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Abstract

We provide a comprehensive overview of the typical decisions to be made in
resource capacity planning and control in health care, and a structured review of
relevant articles from the field of Operations Research and Management Sciences
(OR/MS) for each planning decision. The contribution of this paper is twofold.
First, to position the planning decisions, a taxonomy is presented. This taxonomy
provides health care managers and OR/MS researchers with a method to identify,
break down and classify planning and control decisions. Second, following the
taxonomy, for six health care services, we provide an exhaustive specification of
planning and control decisions in resource capacity planning and control. For
each planning and control decision, we structurally review the key OR/MS articles
and the OR/MS methods and techniques that are applied in the literature to
support decision making.
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1. Introduction
Health care professionals face the challenging task to organize their

processes more effectively and efficiently. The pressure on health care

systems rises as both demand for health care and expenditures are

increasing steadily [329]. Within a health care organization, professionals

of different functions jointly organize health care delivery with the

objective to provide high-quality care using the limited resources that are

available [56]. Designing and organizing processes is known as plan-

ning and control, which involves setting goals and deciding in advance

what to do, how to do it, when to do it and who should do it. Health care

planning and control comprises multiple managerial functions, making

medical, financial and resource decisions. In this paper we address the

managerial function of resource capacity planning and control as defined

in [200]: ‘Resource capacity planning and control addresses the dimension-

ing, planning, scheduling, monitoring, and control of renewable resources’.

Operations Research and Management Sciences (OR/MS) is an inter-

disciplinary branch of applied mathematics, engineering and sciences

that uses various scientific research-based principles, strategies, and ana-

lytical methods including mathematical modeling, statistics and algo-

rithms to improve an organization’s ability to enact rational and mean-

ingful management decisions [228]. OR/MS has been applied widely

to resource capacity planning and control in manufacturing. Since the

1950s, the application of OR/MS to health care also yields significant
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contributions in accomplishing essential efficiency

gains in health care delivery. Many different topics have

been addressed, such as operating room planning, nurse

staffing and appointment scheduling. Owing to the

interdisciplinary nature of OR/MS applied to health care,

there is an extensive base of literature published across

various academic fields. Tailored reference databases

prove to be valuable in retrieving references from this

broad availability. For example, Dexter provides a

comprehensive bibliography on operating room mana-

gement [111]. The Center for Healthcare Operations

Improvement and Research (CHOIR) of the University

of Twente has introduced and maintains the online

literature database ‘ORchestra’ [226, 328], in which

references in the field of OR/MS in health care are

categorized by medical and mathematical subject. All the

articles mentioned in this review are included and

categorized in ORchestra.

Contribution
We aim to guide health care professionals and OR/MS

researchers through the broad field of OR/MS in health

care. We provide a structured overview of the typical

decisions to be made in resource capacity planning and

control in health care, and provide a review of relevant

OR/MS articles for each planning decision.

The contribution of this paper is twofold. First, to

position the planning decisions, we present a taxonomy.

This taxonomy provides health care managers and

OR/MS researchers with a method to identify, break down

and classify planning and control decisions. The taxon-

omy contains two axes. The vertical axis reflects the

hierarchical nature of decision making in resource

capacity planning and control, and the horizontal axis

the various health care services. The vertical axis is

strongly connected, because higher-level decisions de-

marcate the scope of and impose restrictions on lower-

level decisions. Although health care delivery is generally

organized in autonomous organizations and depart-

ments, the horizontal axis is also strongly interrelated

as a patient pathway often consists of several health care

services from multiple organizations or departments.

Second, following the vertical axis of the taxonomy,

and for each health care service on the horizontal axis, we

provide a comprehensive specification of planning and

control decisions in resource capacity planning and

control. For each planning and control decision, we

structurally review the key OR/MS articles and the OR/MS

methods and techniques that are applied in the literature

to support decision making. No structured review exists

of this nature, as existing reviews are typically exhaustive

within a confined scope, such as simulation modeling in

health care [240] or outpatient appointment scheduling

[76], or are more general to the extent that they do not

focus on the concrete specific decisions.

This paper is organized as follows. Section 2 presents

our taxonomy, Section 3 identifies, classifies and dis-

cusses the planning and control decisions. Section 4

concludes this paper with a discussion of our findings.

2. Taxonomy
Taxonomy is the practice and science of classification. It

originates from biology where it refers to a hierarchical

classification of organisms. The National Biological

Information Infrastructure [318] provides the following

definition of taxonomy: “Taxonomy is the science of

classification according to a pre-determined system, with

the resulting catalog used to provide a conceptual

framework for discussion, analysis, or information retrie-

val; y a good taxonomy should be simple, easy to

remember, and easy to use”. With exactly these objec-

tives, we present a taxonomy for resource capacity

planning and control in health care.

Planning and control decisions are made by health care

organizations to design and operate the health care

delivery process. It requires coordinated long-term, med-

ium-term and short-term decision making in multiple

managerial areas. In Hans et al [200], a framework is

presented to subdivide these decisions in four hierarchical,

or temporal, levels and four managerial areas. These

hierarchical levels and the managerial area of resource

capacity planning and control form the basis for our

taxonomy. For the hierarchical levels, [200] applies the

well-known breakdown of strategic, tactical and operational

[9]. In addition, the operational level is subdivided in

offline and online decision making, where offline reflects the

in advance decision making and online the real-time

reactive decision making in response to events that cannot

be planned in advance. The four managerial areas are:

medical planning, financial planning, materials planning

and resource capacity planning. These are defined as

follows. Medical planning comprises decision making by

clinicians regarding medical protocols, treatments, diag-

noses and triage. Financial planning addresses how an

organization should manage its costs and revenues to

achieve its objectives under current and future organiza-

tional and economic circumstances. Materials planning

addresses the acquisition, storage, distribution and retrie-

val of all consumable resources/materials, such as suture

materials, blood, bandages, food, etc. Resource capacity

planning addresses the dimensioning, planning, schedul-

ing, monitoring and control of renewable resources. Our

taxonomy is a refinement of the health care planning

and control framework of [200] in the resource capacity

planning area.

The taxonomy contains two axes. The vertical axis

reflects the hierarchical nature of decision making in

resource capacity planning and control, and is derived

from [200]. On the horizontal axis of our taxonomy we

position different services in health care. We identify

ambulatory care services, emergency care services, surgi-

cal care services, inpatient care services, home care

services and residential care services. The taxonomy is

displayed in Figure 1. We elaborate on both axes in more

detail below.
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Vertical axis
Our taxonomy is intended for planning and control

decisions within the boundaries of a health care delivery

organization. Every health care organization operates in a

particular external environment. Therefore, all planning

and control decisions are made in the context of this

external environment. The external environment is

characterized by factors such as legislation, technology

and social factors.

The nature of planning and control decision making

is such that decisions disaggregate as time progresses and

more information becomes available [460]. Aggregate

decisions are made in an early stage, while more detai-

led information supports decision making with a finer

granularity in later stages. Because of this disaggregating

nature, most well-known taxonomies and frameworks for

planning and control are organized hierarchically [200,

460]. As the impact of decisions decreases when the

level of detail increases, such a hierarchy also reflects

the top-down management structure of most organiza-

tions [39].

For completeness we explicitly state the definitions of

the four hierarchical levels [200], which we position on

the vertical axis of our taxonomy. The definitions are

adapted to specifically fit the managerial area of resource

capacity planning and control.

� Strategic planning addresses structural decision mak-

ing. It involves defining the organization’s mission

(i.e., ‘strategy’ or ‘direction’), and the decision making

to translate this mission into the design, dimensioning

and development of the health care delivery process.

Inherently, strategic planning has a long planning

horizon and is based on highly aggregated information

and forecasts. Examples of strategic planning are

determining the facility’s location, dimensioning re-

source capacities (e.g., acquisition of an MRI scanner,

staffing) and deciding on the service and case mix.

� Tactical planning translates strategic planning deci-

sions to guidelines that facilitate operational planning

decisions. While strategic planning addresses structural

decision making, tactical planning addresses the orga-

nization of the operations/execution of the health care

delivery process (i.e., the ‘what, where, how, when and

who’). As a first step in tactical planning, patient groups

are characterized based on disease type/diagnose,

urgency and resource requirements. As a second step,

the available resource capacities, settled at the strategic

level, are divided among these patient groups. In addi-

tion to the allocation in time quantities, more specific

timing information can already be added, such as dates

or time slots. In this way, blueprints for the operational

planning are created that allocate resources to different

tasks, specialties and patient groups. Temporary capa-

city expansions like overtime or hiring staff are also

part of tactical planning. Demand has to be (partly)

forecasted, based on (seasonal) demand, waiting list

information, and the ‘downstream’ demand in care

pathways of patients currently under treatment. Ex-

amples of tactical planning are staff-shift scheduling

and the (cyclic) surgical block schedule that allocates

operating time capacity to patient groups.

� Operational planning (both ‘offline’ and ‘online’) invol-

ves the short-term decision making related to the execu-

tion of the health care delivery process. Following the

tactical blueprints, execution plans are designed at the

individual patient level and the individual resource

level. In operational planning, elective demand is entirely

known and only emergency demand has to be forecasted.

In general, the capacity planning flexibility is low on this

level, since decisions on higher levels have demarcated

the scope for the operational level decision making.

� Offline operational planning reflects the in advance plan-

ning of operations. It comprises the detailed coordi-

nation of the activities regarding current (elective)

Figure 1 The taxonomy for resource capacity planning and control decisions in health care.
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demand. Examples of offline operational planning are

patient-to-appointment assignment, staff-to-shift as-

signment and surgical case scheduling.

� Online operational planning reflects the control me-

chanisms that deal with monitoring the process and

reacting to unplanned events. This is required due to

the inherent uncertain nature of health care processes.

An example of online operational planning is the real-

time dynamic (re)scheduling of elective patients when

an emergency patient requires immediate attention.

Note that the decision horizon lengths are not

explicitly given for any of the hierarchical planning

levels, since these depend on the specific characteristics

of the application. For example, an emergency depart-

ment inherently has shorter planning horizons than

a long-stay ward in a nursing home. Furthermore, there is

a strong interrelation between hierarchical levels. Top-

down interaction exists as higher-level decisions demar-

cate the scope of and impose restrictions on lower-level

decisions. Conversely, bottom-up interaction exists as

feedback about the health care delivery realization

supports decision making in higher levels.

Horizontal axis
On the horizontal axis of our taxonomy we position the

different services in health care. The complete spectrum of

health care delivery is a composition of many different

services provided by many different organizations. From

the perspective of resource capacity planning and control,

different services may face similar questions. To capture

this similarity, we distinguish six clusters of health-

care services. The definitions of the six care services are

obtained from the corresponding MeSH terms provided by

PubMed [310]. For each care service we offer several

examples of facilities that provide this service.

� Ambulatory care services provide care to patients with-

out offering a room, a bed and board, and they may be

free-standing or part of a hospital. In ambulatory care

services, we position primary care services and commu-

nity services as well as hospital-based services such as the

outpatient clinic, since these services face similar ques-

tions from a resource capacity planning perspective.

Examples of ambulatory care facilities are outpatient

clinics, primary care services and the hospital depart-

ments of endoscopy, radiology and radiotherapy.

� Emergency care services are concerned with the evalua-

tion and initial treatment of urgent and emergent

medical problems, such as those caused by accidents,

trauma, sudden illness, poisoning or disasters. Emer-

gency medical care can be provided at the hospital

or at sites outside the medical facility. Examples of

emergency care facilities are hospital emergency

departments, ambulances and trauma centers.

� Surgical care services provide operative procedures

(surgeries) for the correction of deformities and defects,

repair of injuries, and diagnosis and cure of certain

diseases. Examples of surgical care facilities are the

hospital’s operating theater, surgical daycare centers

and anesthesia facilities.

� Inpatient care services provide care to hospitalized

patients by offering a room, a bed and board. Examples

are intensive care units, general nursing wards and

neonatal care units.

� Home care services are community health and nursing

services that provide multiple, coordinated services to

a patient at the patient’s home. Home care services are

provided by a visiting nurse, home health agencies,

hospitals or organized community groups using pro-

fessional staff for health care delivery. Examples are

medical care at home, housekeeping support and

personal hygiene assistance.

� Residential care services provide supervision and assis-

tance in activities of daily living with medical and

nursing services when required. Examples are nursing

homes, psychiatric hospitals, rehabilitation clinics

with overnight stay, homes for the aged, and hospices.

Note that the horizontal subdivision is not based on

health care organizations, but on the provided care services.

Therefore, it is possible that a single health care organiza-

tion offers services in multiple clusters. It may be that a

particular facility is used by multiple care services, for

example a diagnostics department that is used in both

ambulatory and emergency care services. In addition, a

patient’s treatment often comprises of consecutive care

stages offered by multiple care services. The health care

delivery realization within one care service is impacted by

decisions in other services, as inflow and throughput

strongly depend on these other services. Therefore, resource

capacity planning and control decisions are always made in

the context of decisions made for other care services.

Hence, like the interrelation in the vertical levels, a strong

interrelation exists between the horizontal clusters.

This taxonomy provides a method to identify, break

down and classify planning and control decisions in

health care. This is a starting point for a complete speci-

fication of planning decisions and helps to gain under-

standing of the interrelations between various planning

decisions. Hence, health care professionals can identify

lacking, insufficiently defined and incoherent planning

decisions within their department or organization. It also

gives the opportunity to identify planning decisions that

are not yet addressed often in the OR/MS literature.

Therefore, in the next section, with our taxonomy as the

foundation, we provide an exhaustive specification of

planning decisions for each care service, combined with

a review of key OR/MS literature.

3. Identification and classification of planning
and control decisions
In this section, we identify the resource capacity plan-

ning and control decisions for each of the six care services
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in our taxonomy. The decisions are classified according to

the vertical hierarchical structure of our taxonomy. For

each identified planning decision, we will discuss the

following in our overview:

� What is the concrete decision?

� Which performance measures are considered?

� What are the key trade-offs?

� What are main insights and results from the literature?

� What are general conclusions?

� Which OR/MS methods are applied to support decision

making?

The identified planning decisions are in the first place

obtained from available books and articles on health care

planning and control. Our literature search method will

be explained in more detail below. In addition, to be as

complete as possible, expert opinions from health care

professionals and OR/MS specialists are obtained to iden-

tify decisions that are not yet well-addressed in the lite-

rature and for this reason cannot be obtained from

the literature. In this introduction, we first discuss the

scope of the identified planning decisions and the

applied OR/MS methods, and next we present the applied

literature search method.

Scope Numerous processes are involved in health care

delivery. We focus on the resource capacity planning and

control decisions to be made regarding the primary process

of health care delivery. In the management literature, the

primary process is defined as the set of activities that are

directly concerned with the creation or delivery of a pro-

duct or service [343]. Thus, we do not focus on supporting

activities, such as procurement, information technology,

human resource management, laboratory services, blood

services and instrument sterilization.

We focus on OR/MS methods that quantitatively

support and rationalize decision making in resource capa-

city planning and control. Based on forecasting of

demand for care (see [330] for forecasting techniques),

these methods provide optimization techniques for the

design of the health care delivery process. Outside our

scope is statistical comparison of performance of health

care organizations, so-called benchmarking, of which

Data Envelopment Analysis (DEA) and Stochastic Frontier

Analysis (SFA) are well-known examples [91]. Quanti-

tative decision making requires measurable performance

indicators by which the quality of health care delivery can

be expressed. A comprehensive survey of applied perfor-

mance measures in health care organizations is pro-

vided in [277]. Next, practical implementation of OR/MS

methods may require the development of Information

Communications Technology (ICT) solutions (that are

possibly integrated in health care organizations’ database

systems); this is also outside the scope of this paper.

The spectrum of different OR/MS methods is wide (see

for example [218, 394, 406, 448] for introductory books). In

this review, we distinguish the following OR/MS methods:

computer simulation [272], heuristics [1], Markov processes

(which includes Markov reward and decision processes)

[406], mathematical programming [331, 371], queueing

theory [363]. For a short description of each of these OR/MS

methods, the reader is referred to Appendix A.

Literature search method As the body of literature on

resource capacity planning and control in health care is

extensive, we used a structured search method and we

restricted to articles published in ISI-listed journals to

ensure that we found and filter key and state-of-the-art

contributions. Table 1 displays our search method. To

identify the search terms as listed in Appendix B and

to create the basic structure of the planning decision

hierarchy for each care service, we consulted available

literature reviews [45, 53, 55, 65, 72, 76, 84, 141, 156, 157,

192, 196, 197, 233, 240, 244, 246, 259, 287, 301, 311, 316,

336, 342, 345, 350, 353, 385, 386, 411, 422] and books [56,

199, 267, 309, 330, 433]. Additional search terms were

obtained from the index of Medical Subject Headings

(MeSH) [310] and available synonyms. With these search

terms, we performed a search on the database of Web of

Science (WoS) [440]. WoS was chosen as it contains articles

from all ISI-listed journals. It is particularly useful as it

provides the possibility to select Operations Research and

Management Science as a specific subject category and to

sort references on the number of citations.

