h
^1000 ^700Mb/23h ^45 ^23h

LifeTechnologies Capillary Sanger sequencing 600 690 kb/day 0.029 100 �7h [15]
^900 ^2100kb/day ^0.088

*Numbers are based onvendor information: Illumina Inc. (www.illumina.com), LifeTechnologies (www.lifetechnologies.com),Roche/454 (www.454.
com). **Normalized throughput is scaled to a 1-h period and rounded. ***The throughput scale is compared with LifeTechnologies 3730 Sanger
chemistry-based sequencer and shows theratio of throughputvalues in terms of order ofmagnitude.Because lackof information on sequencing stat-
istics or commercial availability, Pacific Biosciences (www.pacificbiosciences.com), Oxford NanoporeTechnologies (www.nanoporetech.com) and
Helicos Biosciences (www.helicosbio.com) are excluded.
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indicative of the taxonomic origin of a fragment are

evaluated. Different types of information can be used

for this purpose: (a) local sequence similarity to se-

quences of known taxa (used in similarity-based

taxonomic assignment), (b) similarity in sequence

composition to sequences of a given taxon (used in

composition-based taxonomic assignment) or to

other sequences in the sample (used in composi-

tion-based clustering) or (c) similarity in read cover-

age and linkage information from assembly for

contigs within a metagenome sample. The underly-

ing rationale of using read coverage is that similar

coverage of two contigs in the sample indicates simi-

lar abundance and therefore potentially the same

underlying source population in the community.

How accurately fragments can be assigned to taxo-

nomic bins depends on several factors. The first is

fragment length. Shorter, noisier fragments cannot

be assigned as accurately as longer fragments of

2 kb or more [35]. In particular, assignment of indi-

vidual reads or of fragments less than 1 kb in length

poses significant challenges. Reported assignment

accuracies for 100 bp fragments to a clade at the

genus level are 60% under somewhat idealized

conditions, with only reference data from the same

species being removed. This, however, means that

40% of fragments are misassigned [36]. Furthermore,

accuracy drops to less than 30% if the reference data

are depleted of sequences from the same genus,

meaning 70% of 100 bp fragments are misassigned

at the family level.

Another influential factor for binning accuracy is

the community’s complexity in terms of the number

of distinct phylotypes it comprises. Metagenome

sequencing of complex communities, such as those

found in soil [11], results in lower sequencing cover-

age of most populations and therefore shorter contigs

in assembly. This amounts to many short fragments,

or even predominantly unassembled samples, which

have to be separated into a multitude of taxonomic

bins. The larger the number of bins, the harder the

problem becomes, as the chances of randomly assign-

ing a fragment correctly decrease with increasing

numbers of bins. Finally, for taxonomic assignment,

the availability of reference data from taxa that are

closely related to the microbes of the sequenced

community is important for accurate assignment.

Similarity-based assignment of metagenome shotgun

sequence data requires homologous reference

sequences from related taxa to be available for a frag-

ment to be assigned; ideally, entire sequenced

genomes should be available. The sequencing of

many isolate genomes of the human microbiome

in the Human Microbiome Project has immensely

helped similarity-based taxonomic assignment of

human gut metagenome samples [43, 44]. A ‘shal-

low’ (i.e. to high-ranking clades only) taxonomic

assignment of a sample based on sequence similarities

indicates the presence of many taxa that are only

distantly related to isolated sequenced genomes. If

no sequenced genomes from related taxa are avail-

able, composition-based assignment can be used for

higher resolution taxonomic binning. Clustering of

metagenome fragments based on sequence compos-

ition does not require reference sequences and com-

parably small amounts of non-homologous reference

sequences are required for composition-based taxo-

nomic classification. Table 2 lists available web-based

applications for phylotyping and taxonomic binning

of metagenome samples.