We identify a base set containing the 10 most-cited

articles in the predefined subject category of Operations

Research and Management Science. Starting from this base

set, we include all articles from ISI-listed journals that are

referred by or refer to one of the articles in the base set and

deal with resource capacity planning and control decisions.

As such, we ensure that we also review recent work that

may not have been cited often yet. In addition, we include

articles published in Health Care Management Science

(HCMS), which is particularly relevant for OR/MS in health

care and obtained an ISI listing in 2010. To be sure that by

restricting to WoS and HCMS, we do not neglect essential

references, we also performed a search with our search

terms on the databases of Business Source Elite [135],

PubMed [346] and Scopus [372]. This search did not result

in significant additions to the already found set of papers.

The literature search was updated up to 10 May 2012.

The review is organized as follows. Section 3.1 is

devoted to ambulatory care services, the Section 3.2 to

emergency care services, Section 3.3 to surgical care ser-

vices, Section 3.4 to inpatient care services, Section 3.5 to

Table 1 The search method applied to each care service

Step 1: Identify search terms from reviews, books and MeSH

Step 2: Search the OR/MS subject category in WoS with the

search terms

Step 3: Select a base set: the 10 most-cited articles relevant for

our review

Step 4: Perform a backward and forward search on the base

set articles

Step 5: Search relevant articles from HCMS
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home care services and Section 3.6 to residential care

services. For each care service, the review is subdivided in

strategic, tactical, offline operational and online opera-

tional planning. In Appendix C, tables are included in

which the identified planning decisions are listed for each

care service, together with applied OR/MS methods and

literature references per planning decision. When for

different care services a similar planning decision is

involved, we use the same term. Our intention is that all

the following sub-sections are self-contained, so that

they can be read in isolation. Therefore, minor passages

are overlapping. When in the description of a planning

decision a paper is cited, while it does not appear in the

‘methods’-list, it means that this paper contains a relevant

statement about this planning decision, but the particular

planning decision is not the main focus of the paper.

3.1. Ambulatory care services
Ambulatory care services provide medical interventions

without overnight stay, that is, the patient arrives at the

facility and leaves the facility on the same day. These

medical interventions comprise for example diagnostic

services (e.g., CT scan, MRI scan), doctor consultations

(e.g., general practitioner, hospital specialist), radiother-

apy treatments or minor surgical interventions. Demand

for ambulatory care services is growing in most western

countries since 2000 [324]. The existing literature has

mainly focused on the offline operational planning

decision of appointment scheduling.

Strategic planning

Regional coverage Ambulatory care planning on a

regional level aims to create the infrastructure to provide

health care to the population in its catchment area. This

regional coverage decision involves determining the

number, size and location of facilities in a certain region

to find a balanced distribution of facilities with respect to

the geographical location of demand [130]. The main

trade-off in this decision is between patient accessibility

and efficiency. Patient accessibility is represented by

access time and travel distance indicators. Efficiency is

represented by utilization and productivity indicators

[130, 385]. Common regional planning models incorpo-

rate the dependency of demand on the regional demo-

graphic and socioeconomic characteristics [2].

Methods: computer simulation [298, 359, 388, 404],

heuristics [2, 130], literature review [385].

Service mix An organization decides the particular ser-

vices that the ambulatory care facility provides. The ser-

vice mix stipulates which patient types can be consulted.

In general, the service mix decision is not made at an

ambulatory care service level, but at the regional or

hospital level, as it integrally impacts the ambulatory,

emergency, surgical and inpatient care services. This is also

expressed in the literature, in which for example inpatient

resources, such as beds and nursing staff, are indicated as

‘following’ resources [431]. This may be the reason that

we have not found any references focusing on service mix

decisions for ambulatory care services in specific.

Methods: no papers found.

Case mix Every ambulatory care facility decides on a

particular case mix, which is the volume and composition

of patient groups that the facility serves. The settled

service mix restricts the decisions to serve particular

patient groups. Patient groups can be classified based on

disease type, age, acuteness, home address, etc. The case

mix influences almost all other planning decisions, such

as a facility’s location, capacity dimensions and layout.

Also, demand for different patient groups in the case mix

may vary, which influences required staffing levels signi-

ficantly [384, 392]. However, case mix decision making

has not received much attention in the OR/MS literature.

In the literature, the case mix is often treated as given.

Methods: computer simulation [392], mathematical

programming [384].

Panel size The panel size is the number of potential

patients of an ambulatory care facility [187]. Since only a

fraction of these potential patients, also called calling popu-

lation, actually demands health care, the panel size can be

larger than the number of patients a facility can serve. The

panel size is particularly important for general practitioners,

as they need an accurate approximation of how many

patients they can subscribe or admit to their practice. A

panel size should be large enough to have enough demand

to be profitable and to benefit from economies of scale,

as a facility’s costs per patient decrease when the panel size

increases [388]. On the other hand, when the panel size is

too large, access times may grow exponentially [187].

Methods: computer simulation [388], queueing theory

[187].

Capacity dimensioning Ambulatory care facilities dimen-

sion their resources, such as staff, equipment and space,

with the objective to (simultaneously) maximize clinic

profit, patient satisfaction and staff satisfaction [392]. To

this end, provider capacity must be matched with patient

demand, such that performance measures such as costs,

access time and waiting time are controlled. Capacity is

dimensioned for the following resource types:

� Consultation rooms. The number of consultation rooms

that balances patient waiting times and doctor idle time

with costs for consultation rooms [227, 385, 391, 392].

� Staff. Staff in the ambulatory care services concern for

example doctors, nurses and assistants [32, 240, 298,

360, 384, 385, 388, 391, 392, 438, 444].

� Consultation time capacity. The total consultation time

that is available, for example for an MRI scanner or a

doctor [98, 136, 138].

� Equipment. Some ambulatory care services require

equipment for particular consultations, for example

MRI scanners, CT scanners and radiotherapy machines

[161, 298, 404].
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� Waiting room. The waiting room is dimensioned such

that patients and their companions waiting for con-

sultation can be accommodated [392].

When capacity is dimensioned to cover average

demand, variations in demand may cause long access

and waiting times [404]. Basic rules from queueing theory

demonstrate the necessity of excess capacity to cope with

uncertain demand [182]. Capacity dimensioning is a key

decision, as it influences how well a facility can meet

demand and manage access and waiting times.

Methods: computer simulation [136, 138, 161, 227, 298,

360, 388, 391, 392, 404, 444], Markov processes [438],

mathematical programming [384], queueing theory [32,

98, 138, 227], literature review [240, 385].

Facility layout The facility layout concerns the position-

ing and organization of various physical areas in a facility.

A typical ambulatory care facility consists of a reception

area, a waiting area and consultation rooms [164]. The faci-

lity layout is a potentially cost-saving decision in ambula-

tory care facilities [164, 330], but we found no papers that

used an OR/MS approach to study the layout of an

ambulatory care facility. Yet, the handbook [330] discusses

heuristics for facility layout problems in health care.

Methods: heuristics [330].

Tactical planning

Patient routing Ambulatory care typically consists of

multiple stages. We denote the composition and sequence

of these stages as the route of a patient. An effective and

efficient patient route should match medical require-

ments, capacity requirements and restrictions, and the

facility’s layout. For a single facility, identifying different

patient types and designing customized patient routes for

each type prevents superfluous stages and delays [298]. For

example, instead of two visits to a doctor and a medical

test in between, some patient types may undergo a

medical test before visiting the doctor, which saves

valuable doctor time. Parallel processing of patients may

increase utilization of scarce resources (e.g., a doctor or a

CT scanner) [161, 227]. When parallel processing is app-

lied, idle time of the scarce resource is reduced by pre-

paring patients for consultation during the consultation

time of other patients. Performance is typically measured

by total visit time, waiting time and queue length.

Methods: computer simulation [82, 161, 227, 298, 388],

queueing theory [227, 461].

Capacity allocation On the tactical level, resource

capacities settled on the strategic level are subdivided

over all patient groups. To do so, patient groups are first

assigned to resource types:

� Assign patient groups to resource types. The assignment of

patient groups to available resources requires knowl-

edge about the capabilities of for example clinical staff,

support staff or medical equipment, and the medical

characteristics of patients. The objective is to maximize

the number of patients served, by calculating the

optimal assignment of patient groups to appropriately

skilled members of clinical staff [384]. Efficiency

gains are possible when certain tasks can be substituted

between clinical staff, either horizontally (equally

skilled staff) or vertically (lower skilled staff) [385].

� Time subdivision. The available resource capacities, such

as staff and equipment, are subdivided over patient

groups. For example, general practitioners divide their

time between consulting patients and perform-

ing prevention activities for patients [195]. When

patient demand changes over time (e.g., seasonality),

a dynamic subdivision of capacity, updated based on

current waiting lists, already planned appointments

and expected requests for appointments, performs

better than a long-term, static subdivision of resource

capacity [429].

Methods: computer simulation [429], mathematical

programming [195, 384], literature review [433].

Temporary capacity change The balance between access

times and resource utilization may be improved when

resource capacities can temporarily be increased or

decreased, to cope with fluctuations in patient demand

[429]. For example, changing a CT scanner’s opening

hours [429] or changing doctor consultation time [138].

Methods: computer simulation [138, 429].

Access policy In appointment-driven facilities, the access

policy concerns the waiting list management that deals

with prioritizing waiting lists so that access time is

equitably distributed over patient groups. In the tradi-

tional approach, there is one queue for each doctor, but

when patient queues are pooled into one joint queue,

patients can be treated by the first available doctor, which

reduces access times [427]. Another policy is to treat

patients without a scheduled appointment, also called

‘walk-in’ service. In between scheduled and walk-in

service is ‘advanced access’ (also called ‘open access’, or

‘same-day scheduling’). With advanced access, a facility

leaves a fraction of the appointment slots vacant for

patients that request an appointment on the same day or

within a couple of days. The logistical difficulty of both

walk-in service and advanced access is a greater risk of

resource idle time, since patient arrivals are more uncer-

tain. However, implementation of walk-in/advanced

access can provide significant benefits to patient access

time, doctor idle time and doctor overtime, when the

probability of patients not showing up is relatively large

[334, 358]. A proper balance between traditional appoint-

ment planning and walk-in/advanced access further

decreases access times and increases utilization [356,

461]. The specification of such a balanced design will be

discussed below.

Methods: computer simulation [12, 152, 284, 334, 356,

427], heuristics [284], Markov processes [334], queueing

theory [358, 461].
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Admission control Given the access policy decisions,

admission control involves the rules according to which

patients are selected to be admitted from the waiting lists.

Factors that are taken into account are for example

resource availability, current waiting lists and expected

demand. Clearly, this makes admission control and capa-

city allocation mutually dependent. This is for example

the case in [429], where the capacity subdivision for a CT

scanner is settled by determining the number of patients

to admit of each patient group. Access times can be

controlled by adequate admission control [168, 173, 238,

429]. Admission control plays a significant role in advan-

ced access or walk-in policies. Successful implementation

of these policies requires a balance between the reserved

and demanded number of slots for advanced access or

walk-in patients. Too many reserved slots results in

resource idle time, and too little reserved slots results in

increased access time [348, 349].

Methods: computer simulation [429], heuristics [173],

Markov processes [168, 173], mathematical programming

[238, 348, 349].

Appointment scheduling Appointment schedules are

blueprints that can be used to provide a specific time and

date for patient consultation (e.g., an MRI scan or a doctor

visit). Appointment scheduling comprises the design of

such appointment schedules. Typical objectives of this

design are to minimize patient waiting time, maximize

resource utilization or minimize resource overtime. A key

trade-off in appointment scheduling is the balance bet-

ween patient waiting time and resource idle time [76, 219,

245]. Appointment scheduling is comprehensively revie-

wed in [76, 197]. In an early paper [443], the Bailey-Welch

appointment scheduling rule is presented, which is a

robust and well-performing rule in many settings [219,

241, 253]. References differ in the extent in which various

aspects are incorporated in the applied models. Frequently

modeled aspects that influence the performance of an

appointment schedule are patient punctuality [152, 276,

446], patients not showing up (‘no-shows’) [152, 153, 220,

241], walk-in patients or urgent patients [12, 152, 356,

461], doctor lateness at the start of a consultation session

[152, 153, 283, 360], doctor interruptions (e.g., by comfort

breaks or administration) [153, 276] and the variance of

consultation duration [219]. These factors can be taken

into account when modeling the following key decisions

that together design an appointment schedule:

� Number of patients per consultation session. The number

of patients per consultation session is chosen to con-

trol patient access times and patient waiting times.

When the number of patients is increased, access times

may decrease, but patient waiting times and provider

overtime tend to increase [73, 152, 219].

� Patient overbooking. Patients not showing up, also called

‘no-shows’, cause unexpected gaps, and thus increase

resource idleness [219]. Overbooking of patients, that

is, booking more patients into a consultation session

than the number of planned slots is suggested to

compensate no-shows in [254, 258, 273, 317, 387].

Overbooking can significantly improve patient access

times and provider productivity, but it may also

increase patient waiting time and staff overtime [254,

258]. Overbooking particularly provides benefits for

large facilities with high no-show rates [254].

� Length of the appointment interval. The decision for the

length of the planned appointment interval or slot

affects resource utilization and patient waiting times.

When the slot length is decreased, resource idle time

decreases, but patient waiting time increases [153]. For

some distributions of consultation time, patient waiting

times and resource idle time are balanced when the slot

length equals the expected length of a consultation [76].

The slot length can be chosen equal for all patients [153,

219, 443], but using different, appropriate slot lengths

for each patient group may decrease patient waiting

time and resource idle time when expected consultation

times differ between patient groups [136].

� Number of patients per appointment slot. Around 1960, it

was common to schedule all patients in the first

appointment slot of a consultation session [158].

This minimizes resource idle time, but has a nega-

tive effect on patient waiting times [342, 360]. Later,

it became common to distribute patients evenly

over the consultation session to balance resource

idle time and patient waiting time. In [158], various

approaches in between these two extremes are

evaluated, such as two patients in one time slot and

zero in the next.

� Sequence of appointments. When different patient

groups are involved, the sequence of appointments

influences waiting times and resource utilization.

Appointments can be sequenced based on patient

group or expected variance of the appointment

duration. In [253], various rules for patient sequen-

cing are compared. Alternatively, when differences

between patients exist with respect to the varia-

tion of consultation duration, sequencing patients

by increasing variance (i.e., lowest variance first)

may minimize patient waiting time and resource idle

time [76].

� Queue discipline in the waiting room. The queue disci-

pline in the waiting room affects patient waiting time,

and the higher a patient’s priority, the lower the

patient’s waiting time. The queue discipline in the

waiting room is often assumed to be first-come-first-

serve (FCFS), but when emergency patients and walk-in

patients are involved, the highest priority is typically

given to emergency patients and the lowest priority to

walk-in patients [76]. Priority can also be given to the

patient that has to visit the most facilities on the same

day [298].

� Anticipation for unscheduled patients. Facilities that also

serve unscheduled patients, such as walk-in and urgent

patients, require an appointment scheduling approach

that anticipates these unscheduled patients by reserving
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slack capacity. This can be achieved by leaving certain

appointment slots vacant [128], or by increasing the

length of the appointment interval [76]. Reserving too

little capacity for unscheduled patients results in an

overcrowded facility, while reserving too many may

result in resource idle time. Often, unscheduled patients

arrive in varying volumes during the day and during the

week. When an appropriate number of slots is reserved

for unscheduled patients, and appointments are sched-

uled at moments that the expected unscheduled

demand is low, patient waiting times decrease and

resource utilization increases [326, 356, 461]. In the

online operational level of this section, we discuss

referring unscheduled patients to a future appointment

slot when the facility is overcrowded.

Methods: computer simulation [14, 73, 77, 110, 136,

152, 153, 205, 219, 220, 245, 258, 276, 283, 284, 298,

326, 356, 392, 433, 434, 443, 446], heuristics [73, 241,

284], Markov processes [158, 188, 241, 253, 280, 317,

387], mathematical programming [25, 73, 106, 357],

queueing theory [52, 98, 128, 254, 273, 357, 433, 461],

literature review [76, 197, 240, 385].

Staff-shift scheduling Shifts are duties with a start and

end time [65]. Shift scheduling deals with the problem of

selecting what shifts are to be worked and how many

employees should be assigned to each shift to meet

patient demand [141]. More attractive schedules promote

job satisfaction, increase productivity and reduce turn-

over. While staff dimensioning on the strategic level has

received much attention, shift scheduling in ambulatory

care facilities seems underexposed in the literature. In

[63], shift schedules are developed for physicians,

who often have disproportionate leverage to negotiate

employment terms, because of their specialized skills.

Hence, physicians often have individual arrangements

that vary by region, governing authority, seniority,

specialty and training. Although these individual ar-

rangements impose requirements to the shift schedules,

there is often flexibility for shifts of different lengths and

different starting times to cope with varying demand

during the day or during a week. In this context, the

handbook by [330] discusses staggered shift schedul-

ing and flexible shift scheduling. In the first alterna-

tive, employees have varying start and end times of a

shift, but always work a fixed number of hours per week.

In the latter, cheaper alternative, a core level of staff

is augmented with daily adjustments to meet patient

demand.

Methods: computer simulation [338], mathematical

programming [63], literature review [65, 141, 199, 330].

Offline operational planning

Patient-to-appointment assignment Based on the ap-

pointment scheduling blueprint developed on the tac-

tical level, patient scheduling comprises scheduling of an

appointment in a particular time slot for a particular

patient. A patient may require multiple appointments

on one or more days. Therefore, we distinguish schedul-

ing a single appointment, combination appointments and

appointment series:

� Single appointment. Patients requiring an appointment

often have a preference for certain slots. When infor-

mation is known about expected future appointment

requests and the expected preferences of these reque-

sts, a slot can be planned for this patient to accom-

modate the current patient, but also to have sufficient

slots available for future requests from other patients.

This can for example be necessary to ensure that a

sufficient number of slots is available for advanced access

patients [198, 439], or to achieve equitable access for

all patient groups to a diagnostic facility [335].

� Combination appointments. Combination appointments

imply that multiple appointments for a single patient

are planned on the same day, so that a patient requires

fewer hospital visits. This is the case when a patient has

to undergo various radiotherapy operations on differ-

ent machines within one day [340].

� Appointment series. For some patients, a treatment

consisting of multiple (recurring) appointments may

span a period of several weeks or months. The treat-

ment is planned in an appointment series, in which

appointments may have precedence relations and

certain requirements for the time intervals in between.

In addition, the involvement of multiple resources may

further complicate the planning of the appointment

series. The appointment series have to fit in the existing

appointment schedules, which are partly filled with

already scheduled appointments. Examples of patients

that require appointment series are radiotherapy pa-

tients [93, 94, 95] and rehabilitation patients [85].

Methods: heuristics [85, 340, 439], Markov processes

[198, 335, 439], mathematical programming [93, 94, 95].

Staff-to-shift assignment On the tactical level, staff-shift

scheduling results in shifts that have to be worked. In

staff-to-shift assignment on the offline operational level,

a date and time are given to staff members to perform

particular shifts. For example, a consultation session is

scheduled for a doctor on a particular day and time,

and with a certain duration. For an endoscopy unit, in

[238] a model is presented to schedule available doctors

to endoscopy unit shifts.

Methods: mathematical programming [238], literature

review [199].

Online operational planning

Dynamic patient (re)assignment After patients are assig-

ned to slots in the appointment schedule, the appoint-

ments are carried out on their planned day. During such

a day, unplanned events, such as emergency or walk-in

patients, extended consultation times, and equipment
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breakdown, may disturb the planned appointment sche-

dule. In such cases, real-time dynamic (re)scheduling

of patients is required to improve patient waiting times

and resource utilization in response to acute events. For

example, to cope with an overcrowded facility walk-in

patients can be rescheduled to a future appointment slot

to improve the balance of resource utilization over time

[351]. Dynamic patient (re)assignment can also be used

to decide which patient group to serve in the next time

slot in the appointment schedule [188], for example

based on the patient groups’ queue lengths. When

inpatients are involved in such decisions, they are often

subject to rescheduling [76], since it is assumed that they

are less harmed by a rescheduled appointment as they are

already in the hospital. However, longer waiting times of

inpatients may be more costly, since it may mean they

have to be hospitalized longer [100].

Methods: computer simulation [351], Markov processes

[100, 188, 280], mathematical programming [100].

Staff rescheduling At the start of a shift, the staff sche-

dule is reconsidered. Before and during the shift, the staff

capacities may be adjusted to unpredicted demand fluc-

tuations and staff absenteeism by using part-time, on-

call nurses, staff overtime and voluntary absenteeism

[191, 342].

Methods: no papers found.

3.2. Emergency care services
Emergency care services have the goal to reduce morbi-

dity and mortality resulting from acute illness and

trauma [352, 454]. To attain this goal, rapid response of

an ambulance and transportation to an emergency care

center (e.g., an emergency department in a hospital, or an

emergency location near a disaster) is required [37, 352].

Patients arrive to the emergency department (ED) of a

hospital as a self-referral, through ambulatory care

services or by ambulance [54]. A frequently reported

and studied problem in emergency care is that of long ED

waiting times. One of the causes of long ED waiting time

is treatment of a high number of self-referrals that could

also be treated in ambulatory care services (e.g., by

general practitioners). To cope with this problem, EDs

increasingly cooperate with ambulatory care services, for

example by combining the ED with a service that prov-

ides primary care outside office hours, or by opening an

ambulatory walk-in center to which these patients can be

referred [270]. The body of OR/MS literature directed to

emergency care services is large. The existing literature

mainly focuses on the strategic decisions regional cover-

age and capacity dimensioning for ambulances, and the

tactical decision staff-shift scheduling.

Strategic planning

Regional coverage To be able to provide rapid response

to an acute illness or trauma, emergency care services

need to be geographically close to their customer base,

where emergencies can potentially occur [342]. Given a

geographical region with a certain spatial distribution of

service requests (i.e. emergency demand), the locations,

types and number of emergency care facilities have to be

decided. The objective is to find a balanced distribution

of facilities to guarantee a desired level of service [36,

279]. This level of service can for example be measured by

the maximum time it takes for a patient to travel to the

closest ED, or the maximum response time that an

ambulance requires to reach a specified region. The main

trade-off in the decision where to locate emergency care

centers and ambulances is between the level of service for

emergency patients and costs [36, 41, 68, 203, 237].

Below, we will elaborate on this trade-off for both

emergency care centers and ambulances.

� Emergency care centers. The decision where to locate

emergency care centers, such as an ED in a hospital, is

determined such that locations where emergencies

may occur have at least one emergency care center

within a target travel time or distance [353]. When a

large-scale emergency or disaster occurs, an emergency

care center may be unable to provide emergency

care services (e.g., the facility is destroyed). In [222],

this possibility is incorporated in regional coverage

models that can be used to determine good loca-

tions for (temporary) emergency care centers after a

disaster.

� Ambulances (e.g., vans, motorcycles, helicopters, airplanes).

The decision where to locate ambulances is determined

such that a specified region can be reached within a

target response time by one or more ambulances, or

that the average or maximum response time to a

potential emergency is minimized [41, 68, 134, 140,

237]. The response time of an ambulance concerns the

time elapsed from notification of an emergency until

an ambulance arrives at the emergency location [154].

Other factors to take into account in planning the

locations of ambulances are the likelihood of timing

and location of an emergency, staff availability, loca-

tion constraints (e.g., a place where staff can rest), and

the emergency care center where patients are poten-

tially transported to [33, 56, 68, 134, 154, 175, 230,

237, 342, 352, 454].

Methods: computer simulation [56, 140, 154, 160, 174,

203, 230, 352, 366, 393, 454], heuristics [20, 33, 35, 139,

170, 229], Markov processes [19, 222], mathematical

programming [16, 33, 35, 36, 37, 41, 68, 99, 134, 140,

160, 175, 177, 203, 222, 237, 352, 353, 380, 393, 407],

queueing theory [33, 170, 229, 269, 290, 380], literature

review [61, 183, 237, 279, 342, 353].

Service mix An organization decides the particular

services that the emergency care facility provides. Facil-

ities may provide services for particular types of emer-

gency patients, which are possibly classified by severity of

trauma. For example, a first-aid center may provide

services that are adequate for minor emergencies, while
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an academic medical center is equipped to treat the most

complex and severe traumas. In this case, treating minor

emergencies at the first-aid center may alleviate the use of

expensive resources in the academic medical center, and

may be more cost-effective from a societal viewpoint. In

order to balance provided emergency care and the cost of

emergency care resources within a region or country, the

service mix decision may be governed by societal

influences and governmental regulations.

In general, the service mix decision is not made at an

emergency care service level, but at the hospital level, as

it integrally impacts the ambulatory, emergency, surgical

and inpatient care services. The decided service mix

dictates the case mix of emergency patients that can be

served by the emergency care facility. Emergency care

facilities in general do not decide a particular case mix, as

they are often obliged to serve arriving emergency

patients with any type of injury or disease [78, 336].

Methods: no papers found.

Ambulance districting A covered region may be subdi-

vided into several districts to which available ambulances

are assigned. In subdividing a region and assigning

ambulances to districts, it is the objective to minimize

response times, while balancing the workload [33, 74,

269]. When an emergency occurs in a district, one of the

available ambulances within that district is dispatched to

the emergency [33, 269]. When none are available (e.g.,

when all ambulances are responding to a call), an

ambulance from a different district may be dispatched

to the emergency [269]. Such interdistrict dispatching

decreases average response times, especially for relatively

smaller districts. This is the effect of so-called pooling of

resources [366]. Owing to this possibility of interdistrict

dispatching, only predicting the workload generated

within the assigned district may not lead to a well-

balanced ambulance districting decision. In the analysis

of the districting problem, overlapping districts, mobile

locations and interdistrict dispatching should be included

for an accurate prediction of workload balance [269].

Methods: computer simulation [174, 366], heuristics

[33], mathematical programming [33], queueing theory

[33, 74, 269].

Capacity dimensioning Emergency care facilities dimen-

sion their resources with the objective to attain a reliable

level of service while minimizing costs [36, 37, 323].

Often, this level of service is represented by a response

target, for example x% of the emergency patients should

be reached (ambulance) or seen (ED) within y minutes.

An imbalance in supply and demand can lead to con-

gestion or overcrowding in the ED [56]. ED overcrowding

results in long waiting times, patients who leave the ED

without being seen, and ambulance diversions [78, 189,

336]. This leads to patient dissatisfaction, medical errors

and decreased staff satisfaction [336]. A typical cause of

congestion in the ED is the delay in admitting emergency

patients to an inpatient bed due to congested medical

care units and ICUs [15, 78, 90, 322, 323, 422].

Congestion may also be caused by insufficient available

resources in the surgical care services (e.g., operating time

capacity) and ambulatory care services (e.g., diagnostic

equipment). Moreover, coordinated decision making for

resource capacity dimensioning both within, and in

services relating to emergency care services, reduces

delays for emergency patients [15, 54, 78, 90, 266, 422].

The following resources are dimensioned:

� Ambulances. Ambulances exist in different transport

modalities (helicopters, vans, cars) carrying different

types of equipment and staff [35, 36, 37, 140, 160, 230,

352, 366, 380, 401, 454]. Ambulances collect emer-

gency patients, but also perform less urgent transfers of

patients between care facilities [401]. The number of

ambulances should be chosen to include buffer

capacity, to cope with fluctuations in demand and

ambulance availability. Fluctuations in demand may

be caused by expected demand peaks, such as large

events, or unexpected demand peaks, such as large-

scale accidents [454].

� Waiting room. The waiting rooms is possibly separated

for patients awaiting results and patients awaiting

initiation of service [90, 336].

� Treatment rooms. Treatment rooms comprise treatment

beds or treatment chairs [78, 90, 266, 336]. Occupation

of treatment rooms can be alleviated by letting patients

await their lab test results in the waiting room and not

in the treatment room [78, 90].

� Emergency wards. These are observation wards for a

temporary stay, possibly before admission to the

general wards [15, 90, 322, 323], also called Acute

Admission Unit (AAU). Capacity is generally given in

the number of beds.

� Equipment. Equipment may be required for emergency

procedures, including treatment beds, treatment chairs

and diagnostic equipment [78, 90, 336]. In general,

diagnostic testing is considered outside the control of

the emergency care services [155]. Emergency patients

may require an X-ray or other diagnostic testing, and

may have to compete with inpatients and outpatients

for diagnostic resource capacity. Ineffective manage-

ment of the diagnostic department causes delays in the

emergency care services [155]. Installing diagnostic

equipment in the ED may decrease the waiting time for

diagnostic results, and therewith the overall length of

stay of a patient in the ED [336].

� Staff. Staff in emergency care services is composed of

different skill and responsibility levels, for example

doctors, emergency nurses and support staff [54, 155,

189, 240, 266, 322, 323, 336, 458]. Required staffing

dimensions, and thereby staff costs, may be reduced by

passing on non-critical patients from doctors to lower-

qualified, less-costly staff, releasing doctors to work on

the critical cases [54]. Moreover, flexibility in staffing

can be used to cost-effectively match uncertain emer-

gency demand with resource capacity. For example,
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staff members may be ‘on call’ while working else-

where or being off-duty, and they are called upon when

additional staff is required in the ED to cope with

unexpected demand peaks [323].

Methods: computer simulation [15, 37, 54, 78, 140, 155,

160, 230, 266, 270, 322, 352, 366, 454, 458], heuristics

[35], mathematical programming [35, 36, 140, 322, 323,

352], queueing theory [90, 189, 380, 401], literature

review [56, 240, 336].

Facility layout The facility layout concerns the position-

ing and organization of different physical areas in a

facility. Hospital managers aim to find the layout of the

emergency care facility that maximizes the number of

emergency patients that can be examined, given the

budgetary and building constraints. Letting patients wait

for their lab results in a waiting area instead of the treat-

ment room enables the treatment rooms to be used more

effectively, which can decrease patient waiting time [90].

Moreover, integration of the facility layout decision and

the patient routing decision may decrease costs.

Methods: computer simulation [458], heuristics [330],

literature review [336].

Tactical planning

Patient routing An emergency patient process consists

of multiple stages. We denote the composition and

sequence of these stages as the route of a patient. Patient

routes are designed to minimize patient waiting time,

maximize patient throughput and increase staff utilization

[54, 240]. A typical patient process is as follows. Patients

arrive to the hospital as a self-referral, through ambula-

tory care services or by ambulance [54]. Generally, upon

arrival at the ED, patients see a ‘triage-nurse’, who priori-

tizes these patients into urgency categories [78]. After

triage and possibly a wait in the waiting room, patients

see a medical staff member that aims to establish a

diagnosis of the patient’s condition timely and cost-

effectively. In this phase, diagnostic tests (e.g., laboratory,

X-ray) are typically required. Although more expensive, it

may be decided to directly administer multiple diagnostic

tests, to reduce the time to establish a diagnosis and

patient waiting time [240]. When a diagnosis is deter-

mined, possibly a treatment is carried out at the ED. This

treatment may be continued in the operating room or a

medical care unit in the hospital. If (further) treatment is

not required, the patient is discharged, possibly with a

referral to an ambulatory care clinic [265].

To minimize patient waiting time, maximize patient

throughput and increase staff utilization, alternative

patient routing systems within the emergency care

services may be developed. For example, a ‘fast-track

system’ in the ED separates the patients with minor

injuries and illnesses from the more severe traumas [90,

240, 299]. It reduces waiting time for patients with minor

injuries and illnesses [299], but may lead to increased

waiting time for the other patient groups, since less

resources are available for these groups [155]. This may be

acceptable, when the effect is not too large [299] and the

increased waiting times are still within the set targets for

each patient group [54, 240]. As relatively many steps in

the emergency care process depend on effective and

efficient processing in other care services (e.g., diagnostic

services, surgical care services, and inpatient care ser-

vices), coordinated decision making between the services

involved in the emergency care process reduces delays for

emergency patients [54, 78, 90, 155].

Methods: computer simulation [54, 78, 155, 265, 299,

425], queueing theory [90, 302], literature review [240,

336].

Admission control Admission control involves the rules

according to which patients are selected to be served. The

admission control rules first prescribe that the highest

priority (life-threatened) patients are seen immediately,

and that other patients can be deferred to the waiting

room until they can be seen by a clinician [54]. Secondly,

they define the order in which waiting patients are

selected to be served. In the triage process, mentioned

earlier in the patient routing decision, emergency patients

are classified into ‘triage categories’ (often five) during an

assessment by a qualified medical practitioner [78]. Typi-

cally, waiting time targets are set for each triage category,

as a particular waiting time has a different impact on the

health status of two patients in different urgency groups

[302]. In general, patients are served in the order of triage

category of decreasing urgency. However, applying more

dynamic rules that take into account the number of wait-

ing patients per triage category can enhance the com-

pliance to the waiting time targets per category [54].

Methods: computer simulation [54, 78], queueing

theory [302].

Staff-shift scheduling Shifts are hospital duties with a

start and end time [65]. Shift scheduling deals with the

problem of selecting what shifts are to be worked and

how many employees should be assigned to each shift to

meet patient demand [141]. The objective of shift sche-

duling is to generate shifts that minimize the number of

staff hours required to cover the desired staffing levels

[345]. The required staffing levels are determined by

calculating how much staff is required to reach a given

service level target, for example x% of the patients should

be seen in y minutes.

For an ED, patient demand varies significantly

throughout the week and throughout the day. Therefore,

identical staffing schedules each day and each hour may

seem convenient and practical, but they are likely

suboptimal [185]. Implementing different staffing levels

based on patient arrival rates for different moments

within the day and week may decrease patient waiting

times and reduce the number of patients that leave an ED

without being seen [189]. To calculate the required

staffing levels on each moment of the day, the working
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day is typically divided into planning intervals [184]. The

required staffing level in each interval is dependent on

the patient arrivals in that interval, but also by delayed

congestion effects from prior intervals [184, 189]. There-

fore, it can be beneficial to let a change in staffing level

follow a change in patient arrival rate after a certain delay

in time [184].

When staffing levels are determined, a set of shifts can

be developed to meet those staffing levels as close as

possible. Staggered shift scheduling is when shifts do not

have to start and finish at the same time. This results in

more flexibility to accommodate shifts to the required

staffing levels at specific intervals, leading to improved

utilization of resources [381]. Shift schedules are im-

pacted by the preferences of staff and by laws prescribing

emergency staff is only available for a limited number of

hours [139, 189].