Taxonomic binning based on sequence
similarities
Similarity-based taxonomic assignment utilizes the

local similarity of a query sequence to sequences of

known taxonomic origin. Taxonomic identifiers are

commonly assigned either by identifying the lowest

common ancestor (LCA) from the taxonomy for the

taxa of the most similar sequences found [35] or by

using phylogenetic placement methods. Phyloge-

netic placement methods, such as pplacer [45],

EPA/RaxML [46] and SEPP [47] place the query

sequence within a fixed reference tree. The taxo-

nomic label assigned then corresponds to the LCA

of the taxa associated with the first ancestral node’s

children. Both methods are related to ‘nearest neigh-

bor’ classification. In both cases, there has to be a

search phase in which such similarities are identified.

Typically, local similarities to sequence database

entries are searched for with alignment programs

such as BLAST [48]. Searches for gene family or

protein domain motifs in the query sequence can

be performed with a reference collection of profile

Hidden Markov Models (HMMs). HMMER 3.0,

released in 2010, has a 100-fold increase in speed

compared with prior versions, with runtimes being

competitive to blastp [49]. Screening a large meta-

genome sample with a collection of profile HMMs

for marker genes is computationally much less de-

manding than a full search for similar regions in large

sequence collections [49]. This is because the

number of entries to be searched against is typically
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several orders of magnitude lower. HMMs are popu-

lar in combination with phylogenetic placement

approaches, as the required multiple alignment of a

query sequence to the homologs can be directly

deduced from the state path of the sequence through

the HMM and the multiple alignment used in its

construction. However, known marker genes or

protein families from reference collections such as

PFAM only cover a small part of the genes found

across diverse environments. Therefore, most

HMM-based approaches [38, 50, 51] may be seen

as phylotypers of metagenome samples, rather than

binning methods, as they indicate the taxonomic

composition of the sample based on placement of a

fraction of the fragments, rather than assigning the

entire sample.

Searching for similar sequences in large sequence

collections results in a higher fragment coverage with

hits than when profile HMMs are used. Analysis of a

metagenome sequence sample therefore comes with

high computational costs, beyond what a typical

desktop computer is capable of. When using a simi-

larity search, one is therefore confronted with the

question of which reference sequences to compare

with. The choice depends on the available time and

computational resources. Databases that are often

searched are NCBI RefSeq, a non-redundant nu-

cleotide and protein collection for medical, func-

tional and diversity studies; NCBI whole genomes;

NCBI nt, a large nucleotide collection; and NCBI

nr, a large non-redundant protein collection [22].

Software such as MEGAN [52] allows the output

of BLAST to be interpreted for the taxonomic and

functional characterization of metagenome samples

based on sequence similarity. If sequenced genomes

of related species to the sampled taxa exist, recruit-

ment analysis has been used [43]. Here, each read is

compared with a set of genome sequences and ‘re-

cruited’ to the most similar genome, allowing the

identification of reads of the prevalent species that

are closely related to a sequenced reference collec-

tion, if performed with stringent alignment cut-offs

[53].

Case study 1
Recruitment analysis. In [54], Illumina and Roche/

454 sequencing were jointly used to generate

860 Mb of non-human sequence data from a micro-

bial community of human dental plaque. All

obtained reads were aligned against 50 available

reference genomes for human oral microbes from

the Human Microbiome Project using Mummer,

resulting in recruitment of 4% of all reads with

more than 97% sequence identity to one of the ref-

erence genomes. This indicates that most of the

sampled microbes originate from species that are

too distantly related to the sequenced reference col-

lection for similarity-based recruitment.

Taxonomic binning based on sequence
composition
The composition-based approach to taxonomic bin-

ning is to utilize the taxonomic signal contained in

fragment-wide GC content, codon usage or the use

of short oligomers (kmers), typically 4–6 bp long.