Methods: computer simulation [230, 381, 382, 458],

heuristics [381, 382], queueing theory [184, 185, 189],

literature review [199, 240, 336].

Offline operational planning

Staff-to-shift assignment In staff-to-shift assignment, a

date and time are given to a staff member to perform a

particular shift. The objective is to attain the tactically

settled staffing levels for each shift while minimizing

costs, such as overtime by regular staff or staff hired

temporarily from an agency [18]. Staff-to-shift assign-

ments can be noncyclic and cyclic, where in the latter a

staff member constantly repeats the same shift pattern

[75]. In staff-to-shift assignment, labor laws, staff avail-

ability and staff satisfaction have to be taken into account

[18, 23, 103]. In [139], the staff-to-shift assignment for

ambulance staff is coordinated with the regional coverage

decision for ambulances, to maximize the provided

service level for patients in a region.

Methods: heuristics [75], mathematical programming

[18, 23, 75, 103, 139].

Online operational planning

Ambulance dispatching Ambulance dispatching con-

cerns deciding which ambulance to send to an emer-

gency patient [8]. When calls to report an emergency

event come in, a physician, nurse or paramedic assesses

whether the reported emergency requires an ambulance.

If so, the call is transferred to the dispatcher, who decides

which ambulance will respond [380]. Many dispatch-

ing rules exist, and a commonly used rule is to send the

ambulance closest to the emergency [281]. However,

when predictions on future emergency calls are incorpo-

rated, sending the closest ambulance is not always

optimal, as dispatching an ambulance makes it tempora-

rily unavailable to respond to other calls. Shorter overall

response times can be achieved when future demand is

also incorporated in the dispatching decision [274].

When multiple calls come in, prioritizing calls and

dispatching accordingly may balance ambulance work-

load [174]. Prioritizing and dispatching based on urgency

improves response rates for the high-urgent calls [281].

After the dispatching decision has been made and an

ambulance is traveling to the emergency, a request for

emergency care may be canceled, leading to resource idle

time [203].

Methods: computer simulation [8, 274, 281, 454],

heuristics [274], mathematical programming [281],

queueing theory [401].

Facility selection When an ambulance has collected a

patient, the emergency facility to which to bring a

collected emergency patient has to be decided [454]. It

is the aim to select the facility that minimizes the

patient’s travel time and is ‘adequate’ to serve the patient.

The prospective emergency facility may for example be a

local health clinic, a first-aid center or a hospital ED, and

its appropriateness depends on the match between the

facility’s services, resources and bed availability, and the

services required for the medical condition of the patient

[366]. Delivering the emergency patient to the closest

appropriate ED also leads to higher ambulance avail-

ability, as ambulance travel time is minimized [366].

Methods: computer simulation [366].

Ambulance routing When an ambulance is dispatched to

a particular emergency, the fastest route between an

ambulance’s location and the emergency location needs

to be determined with the aim to minimize ambulance

response times. Information with respect to distance,

traffic, road work, accessibility can be taken into account.

No specific contributions have been found for ambulance

routing with our search method, but note that a wide

range of contributions in the general problem of vehicle

routing exists [408].

Methods: no papers found.

Ambulance relocation When ambulances are unavail-

able, for example because they are dispatched to

emergency cases or they are in repair, they may leave a

significant fraction of population without ambulance

coverage [167]. In this case, to maximize regional cover-

age and to decrease response times, ambulances may be

relocated [8, 61, 167, 300]. Relocation improves flexibility

to respond to fluctuating patient demand [454] and

dynamic traffic conditions [368]. When relocating am-

bulances dynamically, one aims to control the number of

relocations to avoid successively relocating the same set

of ambulances, long travel times between the initial and

final location, and repeated round trips between the same

two locations [61, 167]. However, the increased move-

ments of ambulances caused by dynamic relocation may

also pose advantages. There is a higher chance of recei-

ving a call while on the road, which may result in a

decrease in response times caused by shorter turn-out

times, that is, the time for a crew to get ready before they

can drive to an emergency when they are dispatched
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[300]. Real-time dynamic relocation is increasingly

implementable, due to the increased availability of

location information and the decreasing price of comput-

ing power [300].

Methods: computer simulation [8, 167, 454], Markov

processes [300, 368], mathematical programming [167],

literature review [61].

Treatment planning and prioritization Each patient may

follow a tailored set of stages through the ED, for example

patients may receive different diagnostic tests and visit

different types of doctors [78]. It is the objective to

dynamically plan these stages, such that resource utiliza-

tion is maximized and waiting time between stages is

minimized. Planning the sequence of these stages and the

selection of which task for which patient is performed at

each point in time includes various factors, such as

urgency, medical requirements, resource availability and

patient waiting time. This planning decision is highly

interrelated with the strategic and tactical level decisions

facility layout, patient routing and admission control. As

these decisions shape the process flow for a particular

patient and set the priority rules applying to the patient.

Furthermore, there is a significant interdependence

between medical decision making and resource capacity

planning in this planning decision.

Methods: computer simulation [78, 155].

Staff rescheduling When emergency demand for ambu-

lances or in the emergency care facility is significantly

higher than predicted or when staff is lower than

expected (e.g., absent due to illness), additional staff

may be required. Especially when senior doctors, who are

required for key decisions such as discharge and parti-

cular treatments of a patient, are unexpectedly unavail-

able, it is recommended to call in an additional senior

doctor [322].

Methods: computer simulation [458], mathematical

programming [322].

3.3. Surgical care services
Surgeries are physical interventions on tissues, generally

involving cutting of a patient’s tissues or closure of a

previously sustained wound, to investigate or treat a

patient’s pathological condition. Surgical care services

have a large impact on the operations of the hospital as a

whole [29, 46, 72], and they are the hospital’s largest

revenue center [72, 108]. Surgical care services include

ambulatory surgical wards, where patients wait and stay

before and after being operated. We do not classify such

wards as inpatient care services, since patients served on

ambulatory basis do not require an overnight stay. The

proportion of ambulatory surgeries, which are typically

shorter, less complex and less variable [341], is increasing

in many hospitals [301]. There is a vast amount of

literature on OR/MS in surgical care services, comprehen-

sively surveyed in [45, 72, 111, 192, 196, 197, 287, 301,

345, 386, 436]. These surveys are used to create the

taxonomic overview of the planning decisions.

Strategic planning

Regional coverage At a regional level, the number, types

and locations of surgical care facilities have to be deter-

mined to find a balanced distribution of facilities with

respect to the geographical location of demand [130]. The

main trade-off in this decision is between patient accessi-

bility and facility efficiency. Coordination of activities

between hospitals in one region can provide significant

cost reductions at surgical care facilities and downstream

facilities [50, 365].

Methods: computer simulation [50], mathematical

programming [365].

Service mix An organization selects the particular services

that the surgical care facility provides. The service mix

stipulates which surgery types can be performed, and there-

fore impacts the net contribution of a facility [221]. Specific

examples of services are medical devices to perform non-

invasive surgeries and robotic services for assisting in

specialized surgery [107]. In general, the service mix

decision is not made at a surgical care service level, but at

the regional or hospital level, as it integrally impacts the

ambulatory, emergency, surgical and inpatient care services.

Methods: no papers found.

Case mix The case mix involves the number and types of

surgical cases that are performed at the facility. Often,

diagnosis-related groups (DRGs), which classify patient

groups by relating common characteristics such as

diagnosis, treatment, and age to resource requirements,

are used to identify the patient types included in the case

mix [225]. The case mix is chosen with the objective to

optimize net contribution while considering several

internal and external factors [192, 225]. Internal factors

include the limited resource capacity, the settled service

mix, research focus, and medical staff preferences and

skills [46, 192, 239]. External factors include societal

preferences, the disease processes affecting the popula-

tion in the facility’s catchment area [46], the case mix of

competing hospitals [127], and the restricted budgets and

service agreements in government-funded systems [46].

High profit patient types may be used to cross-subsidize

the unprofitable ones, possibly included for research or

societal reasons [46].

Methods: computer simulation [239], mathematical

programming [46, 225], literature review [192].

Capacity dimensioning Surgical care facilities dimension

their resources with the objective to optimize hospital

profit, idle time costs, surgery delays, access times and staff

overtime [285, 370]. Therefore, provider capacity must be

matched with patient demand [370] for all surgical

resource types. The capacity dimensioning decisions for

different resource types are highly interrelated and
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performance is improved when these decisions are

coordinated both within the surgical care facility and

with capacity dimension decisions in services outside the

surgical care facility, such as medical care units and the

Intensive Care Unit (ICU) [56, 369, 421, 422]. The

following resources are dimensioned:

� Operating rooms. Operating rooms can be specified by

the type of procedures that can be performed [21, 196,

240, 370].

� Operating time capacity. This concerns the number of

hours per time period the surgical care services are

provided [239, 301, 369, 402, 421]. Operating time

capacity is determined by the number of operating

rooms and their opening hours [285].

� Presurgical rooms. These rooms are used for preoperative

activities, for example induction rooms for anesthetic

purposes [301].

� Recovery wards. At these wards, patients recover from

surgery [255, 256, 257, 369, 370]. The recovery ward is

also called Post Anesthesia Care Unit (PACU) [192].

� Ambulatory surgical ward. At this ward, outpatients stay

before and after surgery.

� Equipment. Equipment may be required to perform parti-

cular surgeries. Examples are imaging equipment [197] or

robotic equipment [107]. Equipment may be transferable

between rooms, which increases scheduling flexibility.

� Staff. Staff in surgical care services include surgeons,

anesthesiologists, surgical assistants and nurse anesthe-

tists [5, 64, 107, 221]. Staffing costs are a large portion

of costs in surgical care services [10, 107]. Significant

cost savings can be achieved by increasing staffing

flexibility [107], for example by (i) cross-training sur-

gical assistants for multiple types of surgeries [196],

(ii) augmenting nursing staff with short-term contract

nurses [107], and (iii) drawing nurses from less critical

parts in the hospital during demand surges [107].

Methods: computer simulation [239, 255, 256, 257, 285,

369, 370, 421], heuristics [64, 107, 221], mathematical

programming [21, 64, 107, 402], queueing theory [285],

literature review [240, 301].

Facility layout The facility layout concerns the position-

ing and organization of different physical areas in a facility.

The aim is to determine the layout of the surgical care

facility that maximizes the number of surgeries that can

take place, given the budgetary and building constraints.

A proper integration of the facility layout decision and

the patient routing decision decreases costs and increases

the number of patients operated [291]. For example, when

patients are not anesthetized in the operating room, but in

an adjacent induction room, patients can be operated with

shorter switching times in between. In [301], contributions

that model a facility layout decision for surgical care

services are reviewed.

Methods: computer simulation [291], heuristics [330],

literature review [301].

Tactical planning

Patient routing A surgical process consists of multiple

stages. We denote the composition and sequence of these

stages as the route of a patient. The surgical process

consists of a preoperative, perioperative and postopera-

tive stage [192, 196, 341]. The preoperative stage involves

waiting and anesthetic interventions, which can take

place in induction rooms [291] or in the operating room

[301]. The perioperative stage involves surgery in the

operating room, and the postoperative stage involves

recovery at a recovery ward [192]. Recovery can also take

place in the operating room when a recovery bed is not

immediately available [13]. Surgical patients requiring a

bed are admitted to a (inpatient or outpatient) medical

care unit before the start of the surgical process, where

they return after the surgical process [235]. Efficient

patient routes are designed with the objective to increase

resource utilization [291].

Methods: computer simulation [291], heuristics [13],

mathematical programming [13, 341], literature review

[192, 301].

Capacity allocation On the tactical level, resource

capacities settled on the strategic level are subdivided

over patient groups. The objectives of capacity alloca-

tion are to trade off patient access time and the utili-

zation of surgical and postsurgical resources [45, 123,

192, 287, 402], to maximize contribution margin per

hour of surgical time [72], to maximize the number of

patients operated, and to minimize staff overtime

[201]. Capacity allocation is a means to achieve an

equitable distribution of access times [402]. Hospitals

commonly allocate capacity through block scheduling

[151, 192, 433]. Block scheduling involves the subdivi-

sion of operating time capacity in blocks that are

assigned to patient groups [192, 196]. Capacity is

allocated in three consecutive steps. First, patient

groups are identified. Second, resource capacities,

often in the form of operating time capacity, are sub-

divided over the identified patient groups. Third, blocks

of assigned capacity are scheduled to a specified date and

time.

� Patient group identification. In general, patient groups

are classified by (sub)specialty, medical urgency, diag-

nosis or resource requirements. Identification by

medical urgency distinguishes elective, urgent and

emergent cases [72, 145, 192, 196]. Elective cases can

be planned in advance, urgent cases require surgery

urgently, but can incur a short waiting period, and

emergency patients require surgery immediately [51,

72]. Examples of patient grouping by resource require-

ments are inpatients, day-surgery patients [196] and

grouping patients by the equipment that is required for

the surgery [107].

� Time subdivision. With the earlier mentioned objec-

tives, operating time is subdivided over the identified
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patient groups based on expected surgery demand.

This is often a politically charged and challenging task,

since various surgical specialties compete for a profit-

able and scarce resource. What makes it even more

complex is that hospital management and surgical

specialties may have conflicting objectives [48]. When

allocating operating time capacity to elective cases, a

portion of total operating time capacity is reserved for

emergency cases, which arrive randomly [169]. Staff

overtime is the result when the reserved capacity is

insufficient to serve all arriving emergency patients,

but resource idle time increases when too much

capacity is reserved, causing growth in elective waiting

lists [51, 262, 263, 339, 462]. Capacity can be reserved

by dedicating one or more operating rooms to

emergency cases, or by reserving capacity in elective

operating rooms [72, 261, 379].

� Block scheduling. In the last step of capacity allocation, a

date and time are assigned to blocks of allocated

capacity [29]. Several factors have to be considered in

developing a block schedule. For example, (seasonal)

variation in surgery demand, the number of available

operating rooms, staff capacities, surgeon preferences,

and material and equipment requirements [29, 365].

Block schedules are often developed to be cyclic,

meaning the block schedule is repeated periodically.

A (cyclic) block schedule is also termed a Master

Surgical Schedule (MSS) [420]. Cyclic block schedules

may not be suitable for rare elective procedures [192,

420]. For these procedures, capacity can be reserved in

the cyclic block schedule [436], or non-cyclical plans

may provide an outcome. When compared with cyclic

plans, non-cyclic [107, 120, 121], or variable plans

[240], increase flexibility, decrease staffing costs [107]

and decrease patient access time [199, 240]. However,

cyclic block schedules have the advantage that they

make demand more predictable for surgical and down-

stream resources, such as the ICU and general wards, so

that these resources can increase their utilization by

anticipating demand more structurally [420].

In addition to block scheduling, the literature also

discusses open scheduling and modified block scheduling.

Open scheduling involves directly scheduling all patient

groups in the total available operating time capacity,

without subdividing this capacity first. Although open

scheduling is more flexible than block scheduling, open

scheduling is rarely adopted in practice [48, 192], because

it is not practical with regards to doctor schedules

and increases competition for operating time capacity

[287, 345]. Modified block scheduling is when only

a fraction of operating time capacity is allocated by

means of block scheduling [117, 192]. Remaining

capacity is allocated and scheduled in a later stage, which

increases flexibility to adapt the capacity allocation

decision based on the latest information about fluctuat-

ing patient demand [192].

Capacity allocation decisions in surgical care services

impact the performance of downstream in-patient care

services [29, 31, 45, 72, 107, 287, 344, 422, 423, 424].

Variability in bed utilization and staff requirements can

be decreased by incorporating information about the

required inpatient beds for surgical cases in allocating

surgical capacity [4, 29, 31, 186, 365, 419, 420]. In

contributions that model downstream services, it is

often the objective to level the bed occupancy in the

wards or the ICU, to decrease the number of elective

surgery cancellations [29, 72, 344, 365, 395, 402, 419,

420], or to minimize delays for inpatients waiting for

surgery [459].

Methods: computer simulation [51, 117, 120, 121, 262,

339, 459], heuristics [29, 30, 31, 395, 431], Markov

processes [169, 423, 424, 462], mathematical program-

ming [29, 30, 31, 47, 48, 80, 107, 199, 262, 344, 365, 395,

402, 403, 419, 420, 459], queueing theory [462], literature

review [45, 72, 192, 196, 240, 287, 330, 422, 433, 436].

Temporary capacity change Available resource capacity

could be temporarily changed in response to fluctua-

tions in demand [285]. When additional operating time

capacity is available, it can be allocated to a parti-

cular patient group, for example based on contribution

margin [196, 436] or access times [402], or it can be

proportionally subdivided between all patient groups

[48, 402].

Methods: computer simulation [117], mathematical

programming [48, 107, 402], literature review [196, 199,

436].

Unused capacity (re)allocation Some time periods before

the date of carrying out a settled block schedule, capacity

allocation decisions may be reconsidered in order to

reallocate capacity that remains unused [125, 196, 215]

and to allocate capacity not allocated before (for example

in modified block scheduling, discussed in capacity alloca-

tion). When unused capacity is released sufficiently early

before the surgery time is planned, better quality

reallocations are possible than when the unused capacity

is released on the same day it is available [215]. Unused

capacity is (re)allocated with the same objectives as the

capacity allocation decision.

Methods: computer simulation [117, 125], heuristics

[125], Markov processes [215], literature review [196].

Admission control Admission control involves the rules

according to which patients from different patient groups

are selected to undergo surgery in the available operating

time capacity. There is a strong reciprocal relation

between admission control decisions and capacity alloca-

tion decisions: capacity allocation decisions demarcate

the available operating time capacity for surgeries, and

admission control decisions influence the required opera-

ting time capacity. Admission control has the objective to

balance patient service, resource utilization and staff

satisfaction [45]. It is established by developing an
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admission plan that prescribes how many surgeries of

each patient group to perform on each day, taking the

block schedule into account [4]. Balancing the number

of scheduled surgical cases throughout the week prevents

high variance in utilization of involved surgical resou-

rces, such as operating rooms and recovery beds, and

downstream inpatient care resources, such as ICU and

general ward beds [3, 4, 29, 247, 287, 410]. Resource

utilization can be improved by using call-in patients [45]

and overbooking [51]. Call-in patients are given a time

frame in which they can be called in for surgery when

there is sufficient space available in the surgical schedule.

Overbooking of patients involves planning more surgical

cases than available operating time capacity to anticipate

for no-shows [29]. Most patients requiring surgical care

enter the hospital through the ambulatory care services.

Although this makes admission control and capacity

allocation policies for both ambulatory and surgical care

services interdependent, not much literature is available

on the interaction between ambulatory and surgical care

services [422].

Methods: computer simulation [51, 115, 247, 410],

Markov processes [313], mathematical programming [3,

4], literature review [45, 192].

Staff-shift scheduling Shifts are hospital duties with a

start and end time [65]. Shift scheduling deals with the

problem of selecting what shifts are to be worked and

how many employees should be assigned to each shift to

meet patient demand [141]. The objective of shift sche-

duling is to generate shifts that minimize the number of

staff hours required to cover the desired staffing levels

[345]. The desired staffing levels are impacted by the

capacity allocation decisions. Hence, integrated decision

making for capacity allocation and staff-shift scheduling

minimizes required staff [30]. Flexible shifts can improve

performance [48, 116]. One example is staggered shift

scheduling, which implies that employees have varying

start and end times of shifts [330]. It can be used to plan

varying, but adequate staffing levels during the day, and

to decrease overtime [48, 116].

Methods: heuristics [112], mathematical programming

[30, 63, 126], literature review [199, 345].

Offline operational planning

Staff-to-shift assignment In staff-to-shift assignment,

a date and time are given to a staff member to perform

a particular shift. The literature on shift scheduling and

assignment in health care mainly concerns inpatient care

services [141], which we address in the section ‘Inpatient

care services’.

Methods: no papers found.

Surgical case scheduling Surgical case scheduling is con-

cerned with assigning a date and time to a specific

surgical case. Availability of the patient, a surgeon, an

anesthetist, nursing and support staff, and an operating

room is a precondition [45]. Surgical case scheduling is an

offline operational planning decision, since it results in

an assignment of individual patients to planned resources

and not in blueprints for assigning surgical cases to

particular slots. The objectives of surgical case scheduling

are numerous: to achieve a high utilization of surgical

and postsurgical resources, to achieve high staff and

patient satisfaction, and to achieve low patient deferrals,

patient cancellations, patient waiting time and staff

overtime [72, 107, 150, 235, 289, 341, 361, 379, 441].

The execution of a surgical case schedule is affected by

various uncertainties in the preoperative stage duration,

surgical procedure duration, switching time, postsurgical

recovery duration, emergency patient interruption, staff

availability and the starting time of a surgeon [192, 341].

These uncertainty factors should be taken into account in

surgical case scheduling.

Although surgical case scheduling can be done inte-

grally in one step [13, 119, 120, 151, 287, 341, 361, 389],

it is often decomposed in several steps. In the latter case,

first, the planned length of a surgical case is decided.

Second, a date and an operating room are assigned to a

surgical case on the waiting list. (also termed the

‘advance scheduling’ [287]). Third, the sequence of

surgical cases on a specific day is determined [193, 287]

(also termed the ‘allocation scheduling’ [287]). Fourth,

starting times for each surgical case are determined.

Below, we explain these four steps in more detail.

� Planned length of a surgical case. The planned length

of a surgical case is the reserved operating time

capacity in the surgical schedule for the surgical case

duration, switching time and slack time. Surgical case

duration, which is often estimated for each patient

individually [327], is impacted by factors as the

involved surgeon’s experience, and the acuteness, sex

and age of the patient [113, 327]. Switching time bet-

ween surgical cases includes cleaning the operating

room, performing anesthetic procedures or changing

the surgical team [124]. Slack capacity is reserved as a

buffer to deal with longer actual surgery durations than

expected in advance [201]. When too little time is

reserved, staff overtime and patient waiting time occur,

and when too much time is reserved, resources incur

idle time [124, 327, 441].

� Assigning dates and operating rooms to surgical cases.

Dates and operating rooms are assigned to the elective

cases on the surgical waiting list, following the settled

admission control decisions [21, 149, 150, 201, 235,

292, 355]. The available blocks of operating time

capacity are filled with elective cases. When too few

cases are planned, utilization decreases, leading to

longer waiting lists. Conversely, when too many cases

are planned, costs increase due to staff overtime

[51, 355]. Assigning dates and operating rooms to

surgical cases can be done by assigning an individual

surgical case, or by jointly assigning multiple cases

to various possible dates and times. The latter is
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more efficient as more assignment possibilities can be

considered [120].

� Sequencing of surgical cases. When the set of surgical

cases for a day or for a block is known, the sequence in

which they are performed still has to be determined.

Factors to consider in the sequencing decision are

doctor preference [192], medical or safety reasons [69,

235], patient convenience [69, 70], and resource

restrictions [71]. Various rules for sequencing surgical

cases are known [21, 69, 70, 194, 341, 355, 379]. In

general, the traditional first-come-first-serve (FCFS)

rule is outperformed by a longest-processing-time-first

(LPTF) rule [45, 255, 257, 330]. When the variation of

surgical case duration is known, sequencing surgical

cases in the order of increasing case duration variation

(i.e., lowest-variance-first) may yield further improve-

ments [108, 441].

� Assigning starting times to surgical cases. The planned

start time of each surgical case is decided [194]. This

provides a target time for planning the presurgical and

postsurgical resources, and for planning the doctor

schedules [441]. The actual start time of a surgical case

is impacted by the planned and actual duration of all

preceding surgical cases [21, 441] and the completion

time of the preoperative stage [122].

Emergency cases may play a significant role during the

execution of the surgical case schedule [192]. Hence,

incorporating knowledge about emergency cases, for

example predicted demand, in surgical case scheduling

decreases staff overtime and patient waiting time [51, 169,

261, 262, 263]. Often, surgical case scheduling is done in

isolation. However, efficiency gains may be achieved by

also considering decisions in other care services [69, 72, 86,

235, 341]. For example, without coordination with the

ICU, a scheduled case may be rejected on its day of surgery

due to a full ICU [341]. The contributions [13, 69, 86, 151,

221, 288, 314, 341, 370] do incorporate other care services,

such as the patient wards and ICUs.

Methods: computer simulation [10, 51, 86, 114, 117,

119, 120, 123, 145, 194, 255, 257, 261, 262, 370, 403,

441], heuristics [10, 13, 71, 108, 113, 149, 151, 193, 194,

221, 261, 263, 292, 355, 361, 389, 418], Markov processes

[169, 196, 313, 327], mathematical programming [13, 21,

69, 70, 71, 80, 86, 106, 107, 108, 149, 150, 151, 193, 235,

261, 262, 263, 289, 292, 339, 341, 355, 361, 379, 402],

queueing theory [441], literature review [45, 72, 197, 287,

301, 330, 385].

Online operational planning

Emergency case scheduling Emergency cases requiring

immediate surgery are assigned to reserved capacity or to

capacity obtained by canceling or delaying elective pro-

cedures [420]. It is the objective to operate emer-

gency cases as soon as possible, but also to minimize

disturbance of the surgical case schedule [197]. When

emergency cases cannot be operated immediately, prior-

itizing of emergency cases is required to accommodate

medical priorities or to minimize average waiting time of

emergency cases [118, 341].

Methods: mathematical programming [118, 341], litera-

ture review [197].

Surgical case rescheduling When the schedule is carried

out, unplanned events, such as emergency patients,

extended surgery duration and equipment breakdown,

may disturb the surgical case schedule [3, 289]. Hence,

the surgical case schedule often has to be reconsidered

during the day to mitigate increasing staff overtime,

patient waiting time and resource idle time. Rescheduling

may involve moving scheduled surgeries from one

operating room to another and delaying, canceling or

rescheduling surgeries [289].

Methods: mathematical programming [3, 289], litera-

ture review [196, 197].

Staff rescheduling At the start of a shift, the staff sche-

dule is reconsidered. Before and during the shift, the

staff capacities may be adjusted to unpredicted demand

fluctuations and staff absenteeism by using part-time,

on-call nurses, staff overtime and voluntary absenteeism

[191, 342].

Methods: no papers found.

3.4. Inpatient care services
Inpatient care refers to care for a patient who is formally

admitted (or ‘hospitalized’) for treatment and/or care and

stays for a minimum of one night in the hospital [325].

Owing to progress in medicine inpatient stays have been

shortened, with many admissions replaced by more cost-

effective outpatient procedures [324, 330]. Resource

capacity planning has received much attention in the

OR/MS literature, with capacity dimensioning being the

most prominently studied decision.

Strategic planning

Regional coverage At a regional planning level, the

number, types and locations of inpatient care facilities

have to be decided. To meet inpatient service demand,

the available budget needs to be spent such that the

population of each geographical area has access to a

sufficient supply of inpatient facilities of appropriate

nature and within acceptable distance [56]. Coordinated

regional coverage planning between various geographical

areas supports the realization of equity of access to care

[43, 364]. To achieve this, local and regional bed

occupancies need to be balanced with the local and

regional probability of admission refusals resulting from a

full census. The potential pitfall of deterministic ap-

proaches as used in [364] is that resource requirements

are underestimated and thus false assurances are provided

about the expected service level to patients [209].

Methods: computer simulation [209], mathematical

programming [56, 364], queueing theory [43].
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Service mix The service mix is the set of services that

health care facilities offer. health care facilities that offer

inpatient care services can provide a more complex mix

of services and can accommodate patient groups with

more complex diagnoses [385]. In general, the inpatient

care service mix decision is not made at an inpatient care

service level, but at the regional or hospital level, as it

integrally impacts the ambulatory care facilities, the

operating theater and the wards. This may be the reason

that we have not found any references focusing on

service mix decisions for inpatient care services in

specific.

Methods: no papers found.

Case mix Given the service mix decision, the types and

volumes of patients that the facility serves need to be

decided. The settled service mix decision restricts the

decisions to serve particular patient groups. Patient

groups can be classified based on disease type, demo-

graphic information and resource requirements [190]. In

addition, whether patient admissions are elective or not

is an influential characteristic on the variability of the

operations of inpatient care services [414]. The case mix

decision influences almost all other decisions, in parti-

cular the care unit partitioning and capacity dimension-

ing decisions [24].

Methods: computer simulation [190], heuristics [24, 414].

Care unit partitioning Given the service and case mix

decisions, the hospital management has to decide upon

the medical care units in which the inpatient care facility

is divided. We denote this decision as care unit partition-

ing. It addresses both the question which units to create

and the question which patient groups to consolidate in

such care units. Each care unit has its designated staff,

equipment and beds (in one or more wards). The objec-

tive is to guarantee care from appropriately skilled nurses

and required equipment to patients with specific diag-

noses, while making efficient use of scarce resources [24,

132, 133, 176, 209, 216, 374, 430].

First, the desirability of opening shared higher-level

care units like Intensive Care Units (ICU) or Medium Care

Units (MCU) should be considered [412]. Second, the

general wards need to be specified. Although care unit

partitioning is traditionally done by establishing a care

unit for each specialty, or sometimes even more diagnosis

specific [385], specialty-based categorization is not ne-

cessarily optimal. Increasingly, the possibilities and

implications of consolidating inpatient services for care

related groups is investigated to gain from the econo-

mies-of-scale effect, so-called ‘pooling’ [450]. For exam-

ple, many hospitals merge the cardiac and thoracic sur-

gery unit [186], or allow gynecologic patients in an

obstetric unit during periods of low occupancy [303].

In such cases, the overflow rules need to be specified

on the tactical level. For geriatric departments, it has to

be decided whether to separate or consolidate assess-

ment, rehabilitation and long-stay care [307, 308]. Also,

multi-specialty wards can be created for patients of

similar length of stay, such as day-care, short, week- and

long-stay units [374, 430], or for acute patients [224, 414].

Concentrating emergency activities in one area (a

Medical Assessment Unit) can improve efficiency and

minimize disruption to other hospital services [323]. One

should be cautious when pooling beds for patient groups

with diverging service level [186] or nursing requirements

[264]. A combined unit would require the highest service

and nurse staffing level for all patient groups. As a result,

acceptable utilization may be lower than with separate

units. Also, pooling gains should be weighed against

possible extra costs for installing extra equipment on

each bed [264]. To conclude, the question whether to

consolidate or separate clinical services from a logistical

point of view is one that should be answered for each

specific situation, considering demand characteristics but

also performance preferences and requirements [209].

Obviously, the care unit partitioning decision is highly

interrelated with the capacity dimensioning decisions, to

be discussed next.

Methods: computer simulation [132, 133, 176, 209, 224,

374], heuristics [24, 264, 414], mathematical program-

ming [323], queueing theory [186, 216, 303, 307, 308,

412, 450].

Capacity dimensioning In conjunction with the care

unit partitioning, the size of each care unit needs to be

determined. Care unit size is generally expressed in the

number of staffed beds, as this number is often taken as a

guideline for dimensioning decisions for other resources

such as equipment and staff.

� Beds. The common objective is to dimension the

number of beds of a single medical care unit such that

occupancy of beds is maximized while a predefined

performance norm is satisfied [178, 319, 321, 354, 428,

447]. The typical performance measure is the percen-

tage of patients that have to be rejected for admission

due to lack of bed capacity: the admission refusal rate.

Several other consequences of congested wards can be

identified, all being a threat to the provided quality of

care. First, patients might have to be transferred to

another hospital in case of an emergency [92, 248, 297,

452]. Second, patients may (temporarily) be placed

in less appropriate units, so-called misplacements [96,

132, 133, 186, 208, 213, 452]. Third, backlogs may

be created in emergency rooms or surgical recovery

units [88, 176, 186, 322, 323]. Fourth, elective admis-

sions or surgeries may have to be postponed, by which

surgical waiting lists may increase [7, 96, 178, 451,

452], which negatively impacts the health condition of

(possibly critical) patients [410, 416]. Finally, to

accommodate a new admission in critical care units,

one may predischarge a less critical patient to a general

ward [129, 445].

The number of occupied beds is a stochastic process,

because of the randomness in the number of arrivals
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and lengths of stay [251]. Therefore, slack capacity is

required and thus care units cannot operate at 100%

utilization [102, 186]. Often, inpatient care facilities

adopt simple deterministic spreadsheet calculations,

leading to an underestimation of the required number

of beds [88, 96, 102, 204, 209]. Hospitals commonly

apply a fixed target occupancy level (often 85%), by

which the required number of beds is calculated. Such

a policy may result in excessive delays or rejections [17,

186, 209, 251, 319]. The desirable occupancy level

should be calculated as a complex function of the

service mix, the number of beds and the length of stay

distribution [208, 209]. This nonlinear relationship

between number of beds, mean occupancy level and

the number of patients that have to be rejected for

admission due to lack of bed capacity is often

emphasized [7, 102, 208, 213, 251, 319, 320, 354]. In

determining the appropriate average utilization, the

effect of economies-of-scale due to the so-called

portfolio effect plays a role: larger facilities can operate

under a higher occupancy level than smaller ones in

trying to achieve a given patient service level [186, 209,

210, 251], since randomness balances out. However,

possible economies of scope due to more effective

treatment or use of resources should not be neglected

[186]. Units with a substantial fraction of scheduled

patients can in general operate under a higher average

utilization [186]. The effect of variability in length of

stay on care unit size requirements is shown to be less

pressing than often thought by hospital managers

[186, 416]. Reducing the average length of stay shows

far more potential. For care units that have a demand

profile with a clear time-dependent pattern, these

effects are preferably explicitly taken into account in

modeling and decision making, to capture the seasonal

[213, 286], day-of-week [129, 162, 213, 223] and even

hour-of-day effects [27, 62, 88, 208]. This especially

holds for units with a high fraction of emergencies

admissions [385].

Capacity decisions regarding the size of a specific

care unit can affect the operations of other units.