The observation that such properties tend to vary

more across the genomes of different species than

within a given one gave rise to the term genome

signatures [54, 55]. Such signatures can also be

inferred for higher-level clades, allowing their use

Table 2: Overview of existing web applications for taxonomic assignment and phylotyping of metagenome se-
quence samples

Name Phylotyping Taxonomic
assignment

Functional
annotation

Techniques and web link

CAMERA [33] (v.2) 3 ç 3 Reverse Psi-BLAST (http://camera.calit2.net)
MetaABC [37] ç 3 ç BLAST, PhymmBL, MEGAN, Sort-ITEMS

(http://bits2.iis.sinica.edu.tw/MetaABC/)
MG-RAST [31] (v.3.1.2) 3 ç 3 BLAST/BLAT (http://metagenomics.anl.gov)
MLTreeMap [38] (v.2.06.1) 3 ç 3 BLAST, HMMER, RaxML (http://mltreemap.org)
NBC [39] (v.1.1CLI) ç 3 ç Nai«ve Bayesian Classifier (http://nbc.ece.drexel.edu)
PhyloPythia [40], PhyloPythiaS [35] ç 3 ç (Structured) SVM (http://cbcsrv.watson.ibm.com/phylopythia.html;

http://binning.bioinf.mpi-inf.mpg.de)
TaxSOM [41] ç 3 ç Self-Organizing Maps (http://soma.arb-silva.de)
WebCARMA [42] (v.3.0) 3 3 3 BLAST, HMM search versus Pfam

(http://webcarma.cebitec.uni-bielefeld.de)

Phylotypingmethods assign only a subset of contigs based on taxonomic marker genes.
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for taxonomic fragment assignment across various

ranks [40].

Taxonomic binning based on sequence compos-

ition can be performed with supervised or unsuper-

vised methods. The choice of which to use depends

on the availability of suitable reference data.

Unsupervised methods group fragments with similar

composition profiles into clusters, corresponding to

individual taxonomic bins. Inference of the taxo-

nomic label for a bin can be performed based on

taxonomic assignment of marker genes found in

the fragments of a bin. To infer the clustering of

fragments, existing methods use, for example, a

graph-cut algorithm or variations of a self-organizing

map algorithm [56, 57]. A sample can also be binned

with supervised methods, which assign fragments to

clades using a model trained with available reference

sequences. Supervised methods tend to have higher

accuracy than unsupervised methods for taxonomic

assignment and are more easily applied to complex

microbial mixtures with skewed organism abun-

dances. However, they require sufficient amounts

of reference sequences to be identified for the

sample populations or higher-level clades which are

to be included in the model. In practice, therefore,

each approach has its own appeal and both are being

applied. Methods used for supervised classification

are, for example, (structural) Support Vector

Machines (SVMs) [40], the naive Bayes classifier

[39], a k-nearest neighbor classifier [58] and

Interpolated Markov Models [36]. As composition-

based signatures are a global attribute of sequences,

no entire reference genomes are required, but only

sufficient amounts of sequences for inference of a

composition-based signature. For SVM-based classi-

fication, this has been found to be �100 kb per clade

[35]. Reference sequences can be identified among

publicly available genomes or by taxonomic assign-

ment of conserved marker-genes of the sample con-

tigs, which allows the respective contigs to be used as

training material. If necessary, fosmids carrying

marker genes can be sequenced to generate training

material for interesting sample populations or higher

level clades [10, 59, 60].

Case study 2
Taxonomic binning by composition-based taxonomic
assignment. In [59], a microbial gut community

from the Australian Tammar wallaby was studied

by Sanger and 454 sequencing of metagenome plas-

mid and fosmid libraries. This microbial community

is involved in the breakdown of plant biomass con-

sumed by the host animal. Using 16S rRNA analysis,

236 distinct phylotypes were observed. Of the 16S

rRNA sequences, 9% originated from a novel spe-

cies, Wallaby group 1 (WG-1), in the family of

Succinivibrionaceae. PhyloPythia, a composition-

based taxonomic classifier, was used to train a

model including the WG-1 and other relevant

clades for species present in the community.

Composition-based taxonomic assignment of the

metagenome sample recovered a 2 Mb draft

genome for WG-1. Metabolic reconstruction based

on the draft genome allowed the cultivation require-

ments for WG-1 to be deduced, leading to isolation,

characterization and a draft genome sequence for the

previously unknown species. It also resulted in the

finding that WG-1 contributes to the low-methane

emission phenotype of plant biomass degradation in

the Tammar wallaby. The draft genome sequences

from the isolate culture showed 98.9% sequence

identity to the WG-1 metagenome bin, and 90%

of shared reads and assemblies, indicating accurate

reconstruction of the draft genome from the meta-

genome sample by composition-based taxonomic

binning.