Therefore, the number of beds needs to be balanced

among interdependent inpatient care units [7, 60, 88,

89, 190, 209, 216, 224, 278, 297, 385]. Models that

consider only a single unit neglect the possibility of

admitting patients in a less appropriate care unit and

thus the interaction between patient flows and the

interrelationship between care units. Next to estimat-

ing utilization and the probability of admission

rejections or delays, models that do incorporate multi-

ple care units, also focus on the percentage of time that

patients are placed in a care unit of a lower level or less

appropriate care unit, or in a higher level care unit [11,

92, 172, 186, 278, 374]. The first situation negatively

impacts quality of care as it can lead to increased

morbidity and mortality [410] and the second nega-

tively impacts both quality of care, as it may block

admission of another patient, and efficient resource

use [186, 374]. Some multi-unit models explicitly take

the patient’s progress through multiple treatment or

recovery stages into account and try to dimension the

care units such that patients can in each stage be

placed in the care units that are most suitable regarding

their physical condition [88, 92, 102, 146, 166, 171,

206, 211, 212, 224, 297, 374, 412].

� Equipment. In [430], it is stated that pooling equipment

among care units can be highly beneficial. However,

no references have been found explicitly focusing on

this planning decision. This might be explained by

the fact that the care unit partitioning and size decisions

are generally assumed to be translatable to equipment

capacity requirements. Therefore, many of the refer-

ences mentioned under these decisions are useful for

the capacity dimensioning of equipment.

� Staff. The highest level of personnel planning is the

long-term workforce capacity dimensioning decision.

This decision concerns both the number of emplo-

yees that have to be employed, often expressed in the

number of full time equivalents, and the mix in terms

of skill categories [207, 322]. For inpatient care services

it mainly concerns nursing staff. To deliver high-

quality care, the workforce capacity needs to be such

that an appropriate level of staff can be provided in the

different care units in the hospital [141, 172]. In

addition, holiday periods, training, illness and further

education need to be addressed [65].

Workforce flexibility is indicated as a powerful con-

cept in reducing the required size of workforce [65, 104,

172, 385]. To adequately respond to patient demand

variability and seasonal influences, it pays off to have

substitution possibilities of different employee types,

to use overtime, and to use part-time employees

and temporary agency employees [385]. Just as with

pooling bed capacity, economies-of-scale can be gained

when pooling nursing staff among multiple care units.

Nurses cross-trained to work in more than one unit can

be placed in a so-called floating nurse pool [65, 172,

264, 385]. Note that flexible staff can be significantly

more expensive [191]. Also, [271] indicates that to

maintain the desired staff capacity, it is necessary to

determine the long-term human resource planning

strategies with respect to recruiting, promotion and

training. To conclude, integrating the staff capacity

dimensioning decision with the care unit size decision

yields a significant efficiency gain [172].

Methods: computer simulation [7, 17, 88, 92, 96, 132,

133, 176, 190, 191, 204, 207, 208, 209, 210, 224, 248,

251, 297, 319, 320, 321, 322, 354, 374, 410, 428, 445,

447, 451, 452], heuristics [264], Markov processes [7, 62,

146, 166, 171, 211, 212, 213, 286], mathematical progra-

mming [104, 172, 207, 271, 278, 322, 323], queueing

theory [11, 27, 60, 88, 89, 102, 129, 162, 178, 186, 206,

216, 223, 248, 278, 354, 412, 416], literature review [65,

141, 342, 385].
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Facility layout The facility layout concerns the position-

ing and organization of different physical areas in a

facility. To determine the inpatient care facility layout, it

needs to be specified which care units should be next to

each other [330] and which care units should be close to

other services like the surgical, emergency and ambula-

tory care facilities [67]. Ideally, the optimal physical

layout of an inpatient care facility is determined given

the decisions on service mix, case mix, care unit

partitioning and care unit size. However, in practice, it

often happens vice versa: physical characteristics of a

facility constraint service mix, care unit partitioning and

care unit size decisions [67, 430]. Newly built hospitals

are preferably designed such that they support resource

pooling and have modular spaces so that they are as

flexible as possible with respect to care unit partitioning

and dimensioning [430].

Methods: computer simulation [67], heuristics [330],

mathematical programming [67].

Tactical planning

Bed reallocation Given the strategic decision making,

tactical resource allocation needs to ensure that the fixed

capacities are employed such that inpatient care is

provided to the right patient groups at the right time,

while maximizing resource utilization. Bed reallocation is

the first step in tactical inpatient care service planning.

Medium-term demand forecasts may expose that the care

unit partitioning and size decisions fixed at the strategic

level are not optimal. If the ward layout is sufficiently

flexible, a reallocation of beds to units or specialties based

on more specific demand forecast can be beneficial [24,

208, 431]. In addition, demand forecasts can be exploited

to realize continuous reallocation of beds in anticipation

for seasonality in demand [242]. To this end, hospital

bed capacity models should incorporate monthly, daily

and hourly demand profiles and meaningful statistical

distributions that capture the inherent variability in

demand and length of stay [204]. When reallocating

beds, the implications for personnel planning, and

involved costs for changing bed capacity, should not be

overlooked [6].

Methods: computer simulation [208, 242], heuristics

[24, 431], mathematical programming [6], queueing

theory [242].

Temporary bed capacity change To prevent superfluous

staffing of beds, beds can temporarily be closed by

reducing staff levels [186]. This may for instance be in

response to predicted seasonal or weekend demand

effects [204, 210]. The impact of such closings on the

waiting lists at referring outpatient clinics and the

operating room is studied by [450, 451]. Temporary bed

closings may also be unavoidable as a result of staff

shortages [297]. In such cases hospitals can act pro-

actively, to prevent bed closings during peak demand

periods [24].

Methods: computer simulation [204, 210, 297, 451],

heuristics [24], queueing theory [186, 450].

Admission control To provide timely access for each

different patient group, admission control prescribes the

rules according to which various patients with different

access time requirements are admitted to nursing wards.

At this level, patients are often categorized in elective,

urgent and emergency patients. Admission control

policies have the objective to match demand and supply

such that access times, rejections, surgical care cancella-

tions and misplacements are minimized while bed

occupancy is maximized. The challenge is to cope with

variability in patient arrivals and length of stay. Smooth-

ing patient inflow, and thus workload at nursing wards,

prevents large differences between peak and non-peak

periods, and so realizes a more efficient use of resources

[4, 204, 432].

Patient resource requirements are another source of

variability in the process of admission control. Most

references only focus on maximizing utilization of bed

resources. This may lead to extreme variations in the

utilization of other resources like diagnostic equipment

and nursing staff [385]. Also, as with temporarily closing

of beds, possible effects of admission control policies on

the waiting lists at referring outpatient clinics and the

operating room should not be neglected [378]. Admission

control policies can be both static (following fixed rules)

and dynamic (changing rules responding to the actual

situation).

� Static bed reservation. To anticipate for the estimated

inflow of other patient groups, two types of static bed

reservation can be distinguished. The first is refusing

admissions of a certain patient type when the bed

census exceeds a threshold. For example, to prevent

the rejection of emergent admission requests, an

inpatient care unit may decide to suspend admissions

of elective patients when the number of occupied beds

reaches a threshold [142, 163, 232, 243, 297, 303, 354,

378]. As such, a certain number of beds is reserved for

emergency patients. This reservation concept is also

known as ‘earmarking’. Conversely, [249, 410] indicate

that earmarking beds for elective postoperative pa-

tients can minimize operating room cancellations. In

the second static level the number of reserved beds

varies, for example per weekday. Examples of such

a policy are provided in [42], and [413] in which

for each work day a maximum reservation level for

elective patients is determined.

� Dynamic bed reservation. Dynamic bed reservation

schemes take into account the actual ‘state’ of a ward,

expressed in the bed census per patient type. Together

with a prediction of demand, the reservation levels

may be determined for a given planning horizon [252]

or it may be decided to release reserved beds when

demand is low. Examples of the latter are found

in [249], where bed reservations for elective surgery
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are released during weekend days, and [28], where

admission quota are proposed per weekday. In [214],

an extension to dynamic reservation is proposed

which concerns calling in semi-urgent patients from

an additional waiting list on which patients are placed

who needs admission within 1–3 days.

� Overflow rules. In addition to the bed reservation rules,

overflow rules prescribe what happens in the case that

all reserved beds for a certain patient type are occupied.

In such cases, specific overflow rules prescribe which

patient types to place in which units [209]. Generally,

patients are reassigned to the correct treatment area as

soon as circumstances permit [385]. By allowing over-

flow and setting appropriate rules, the benefits of bed

capacity pooling are utilized (see capacity dimension-

ing: care unit size), while the alignment of patients

with their preferred bed types is maximized [297].

Various references focus on predicting the impact of

specific overflow rules [180, 209, 216, 297, 374].

� Influence surgical schedule. For many inpatient care

services the authority on admission control is limited

due to the high dependency on the operating room

schedule (see surgical care services). By adjusting the

surgical schedule, extremely busy and slack periods can

be avoided [4, 24, 129, 132, 145, 180, 186, 204, 402,

423, 424, 431, 432, 452] and cancellation of elective

surgeries can be avoided [247]. In practice, the opera-

ting room planning is generally done under the assum-

ption that a free bed is available for postoperative care

[249], which may result in surgery cancellations.

Therefore, both for inpatient and surgical care services

coordinated planning is beneficial [3, 204].

Methods: computer simulation [3, 132, 145, 180, 204,

209, 247, 249, 297, 354, 374, 402, 410, 432, 452],

heuristics [24, 431], Markov processes [42, 142, 214,

216, 252, 423, 424], mathematical programming [3, 4, 28,

402], queueing theory [28, 129, 163, 186, 232, 243, 303,

378, 413].

Staff-shift scheduling Shifts are hospital duties with a

start and end time [65]. Shift scheduling deals with the

problem of selecting what shifts are to be worked and

how many employees should be assigned to each shift to

meet patient demand [141, 246]. For inpatient care

services, it generally concerns the specification of 24-h-

a-day-staffing levels divided in a day, evening and night

shift, during which demand varies considerably [65, 141].

Typically, this is done for a period of one or two months

[342]. Staffing levels need to be set both for each care

unit’s dedicated nurses and for flexible staff in floating

pools [264]. Also, [104, 191] investigate the potential of

on-call nurses who are planned to be available during

certain shifts and only work when required.

The first step in staff shift scheduling is to determine

staffing requirements with a demandmodel [141, 199, 246,

396], based on which the bed occupancy levels [385] and

medical needs are forecasted [264]. The second step is to

translate the forecasted demand in workable shifts and in

the number of nurses to plan per shift, taking into account

the staff resources made available at the strategic decision

level [437]. Often, nurse-to-patient ratios are applied in this

step [191], which are assumed to imply acceptable levels of

patient care and nurse workload [453]. To improve the

alignment of care demand and supply, shift scheduling is

preferably coordinated with scheduled admissions and

surgeries [342], which also helps avoiding high variation in

nurse workload pressure [30].

Methods: computer simulation [191], heuristics [264],

mathematical programming [30, 104, 437, 453], que-

ueing theory [396], literature review [65, 141, 199, 246,

342, 385].

Offline operational planning

Admission scheduling Governing the rules set by tactical

admission control policies, on the operational decision

level the admission scheduling determines for a specific

elective patient the time and date of admission. We found

one reference on this decision: [95] presents a scheduling

approach to schedule admissions for a short-stay inpa-

tient facility that only operates during working days,

which takes into account various resource availabilities

such as beds and diagnostic resources. We suggest two

reasons for the lack of contributions on this decision.

First, when admission control policies are thoroughly

formulated, admission scheduling is fairly straightfor-

ward. Second, as described before, for postoperative

inpatient care authority of admission planning is gen-

erally at the surgical care services [431].

Methods: mathematical programming [95].

Patient-to-bed assignment Together with the admission

scheduling decision, an elective patient needs to be

assigned to a specific bed in a specific ward. Typically, this

assignment is carried out a few days before the effective

admission of the patient. The objective is to match the

patient with a bed, such that both personal preferences

(for example a single or twin room) and medical needs

are satisfied [79, 105]. An additional objective may be to

balance bed occupancy over different wards.

Methods: heuristics [79, 105], mathematical program-

ming [79, 105].

Discharge planning Discharge planning is the develop-

ment of an individualized discharge plan for a patient

prior to leaving the hospital. It should ensure that

patients are discharged from the hospital at an appro-

priate time in their care and that, with adequate notice,

the provision of other care services is timely organized.

The aim of discharge planning is to reduce hospital

length of stay and unplanned readmission, and improve

the coordination of services following discharge from the

hospital [376]. As such, discharge planning is highly

dependent on availability downstream care services, such

as rehabilitation, residential or home care. Therefore, a
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need is identified for integrated coherent planning across

services of different health care organizations [426, 442].

Patients whose medical treatment is complete but cannot

leave the hospital are often referred to as ‘alternative level

of care patients’ or ‘bed blockers’ [422, 442]. Also in

discharge planning it is worthwhile to anticipate for

seasonality effects.

Methods: computer simulation [426], queueing theory

[442], literature review [376].

Staff-to-shift assignment Staff-to-shift assignment deals

with the allocation of staff members to shifts over a

period of several weeks [141]. The term ‘nurse rostering’ is

also often used for this step in inpatient care services

personnel planning [65, 84]. The objective is to meet the

required shift staffing levels set on the tactical level, while

satisfying a complex set of restrictions involving work

regulations and employee preferences [40, 65, 84, 234,

246, 415]. Night and weekend shifts, days off and leaves

have to be distributed fairly [342, 385, 453] and as much

as possible according to individual preferences [40, 141].

In most cases, to compose a roster for each individual,

first sensible combinations or patterns of shifts are

generated (cyclic or non-cyclic), called ‘lines-of-work’,

after which individuals are assigned to these lines-of-

work [141]. Sometimes, staff-to-shift assignment is inte-

grated with staff-shift scheduling [65, 453]. ‘Self-schedul-

ing’ is an increasingly popular concept aimed at increased

staff satisfaction which allows staff members to first

propose individual schedules, which are taken as starting

point to create a workable schedule that satisfies the

staffing level requirement set on the tactical level [362].

Methods: heuristics [40, 415], mathematical program-

ming [40, 234, 362, 415, 453], literature review [65, 84,

141, 246, 342, 385].

Online operational planning

Elective admission rescheduling Based on the current

status of both the patient and the inpatient care facility,

it has to be decided whether a scheduled admission can

proceed as planned. Circumstances may require postpon-

ing or canceling the admission, to reschedule it to

another care unit, or to change the bed assignment.

Various factors will be taken into consideration such as

severity of illness, age, expected length of stay, the

probable treatment outcome, the (estimated) bed avail-

ability, and the conditions of other patients (in view of

the possibility of predischarging an other patient) [248,

282, 377]. This decision is generally made on the planned

day of admission or a few days in advance. Rescheduling

admissions can have a major impact on the operations at

the surgical theater [248].

Methods: computer simulation [248], heuristics [282],

queueing theory [248, 377].

Acute admission handling For an acute admission re-

quest it has to be decided whether to admit the

emergency patient and if so to which care unit, which

bed, and on what notice. The tactical admission control

rules act as guideline. As with rescheduling elective

admissions, the status of both the patient and the

inpatient care facility are taken into account [248, 377].

In [248], it is calculated how long the waiting will

be if the patient is placed on ‘the admission list’

and [377] proposes and evaluates an admission policy

to maximize the expected incremental number of lives

saved from selecting the best patients for admission

to an ICU.

Methods: computer simulation [248], queueing theory

[248, 377].

Staff rescheduling At the start of a shift, the staff schedule

is reconsidered. Based on severity of need in each care

unit, the float nurses and other flexible employees are

assigned to a specific unit and a reassignment of dedicated

nurses may also take place [65, 385]. In addition, before

and during the shift, the staff capacities among units may

be adjusted to unpredicted demand fluctuations and staff

absenteeism by using float, part-time, on-call nurses

overtime and voluntary absenteeism [191, 342].

Methods: computer simulation [191], mathematical

programming [347], literature review [65, 342, 385].

Nurse-to-patient assignment At the beginning of each

shift, each nurse is assigned to a group of patients to take

care for. This assignment is done with the objective to

provide each patient with an appropriate level of care and

to balance workloads [315, 390]. Distributing work fairly

among nurses improves the quality of care [315].

Generally, the assignment has to satisfy specified nurse-

to-patient ratios [347]. Additionally, when patient con-

ditions within one care unit can differ considerably, for

each specific patient an estimate of the severity of the

condition (and thereby expected workload) is made, in

most cases on the basis of a certain severity scoring

system [315]. In [347], it is explicitly taken into account

that patient conditions, and therefore care needs, can

vary during a shift. They state that it is preferred to also

decide at the beginning of each shift to which nurse(s)

unanticipated patients will be assigned.

Methods: computer simulation [390], heuristics [315],

mathematical programming [315, 347].

Transfer scheduling Throughout the inpatients’ stay, the

transfer scheduling is done to the appropriate inpatient

care unit or to other areas within the hospital for treat-

ments or diagnoses [342]. Transfer scheduling includes

the planning of transportation. Transfer scheduling is

often postponed until the time an already occupied

bed is requested by a new patient. However, in [405]

it is concluded that when relocation of patients is done

proactively, admission delays for other patients can

significantly be reduced, which has a positive effect on

both quality and efficiency.