Hybrid methods
Several methods combine different types of informa-

tion to improve predictive accuracy [19, 20, 36, 52].

For instance, read coverage is combined with an ana-

lysis of kmer frequencies in clustering of fragments

[19, 34]. Searches for similar sequences and analysis

of linkage information from an assembly are also

combined with composition-based taxonomic

assignment, if the computational burden can be

borne. This has particular advantages for short frag-

ment analysis. Kmer signatures for fragments below

1 kb in length, particularly those of individual reads,

are noisy, even more so than taxonomic conservation

of sequence similarities [35].

Case study 3
Taxonomic binning based on clustering bysequence composition
and read coverage. In one of the most in-depth meta-

genome studies of a particular environment under-

taken so far, 286 Gb of paired-end Illumina sequence

reads were generated from a sample of the plant-fiber

adherent microbiome from a cow rumen [19].

Rarefaction analysis of 16S rRNA indicated the

presence of �1000 distinct OTUs. Clustering of

assembled contigs by agglomerative hierarchical
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clustering, based on tetramer frequencies and read

coverage, resulted in the formation of 466 taxo-

nomic bins. Fifteen of these were estimated to rep-

resent largely complete genomes (between 60% and

92%), based on their association with fully sequenced

genomes from their respective clades. This estimate

was based on the presence of a minimal set of core

genes found in all sequenced genomes from the

respective phylogenetic order.

Case study 4
Taxonomic binning based on assembly information and
sequence composition [20]. SOLID sequencing of two

marine samples generated 58.5 Gb of mate-paired

reads of 50 bps in length. The number of phylotypes

observed with16S rRNA analysis was not specified in

detail; however, family-level taxonomic groups were

observed with abundances of less than 10%. From

the metagenome data, 300 Mb of contigs were

assembled. Scaffolds—linked sets of contigs assumed

to originate from one genome—were generated by

splitting the assembly graph, which links contigs

based on mate-pair information, according to

mate-pair linkage scores, read coverage and tetranu-

cleotide usage. Scaffold clustering by tetranucleotide

usage generated 14 partial genome reconstructions

from the two samples, for populations ranging in

abundance from 4 to 10% each in one of the samples.

Reassembly of 11 mate-pair connected scaffolds that

are binned together based on similar tetranucleotide

statistics and manual gap closure allowed the recov-

ery of a closed circular 2 Mb genome from an un-

cultured group, the marine group II Euryarchaeota.

ADVANTAGESAND
DISADVANTAGESOF DIFFERENT
BINNINGAPPROACHES
Which binning methodology to use depends on

multiple factors, such as the complexity of the ana-

lyzed microbial community, available reference

sequences and computing resources. For taxonomic

assignment of arbitrary sequence fragments to a par-

ticular species based on sequence similarity, com-

pletely sequenced reference genomes of closely

related taxa are ideally required, which are often

not available. If no reference data exist for the species

of the metagenome sample, homology-based taxo-

nomic assignment to higher level clades is more

accurate than composition-based taxonomic assign-

ment for short fragments of 1 kb or less [35]. This

length corresponds to individual reads with most

sequencing technologies. The assignment of individ-

ual reads in general is, however, notably less accurate

than assignment of longer fragments.

The runtime of sequence similarity searches

increases proportional to the product of the meta-

genome sample size (number and length of contigs)

and the size of the reference sequence collection.

This makes it a computationally very demanding

task for NGS data sets. The required computing

resources are not available in many experimental

laboratories. If researchers are willing to submit

their data to external facilities, data can be processed

by web servers such as MG-RAST, IMG-M or

CAMERA, which offer their computational re-

sources to the community.