Methods: Markov processes [405].
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3.5 Home care services
Home care includes medical, paramedical and social

services delivered to patients at their homes [268]. It

represents an alternative for hospitalization or place-

ment in a residential care facility [34]. Home care services

are a growing sector in the health care domain [34, 81],

which might be because it is in general less costly [268]

and it has a positive effect on a patient’s quality of life

[144]. Their development is accelerated by factors such

as the ageing of the population, the increase of chronic

diseases, the introduction of innovative technologies and

the continuous pressure of governments to contain

health care costs [34, 81, 144]. Home care is provided

in multi disciplinary teams, since patients typically have

a mixture of social, physical, psychological needs, and

home care professionals may carry out several patient

visits during a day. This diversity, multi-disciplinarity

and the fact that the patient’s home has to be inte-

grated in the care supply chain makes the resource

planning of home care delivery complex [34, 81, 268].

Coordination between the various disciplines is required

to ensure continuity of care and to prevent overlap of

care [34].

The body of OR/MS literature focusing on home care

resource capacity planning in health care is not extensive

compared with other care services. A single review was

available [34], which has been a valuable starting point

for the taxonomic overview in this section. It has been

noted in the literature that due to the nature of home

care services, intelligent portable electronic devices have

a high potential in supporting home care organization

and they are more and more used [26, 144]; recall that

ICT solutions are not the focus of our review.

Strategic planning

Placement policy The placement policy decision pre-

scribes which patient types are eligible for home care

services, and which are preferably admitted to an

inpatient or residential care facility. The aim is to provide

patients with the right treatment at the right time in the

most cost-effective manner [457]. Defining placement

policies requires classification systems by which health

status and type of care requirements can be assessed

[268, 457]. Often, for a single patient there are multiple

alternatives for what type of care facility is best suitable.

Optimal placement involves the consideration whether

or not to treat a patient in a hospital bed, and at which

point during recovery a patient is transferred from

hospital care to home care [81, 457]. This makes

coordination of inpatient, residential and home care

resource capacities desirable [34].

Methods: heuristics [457], Markov processes [268],

mathematical programming [81], literature review [34].

Regional coverage At a regional planning level, the

number, types and locations of home care agencies are

decided. Unlike hospitals, which cater to a population

not constrained to a specific area, home care agencies

are generally responsible for the population in a given

area, possibly assigned by the government [44, 260]. To

meet home care service demand, the available budget

needs to be spent such that the population in the area has

access to a sufficient supply of home care services. Since

care is delivered at a patient’s home, the distance between

agencies is only a provider efficiency issue, and does not

affect patient accessibility [34]. No specific contributions

to regional coverage planning in home care have been

found.

Methods: literature review [34].

Service mix A home care organization has to decide

which services to offer. With respect to home care

services, [144] distinguishes home care and home health

care. Home care involves helping patients with everyday

activities, such as bathing, dressing, eating, cooking,

cleaning, and monitoring the daily medication regime.

Home health care involves helping patients recover from

an illness or injury. Therefore, home health care is often

provided by registered nurses, therapists and home

health assistants. Another service is that of social and

emotional support to patients and their family [34].

Home care services solely involving medication or meal

distribution are outside the scope of our review, as these

are secondary services. All found contributions treat the

service mix decision as given in their models.

Methods: literature review [34].

Case mix Aligned with the service mix, an organization

needs to determine the types and volumes of patients it

will serve. Patient types can be grouped according to

pathology or to required type of care [34, 144]. Based on

duration and content of care, [34] distinguishes four

types of care: punctual care, continuous care, palliative

care, rehabilitation care. For home care, the variety of

required care in type, frequency and time is substantial

[34, 101]. Therefore, almost all other planning decisions

are geared to the case mix. However, as with the service

mix decision, all found contributions treat this decision

as given.

Methods: literature review [34].

Panel size The panel size, also called calling population,

is the number of potential patients of a home care facility.

Since only a fraction of these potential patients actually

demands home care services, the panel size can be larger

than the number of patients a facility can serve. The goal

is to set the panel size such that a minimum standard of

service is ensured, while making efficient use of available

resources [101], where service is typically measured in

access time and efficiency in staff utilization. To achieve

this, future care needs originating from the potential

patients have to be forecasted. The panel size decision is

closely connected to the regional coverage and districting

decisions.

Methods: mathematical programming [101].
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Districting Districting involves the partitioning into

districts of the area in which an organization is

responsible for the logistics of home care visits. Typically,

each district falls under the responsibility of one multi-

disciplinary care team [34, 44]. Districting is done to limit

the travel distances and times of care providers between

the homes of patients, to improve coordination between

different care providers treating the same patient and to

encourage long-term relationships between providers and

patients [34, 144]. Although these reasons plead for small

districts, the districts should not be too small, to avoid

inefficient operations [44]. Also, the objective of balan-

cing workload among the districts in an area can be taken

into account [44].

Methods: heuristics [44], literature review [34].

Capacity dimensioning Home care organizations dimen-

sion their resources, to spend the available budget such

that a satisfactory quality of care is realized and access

times are minimized [34, 66]. To this end, provider

capacity must be matched with patient demand. Since

individual home care is in general a long-term process,

the capacity dimensioning decision also requires long-

term demand forecast models based on demographic

information [202, 417]. In Lahrichi et al [260], it is

indicated that true care needs are hard to estimate as care

demands stored in historical data tend to be biased by the

realized (un)availability of services. Capacity is dimen-

sioned for the following resource types:

� Staff. Many health care professionals are involved in

home care delivery, including nurses, occupational

therapists, physiotherapists, speech therapists, nutri-

tionists, home support workers, social workers, physi-

cians and pharmacists [66, 260]. For each skill category

it is determined whether to employ staff or to

(temporarily) hire staff from an external agency when

required [34]. Where usually professionals are dedi-

cated to a fixed district, flexibility to respond to

fluctuating demand can be achieved by allowing care

providers to work in more than one district [260].

� Equipment. Medical and paramedical equipment and

information technology equipment can be involved in

providing home care [34]. Sharing resources among

multiple districts may induce cost savings [332].

� Fleet vehicles. Means of transport, rented or bought, are

required for visiting patients [34].

When capacity is dimensioned to cover average

demand, variations in demand may cause long access

times. Basic rules from queueing theory demonstrate the

necessity of excess capacity to cope with uncertain

demand [66]. Variation arises not only from uncertainty

in the arrival process of care requests but also from the

different levels of care required per patient [34]. The

multi-disciplinary nature of home care causes a diversity

of resources to be involved. Therefore, the capacity

dimensioning decisions for different resource types are

highly interrelated and performance is improved when

these decisions are aligned. If dimensions are not

properly balanced, some resources may become bottle-

necks, while at the same time others are underutilized

[34, 66].

Methods: computer simulation [332, 417], Markov pro-

cesses [202], queueing theory [66], literature review [34].

Tactical planning

Capacity allocation On the tactical level, resource capa-

cities settled on the strategic level are subdivided over

districts and patient groups. The objective is to equitably

allocate resources: workload, access times and quality of

care (for example measured in number of visits per

patient) should be balanced over districts and patient

groups [66, 101]. Capacity allocation requires two steps:

� Patient group identification. Patients are classified by

medical urgency or resource requirements [34, 66].

� Time subdivision. Capacity subdivision is provided in

the number of care hours available per discipline per

district [101, 260]. Time subdivision can be done based

on number of inhabitants per district. However, [49]

proposes to use a detailed demand estimation per

patient group, taking into account demographical

information including age and gender distributions.

To accurately respond to demand fluctuations, a

dynamic subdivision of capacity, updated based on

current waiting lists, already planned visits and expected

requests for appointments, performs better than a static

one [101, 260]. Finally, a close cooperation with other

health organizations such as residential and inpatient

care services may yield better future demand predictions

[34].

Methods: heuristics [49, 260], mathematical program-

ming [101], queueing theory [66], literature review [34].

Admission control Admission control involves the rules

according to which patients are selected to be admitted to

home care services from the waiting lists. Admission

control policies have the objective to match demand and

supply such that access times are minimized while resou-

rce utilization is maximized, taking into account resource

availability, current waiting lists and expected demand.

Clearly, admission control and capacity allocation are

interrelated. Patient needs and available resources must

be balanced to prevent poor service levels or staff

overutilization [101]. The challenge in admission control

is to cope with various sources of variability such as varia-

tion in patient arrivals, patient home locations, urgency,

number of visits per week per discipline required, patient

health conditions and treatment durations [101].

Multiple waiting lists are created based on geographical

area and patient groups [66]. To provide timely access

for each urgency class, patients are typically categorized

in several priority groups within a waiting list [66].

A possible admission policy is to always take the patient

with highest priority into service whenever capacity
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becomes available [66]. Another option is to develop an

admission plan that prescribes how many patients of

each patient group are taken into service during a certain

planning horizon. The latter has the potential to

simultaneously decrease access times and increase re-

source utilizations on the long run [101]. Incorporating

forecasts of future care pathways of patients already in

service and of patients on the waiting list can also improve

performance [101, 268]. Finally, [217] and [260] signify

that when case load is high in one district while another

district is (temporarily) underutilized, it is beneficial to

allow the flexibility of dynamic admissions over district

borders.

Methods: Markov processes [268], mathematical pro-

gramming [101, 217], queueing theory [66].

Staff-shift scheduling Shifts are duties with a start and

end time [65]. Shift scheduling deals with the problem of

selecting what shifts are to be worked and how many

employees should be assigned to each shift to meet

patient demand [141]. Staffing levels per discipline and

per district need to be such that feasible operational plans

can be generated [34]. Shifts for various disciplines need

to be synchronized to accommodate simultaneous visits

[81] and to facilitate interdisciplinary teammeetings [34].

By staffing a surplus team of which the members are able

to work in whichever district that is required, the home

care organization is able to respond to temporary demand

fluctuations, and unplanned staff absence due to sickness

[260].

Methods: heuristics [260], literature review [34].

Offline operational planning

Assessment and intake Upon a home care request, first

an assessment and intake process takes place. This process

consists of assessing the patient’s eligibility for home

care, determining the care requirements and assigning a

reference care provider. The eligibility is determined

based on the strategic placement policy, together with

specific personal characteristics, among which the social

situation of the patient. The latter is also an important

factor in the estimation of the patient’s needs, since for

example family assistance can reduce demands for

professional support [34, 383]. The patient’s health status

and social situation are very specific, hence customized

care programs are required [81]. Determining care

requirements is in this phase done at an aggregate level,

for example in hours per care type per week [144]. This is

not only important from a patient’s point of view, but

also for the home care organization, as it dictates resource

requirements on the short term [268]. Estimating a

patient’s care pathway and possible variation herein

facilitates forecasting resource requirements on the

medium term [268]. The reference care provider, also

called case manager [81], is responsible for coordination

of the entire multidisciplinary treatment [34]. Based on

the resource requirements estimation, the reference care

provider assignment can be done such that case load is

balanced among home care employees [34, 217]. Inter-

organizational coordination in the assessment and intake

process is crucial to know about a patient arrival in an

early phase [457]. This promotes continuity of care

between discharge at inpatient and residential care

facilities and admission to home care services [34, 81].

Methods: heuristics [383, 457], Markov processes [268],

mathematical programming [81, 144, 217], literature

review [34].

Staff-to-shift assignment Staff-to-shift assignment deals

with the allocation of staff members to shifts over a

period of several weeks [141]. The objective is to meet the

required shift staffing levels set on the tactical level, while

satisfying a complex set of restrictions involving work

regulations and employee preferences [65]. Weekend

shifts, days off and leaves have to be distributed fairly

[342, 385] and as much as possible according to indivi-

dual preferences [141], which include working times,

preferential days, vacation and performing particular care

activities [34]. The decision is often integrated with visit

scheduling [38, 144], the decision that is discussed next.

Methods: heuristics [38, 144], mathematical program-

ming [38, 144], literature review [34].

Visit scheduling Visit scheduling determines which visit

will be performed, on which day and time, and by which

staff member. It consists of two components: creating

detailed care plans per patient, and the appointment

scheduling. This visit scheduling is complex, since all

patients have to be treated individually at their own

home. Therefore, all tasks have to be planned in advance

and synchronization of all human and material resources

is required [34, 81]. Visit scheduling consists of three

components:

� Short-term care plan. For each patient it has to be

determined when, which visits by which care dis-

ciplines are (medically) necessary [26, 34, 143, 144,

217, 268].

� Staff-to-visit assignment. Each visit has to be assigned to

a certain staff member [26, 34, 38, 59, 143, 144, 217,

268].

� Route creation. For each care provider individual routes

are constructed that determine at which day and what

time each visit will be done [26, 34, 38, 59, 57, 58, 81,

143, 144].

Since the three components are highly interdependent,

an integrated approach is required to determine the

complete visit schedule all at once [26, 38, 81, 143, 144].

It may even be necessary to integrate the staff-to-shift

assignment decision [38, 143, 144]. This integration of

different planning and scheduling decisions makes home

care operational planning also mathematically difficult

[26, 38, 143, 144]. Typically, a visit base plan is made a

few weeks in advance for a planning horizon of several

weeks, which assigns specific visits to specific weekly time
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buckets. Then, around a week in advance the detailed

visit schedule is established [26, 143, 144]. A wide set of

constraints needs to be satisfied, like provider skill

qualifications, working hours, geographical coherence

between the district of patient and staff member, and

allowed time windows for each visit [26, 34, 38, 57, 58,

143, 144]. In addition, precedence and synchronization

requirements need to be satisfied, since some patients

need simultaneous or sequential tasks requiring multi-

ple resources [26, 59]. Also, the uncertainty of travel

times and visit durations needs to be taken into account

[34]. The goal is to design visit schedules that are effi-

cient in terms of minimizing labor costs, travel time and

distance [26, 57, 58, 59, 81] and such that preferences of

both patient and providers are considered. Preferences of

patients include preferential days, preferred staff, mini-

mize unplanned visits and continuity of care reflected

in same day, same time and same staff [26, 38, 59, 143,

144]. Staff preference mainly concerns equity of work-

load, expressed in visit load and travel load [26, 143, 144,

217]. Workload imbalance can be reduced by allowing

temporary deployment of staff outside their own district

[26, 217].

Methods: heuristics [26, 38, 57, 58, 143, 144], Markov

processes [268], mathematical programming [26, 38, 57,

58, 59, 81, 143, 144, 217], literature review [34].

Online operational planning

Visit rescheduling The visit schedule is updated a few

days in advance, the day in advance and on the day of

execution itself. Rescheduling is required to respond to

unplanned events such as unplanned staff absenteeism,

changed visit requirements due to changed patient health

conditions, and incoming urgent care requests [26, 143,

144, 409]. It involves integrally rescheduling care plans,

staff rescheduling and rerouting [26, 143, 144]. One has

to decide whether to arrange staff replacements (intern-

ally or externally) or to fit additional tasks into the routes

of the available staff, and whether to postpone some less

time-critical tasks to a later day. Weather conditions such

as snowfalls, floods or storms, can be a source for the

necessity of visit rescheduling [409].

Methods: heuristics [26, 143, 144, 409], mathematical

programming [26, 143, 144, 409].

Residential care services
Residential care services cover a range of health care ser-

vices for patients, often elderly, who have acute, chronic,

palliative or rehabilitative health care needs that do

not allow them to stay at home, but who do not strictly

require a hospital stay [202]. Making residential care

available to such patients avoids long-term hospital

admissions, which are in general more costly [22]. The

body of OR/MS literature directed to residential care

services is limited. The literature has mainly focused

on predicting patients’ health progress, to support

the strategic decisions placement policy and capacity

dimensioning. The dynamics of residential care services,

although on a slower time scale, are similar to that of

inpatient care services. Therefore, most planning deci-

sions and insights described under inpatient care services

also apply to residential care services. This fact and the

low variety in addressed planning decisions in the

literature are the reasons that we choose for residential

care services, as opposed to the other care services, to

only present planning decisions for which we found

references.

Strategic planning

Placement policy The placement policy decision pre-

scribes which patient types are eligible for which type

of residential care services, and which are preferably

admitted to inpatient or home care services. The aim is to

provide patients with the right treatment at the right

time using means which are most cost-efficient [22].

Defining a placement policy requires classification sys-

tems by which the health status and care requirements of

a patient can be assessed [22, 457]. Often, for a single

patient there are multiple alternatives for what type of

care facility is most suitable. This especially holds for

elderly patients, since they often suffer from multiple

pathologies [306]. The placement policy involves the

consideration whether to treat a patient in a hospital bed,

and at which point during recovery a patient is trans-

ferred from the hospital to residential care [296, 306,

375]. This makes coordination between inpatient and

residential care resource capacity planning desirable.

Although hospital beds are in general more costly, a

relatively short hospital stay may prevent a long stay in

residential care, which may therefore be less expensive in

the long run [181, 312, 373].