The choice of whether to cluster or classify

based on sequence composition depends on avail-

ability of some reference data to train a

composition-based classifier. Classification is likely

to be more accurate than clustering in taxonomic

assignment. However, if no reference data is avail-

able, clustering will allow resolution of taxonomic

bins which otherwise would go undetected. If mul-

tiple types of information are included into the

binning process, like it is done in hybrid

approaches, this is likely to increase the overall

amount and accuracy of assignments. Composi-

tion-based taxonomic assignment requires less ref-

erence sequences than homology-based assignment.

This is because sequence composition is a globally

conserved property, while sequence similarity

depends on local sequence conservation between

a query and target. Training times of a

composition-based taxonomic classifier depend on

the method used, but it requires typically consid-

erably less time than searching a reference sequence

collection. Once a composition-based model for

taxonomic classification has been trained, execution

times for classification again typically scale linearly

with the metagenome sample size and are inde-

pendent of a reference sequence collection. For

composition-based clustering, no training phase is

needed. The runtime of clustering typically scales at

least quadratically with the sample size, as it often

involves pairwise comparisons.

FUTUREDIRECTIONS
The recent developments in sequencing technologies

have considerably pushed the boundaries in terms of
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what can be learned from metagenome sequence

samples. The high sequencing depth of microbial

communities, in combination with the application

of sophisticated algorithms, has allowed the retrieval

of near-complete draft genomes from the metagen-

omes of many microbial communities, including

highly complex ones, such as those found in soil

[11]. However, the size and heterogeneity of the

different data types produced by the various novel

techniques have created new challenges, which

remain to be addressed. A prominent one is how

to further reduce the computational requirements

of searching for local similarities between giga- and

even terabase-sized sequence samples and equiva-

lently large reference sequence collections. Second,

it remains to be explored how taxonomic assignment

accuracy can be further improved for the vast major-

ity of microbial community members that are only

distantly related to sequenced isolate genomes.

Because of the value of available sequences from

related taxa for the taxonomic binning of a particular

sample, efforts such as GEBA might help in this

regard [61]. The GEBA project aims to construct a

‘Genomic Encyclopedia for Bacteria and Archaea’ by

strategic sequencing of microbial genomes from all

major and minor taxonomic groups. As the cost of

sequencing has decreased, partial genome recon-

struction by single-cell genome sequencing is an

attractive option for obtaining reference sequences

for taxonomic binning and draft genome reconstruc-

tion [62] from metagenomes. Here, an individual cell

from a microbial population within a community is

isolated using techniques such as optical tweezers,

fluorescence-assisted cell sorting and others, and is

then lysed and its genome sequence amplified with

multiple displacement amplification prior to random

shotgun sequencing.

Advances in single-molecule sequencing technol-

ogies now allow longer reads to be generated than

what was possible using traditional Sanger sequen-

cing. Even though this promises to resolve several

issues associated with short read analysis, such as

high error rates in binning, assembly and functional

annotation, the larger sequencing error of some of

these technologies, currently estimated to be �15%,

presents a different substantial hurdle. Therefore, as-

sessing technology-specific errors and developing

technology-specific denoising procedures, such as

have been developed for 454 amplicon data [63],

will be prerequisite to leveraging the value of these

techniques for metagenome research.

An interesting research direction is to investigate

whether composition-based binning is applicable for

the analysis of samples with both microbial and viral

content. Composition-based taxonomic binning has

been successfully applied for the analysis of viral

metagenome samples; however, bacteriophage

codon usage to some extent reflects properties of

the host [64, 65]. Therefore, classification accuracy

and level of taxonomic resolution attainable for viral

taxa will have to be investigated in more detail.

Key Points

� NGS technologies generatemassive amounts of sequencing data
allowing the in-depth analysis of microbial communities.

� Taxonomic binning has allowed draft genomes of microbial
species from many environments to be reconstructed, and the
cultivation requirements of a novel uncultured species to be
deduced.

� To further advance draft genome reconstruction frommetagen-
ome samples, the existing techniques could be further refined
by integrating multiple sources of information and by appropri-
ately denoising the data under consideration to remove
technology-specific sequencing errors.
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