To derive optimal placement policies, many contribu-

tions model the movement of patients through the

health care system including both hospital and residen-

tial care [306, 375, 400, 435, 456], the progress of patients

through different health states [87, 147, 148, 165, 231,

304, 306, 307, 308, 312, 375, 397, 398, 399, 400, 456],

and part of them include an estimation of related cost

[293, 294, 296, 308, 337, 455]; other contributions model

the relation between gender, age and clinical patient

characteristics to length-of-stay and resource consump-

tion in each stage [148, 293, 294, 295, 305, 312, 375, 417,

455, 456]. Various cost evaluations include analysis of

demographics and individual life-expectations [87, 202,

337, 455, 456].

Methods: computer simulation [304, 417], heuristics

[22, 457], Markov processes [87, 147, 148, 165, 202, 231,

293, 294, 295, 296, 304, 305, 306, 307, 308, 312, 337,

373, 375, 397, 398, 399, 400, 435, 455, 456], queueing

theory [181].

Regional coverage At a regional planning level, the

number, types and locations of residential care facilities

have to be decided. To meet residential care service
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demand, the available budget needs to be spent such that

the population of each geographical area has access

to a sufficient supply of facilities of appropriate nature

[56, 97]. In general, the primary criteria for the locations

are not so much closeness to customer bases but costs of

site acquisition and construction, cost of operation, and

speed of access to acute care facilities [342]. However, for

rehabilitation care, where patients stay for a relatively

short period, distance between the facility and the

patients home and family is of importance to stimulate

reintegration into their communities [97]. When the

locations of facilities are well-spread over a region and

load is balanced between facilities, equity of access to care

is maximized, since the situation is avoided that some

facilities have long waiting lists while other facilities have

idle beds [131].

Methods: mathematical programming [56, 97, 131],

literature review [342].

Case mix Aligned with the service mix, an organization

needs to determine the types and volumes of patients it

will serve. Patient types can be grouped according to

pathology, required type of care and resource require-

ments. For example, in [159], resource-utilization groups

(RUGs) are presented which classifies patient groups

by relating diagnosis, mental condition and mobility

to resource requirements. The case mix decision is an

influential factor with respect to almost all other plan-

ning decisions, especially to staff-related decisions [159],

since the length-of-stay of different patient types can be

significantly different (i.e., a rehabilitation short-stay vs a

geriatric long-stay).

Methods: heuristics [159].

Capacity dimensioning Residential care organizations

dimension their resources, to spend the available budget

such that a satisfactory quality of care is realized, while

access time is minimized and resource utilization is

maximized [137]. To this end, provider capacity must be

matched with patient demand. To estimate patient

demand (in number and length-of stay), the earlier

mentioned models for the movement of patients through

health states and through the health system are applic-

able [147, 148, 171, 231, 293, 294, 295, 296, 304, 305,

307, 308, 312, 375, 397, 398, 399, 400, 435, 455, 456].

Owing to the long-term character of residential care,

long-term demand forecast models that include demo-

graphic information and survival analysis as presented

in [87, 109, 202, 337, 417] have additional value. To anti-

cipate for the uncertainty of long-term demand deve-

lopments such as population ageing, scenario analysis

can be applied to answer what-if questions [398, 399].

Capacity is dimensioned for the following resource

types:

� Beds. The size of residential care facilities is generally

expressed in the number of beds. This number can be

taken as a guideline for dimensioning decisions for

other resources such as equipment and staff. The

common objective is to dimension the number of

beds of facilities such that occupancy of beds is

maximized while admission rejection and delay is

minimized [179]. Delay in admission of patients to

appropriate care facilities negatively affects therapeutic

effectiveness [179]. To be able to realize quick turn-over

for short-stay patients, strict separation within a faci-

lity of short-stay and long-stay patients might be

preferred [137]. However, allowing overflow between

longs-stay and short-stay beds potentially increases bed

utilization. In that case, an appropriate balance

between short-stay and long-stay beds is required [83,

137, 165, 179], to avoid short-stay bed blocking by

long-stay patients. A relatively small decrease in the

number of long-stay beds, with a corresponding rise

in the number of short-stay beds, has a dramatic effect

on the number of patients that can be treated [83, 181,

373]. In addition, balancing capacities between facil-

ities is required, since for instance hospital discharges

are highly dependent on availability of downstream

care services [337]. When patients find the facilities to

which they are referred to be full, they are forced to

wait at their current, often unnecessarily intensive

(and generally more expensive) care facilities. These

patients unnecessarily block the current beds while

waiting, preventing utilization by potential patients

who require care at these facilities [250]. Hence,

inappropriate bed dimensioning for residential services

causes both degradation of quality of care and financial

losses due to these ‘alternative level of care’ patients

[83, 333]. Again, a need is identified for integrated

coherent planning across services of different health

care organizations [442].

� Staff. In view of the increasing residential care demand

and a declining labor force, changes in staff skill mix

are worthwhile to consider. It might be able to identify

subtasks for which can be carried out by less qualified

staff [109].

Methods: computer simulation [109, 137, 250, 304, 333,

417], Markov processes [87, 147, 148, 165, 171, 202, 231,

293, 294, 295, 296, 304, 305, 307, 308, 312, 333, 337,

373, 375, 397, 398, 399, 400, 435, 455, 456], queueing

theory [83, 179, 181, 250, 442].

Tactical planning

Admission control Admission control involves the rules

according to which patients are selected to be admitted to

residential care services from the waiting lists. Taking into

account resource availability, current waiting lists and

expected demand, admission control policies have the

objective to match demand and supply such that access

times are minimized, while resource utilization is max-

imized. In addition, access times should be equitable

among patient groups [275]. Admission control requires

patient group identification, which is done by clustering

Taxonomic classification of planning decisions in health care Peter J.H. Hulshof et al156

Health Systems



patients with similar pathologies and similar resource

requirements [166, 275]. For each of these groups,

waiting lists are created. To provide timely access for

different urgency classes, patients are typically categor-

ized in several priority groups based on medical urgency

and current accommodation [333]. A patient’s current

accommodation plays a role, since waiting at upstream

facilities leads to bed blocking, while waiting at home

might lead to added stress on families. Estimating the

future transitions between patient groups and urgency

classes for both patients already in service and patient on

the waiting lists can support the design of good admis-

sion control policies [166, 275].

A possible admission policy is to always take the

patient with highest priority into service whenever

capacity becomes available. Another option is to deve-

lop an admission plan that prescribes how many patients

of each patient group are taken into service during

a certain planning horizon. The latter has the potential

to simultaneously decrease access times and increase

resource utilizations on the long run [166, 275]. In

[333], a dynamic admission rule is proposed which, under

the assumption that the total bed capacity is sufficient,

maintains ‘alternative level of care’ census at hospitals

below a certain threshold and maintains access times

from home below a certain access time target. For such

dynamic rules, a close cooperation with upstream health

organizations is required, which might be challenging

since reducing hospital bed blocking may not be the

primary interest of residential care organizations.

Methods: computer simulation [333], mathematical

programming [166, 275, 333].

Offline operational planning

Treatment scheduling For rehabilitation patients the

therapeutic process generally takes several weeks during

which multiple treatments with clinicians from different

disciplines have to take place. Usually, the treatment

requirements are known in advance, at least for a number

of weeks, so that the appointments can be scheduled

in advance. The treatment is planned in an appoint-

ment series, in which appointments may have prece-

dence relations and certain guidelines for the time

intervals in between. The goal is to provide treatments

at the right time and in the right sequence, while resou-

rce utilization is maximized. The quality of the schedules

is highly important for the medical effectiveness and

the economic efficiency of rehabilitation centers [367].

Since the amount of variables is tremendous, treatment

scheduling for a complete rehabilitation center is highly

complex. In [367], it is claimed that if scheduling is

done by hand, it is generally done on a patient-by-patient

or even appointment-for-appointment basis. Therefore,

decision support tools based on OR/MS are considered

as indispensable to achieve high-quality treatment

scheduling.

Methods: mathematical programming [367].

4. Conclusion
This article is directed to both health care professionals

and OR/MS researchers. It has introduced a taxonomy to

identify, break down and classify decisions to be made

in the managerial field of health care resource capacity

planning and control. It has provided a structured over-

view of the planning decisions in six identified care

services and the corresponding state of the art in OR/MS

literature. Having done this, we aim for an impact that is

threefold. First, we aim to support health care profes-

sionals in improved decision making. Second, we aim to

inspire OR/MS researchers in formulating future research

objectives and to position their research in a hierarchical

framework. Third, we aim for interconnecting health care

professionals and OR/MS researchers so that the potential

of OR/MS can be discovered and exploited in improving

health care delivery performance.

The vertical axis in our taxonomy represents the

hierarchical nature of decision making in health care

organizations. Aggregate decisions are made in an early

stage, and finer granularity is added in later stages

when more detailed information becomes available.

The observed literature explicitly substantiates the rela-

tions between planning decisions both within and

between hierarchical levels. Planning decisions on higher

levels shape decision making on lower levels by imposing

restrictions. Performance on lower levels concerns feed-

back about the realization of higher level objectives,

thereby potentially impacting decision making on higher

levels. We have seen many examples of these interactions

in our review. Incorporating flexibility in planning redu-

ces restrictions imposed by decisions settled in higher

levels on lower level decision making. Increased planning

flexibility involves specifying and adjusting planning

decisions closer to the time of actual health care delivery,

thereby giving the opportunity to incorporate more

detailed and accurate information in decision making.

The observed contributions that incorporate planning

flexibility provide opportunities to improve the response

to fluctuations in patient demand and thus to improve

performance.

Although organized by different organizations, the

health care delivery process from the patient’s perspective

generally is a composition of several care services.

A patient’s pathway typically includes several care stages

performed by various health care services. The effective-

ness and efficiency of health care delivery is a result of

planning and control decisions made for the care services

involved in each care stage. The quality of decisions in

each care service depends on the information available

from and the restrictions imposed by other care services.

Therefore, in the perspective of the presented taxonomy,

in addition to the vertical interaction, a strong hori-

zontal interaction can be recognized. Suboptimization is

a threat when these decisions are taken in isolation. At

various points in our overview, we have observed that

taking an integrated approach in decision making is

beneficial. Such an integration is not straightforward as it
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also emerged that different care services may have

conflicting objectives. Our categorization of planning

decisions in the previous section based on the taxonomy

presented in Section 2 ‘Taxonomy’ enables identification

of interactions between different care services, allows

detection of conflicting objectives and helps to discover

opportunities for coordinated decision making.

Owing to the segmented organizational structure of

health care delivery, also the OR/MS literature has initially

focused predominantly on autonomous, isolated decision

making. Such models ignore the inherent complex

interactions between decisions for different services in

different organizations and departments. In 1999, the

survey [240] identified a void in OR/MS literature focusing

on integrated health care systems. The level of complexity

of such models is depicted as main barrier. In 2010, the

survey [422], reviewing OR/MS models that encompass

patient flows across multiple departments, addressed the

question whether this void has since been filled. The

authors conclude that the lack of models for complete

health care processes still existed. Although a body of

literature focusing on two-departmental interactions was

identified, very few contributions were found on complete

hospital interactions, let alone on complete health care

system interactions. The present review of the literature

reconfirms these observations.

To conclude, the specification of planning decisions in

our taxonomy allows for identifying relations within and

between hierarchical levels. Recognizing and incorporat-

ing these relationships in decision making improves

health care delivery performance. Creating more plan-

ning flexibility in decision making demonstrates great

potential. By specifying and adjusting planning deci-

sions closer to the time of actual health care delivery,

more detailed and accurate information can be incorpo-

rated, providing opportunities to adjust planning deci-

sions to better match care supply and demand.

Furthermore, integrated decision making for multiple

care services along a care chain shows great potential.

With the growing awareness of the potential benefit of

such integrated decision making, an increase in the

number of publications in which integrated models are

presented is noticeable [72, 422]. However, it remains a

challenge for OR/MS researchers to develop integral

models that on the one hand provide an extensive

health care system scope, while on the other hand

incorporating a satisfactory level of detail and insight.

Summarizing, for the sake of patient centeredness and

cost reductions required by societal voices and pressures,

we claim that both health care professionals and OR/MS

researchers should address coordinated and integrated

decision making for interrelated planning decisions,

should explore the opportunities of increased flexibility

and should take an integral care chain perspective.
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ALMROTH M (2009) Operations research improves quality and
efficiency in home care. Interfaces 39(1), 18–34.

145 EVERETT JE (2002) A decision support simulation model for the
management of an elective surgery waiting system. Health Care
Management Science 5(2), 89–95.

146 FADDY MJ, GRAVES N and PETTITT A (2009) Modeling length of stay
in hospital and other right skewed data: comparison of phase-
type, gamma and log-normal distributions. Value in Health 12(2),
309–314.

147 FADDY MJ and MCCLEAN SI (2005) Markov chain modelling for
geriatric patient care. Methods of Information in Medicine-Methodik
der Information in der Medizin 44(3), 369–373.

148 FADDY MJ and MCCLEAN SI (2007) Using a multi-state model to
enhance understanding of geriatric patient care. Australian Health
Review 31(1), 91–97.

149 FEI H, CHU C and MESKENS N (2009) Solving a tactical operating
room planning problem by a column-generation-based heuristic
procedure with four criteria. Annals of Operations Research 166(1),
91–108.

150 FEI H, CHU C, MESKENS N and ARTIBA A (2008) Solving surgical cases
assignment problem by a branch-and-price approach. International
Journal of Production Economics 112(1), 96–108.

151 FEI H, MESKENS N and CHU C (2010) A planning and scheduling
problem for an operating theatre using an open scheduling
strategy. Computers & Industrial Engineering 58(2), 221–230.

152 FETTER RB and THOMPSON JD (1965) The simulation of hospital
systems. Operations Research 13(5), 689–711.

153 FETTER RB and THOMPSON JD (1966) Patients’ waiting time and
doctors’ idle time in the outpatient setting. Health Services Research
1(1), 66–90.

154 FITZSIMMONS JA (1973) A methodology for emergency ambulance
deployment. Management Science 19(6), 627–636.

155 FLETCHER A, HALSALL D, HUXHAM S and WORTHINGTON D (2006) The
DH accident and emergency department model: a national generic
model used locally. Journal of the Operational Research Society
58(12), 1554–1562.

156 FONE D, HOLLINGHURST S, TEMPLE M, ROUND A, LESTER N, WEIGHTMAN

A, ROBERTS K, COYLE E, BEVAN G and PALMER S (2003) Systematic

Taxonomic classification of planning decisions in health care Peter J.H. Hulshof et al 161

Health Systems



review of the use and value of computer simulation modelling in
population health and health care delivery. Journal of Public Health
25(4), 325.

157 FRIES BE (1976) Bibliography of operations research in health care
systems. Operations Research 24(5), 801–814.

158 FRIES BE and MARATHE VP (1981) Determination of optimal variable-
sized multiple-block appointment systems. Operations Research
29(2), 324–345.

159 FRIES BE, SCHNEIDER DP, FOLEY WJ, GAVAZZI M, BURKE R and CORNELIUS

E (1994) Refining a case-mix measure for nursing homes: resource
utilization groups (RUG-III). Medical Care 32(7), 668.

160 FUJIWARA O, MAKJAMROEN T and GUPTA KK (1987) Ambulance
deployment analysis: a case study of Bangkok. European Journal of
Operational Research 31(1), 9–18.

161 FUNG KON JIN PHP, DIJKGRAAF MGW, ALONS CL, VAN KUIJK C, BEENEN

LFM, KOOLE GM and GOSLINGS JC (2011) Improving CT scan
capabilities with a new trauma workflow concept: simulation of
hospital logistics using different CT scanner scenarios. European
Journal of Radiology 80(2), 504–509.

162 GALLIVAN S and UTLEY M (2011) A technical note concerning emer-
gency bed demand. Health Care Management Science 14(3), 1–3.

163 GALLIVAN S, UTLEY M, TREASURE T and VALENCIA O (2002) Booked
inpatient admissions and hospital capacity: mathematical modelling
study. British Medical Journal 324(7332), 280–282.

164 GANGULI S, THAM JC and D’OTHEE BMJ (2007) Establishing an
outpatient clinic for minimally invasive vein care. American Journal of
Roentgenology 188(6), 1506–1511.

165 GARCIA-NAVARRO JA and THOMPSON WA (2001) Analysis of bed usage
and occupancy following the introduction of geriatric rehabilitative
care in a hospital in Huesca, Spain. Health Care Management Science
4(1), 63–66.

166 GARG L, MCCLEAN S, MEENAN B and MILLARD P (2010) A non-homo-
geneous discrete time Markov model for admission scheduling and
resource planning in a cost or capacity constrained healthcare
system. Health Care Management Science 13(2), 155–169.

167 GENDREAU M, LAPORTE G and SEMET F (2005) The maximal expected
coverage relocation problem for emergency vehicles. Journal of the
Operational Research Society 57(1), 22–28.

168 GENG N, XIE X, AUGUSTO V and JIANG Z (2011) A Monte Carlo
optimization and dynamic programming approach for managing
MRI examinations of stroke patients. IEEE Transactions on Automatic
Control 56(11), 2515–2529.

169 GERCHAK Y, GUPTA D and HENIG M (1996) Reservation planning for
elective surgery under uncertain demand for emergency surgery.
Management Science 42(3), 321–334.

170 GEROLIMINIS N, KEPAPTSOGLOU K and KARLAFTIS MG (2011) A hybrid
hypercube-genetic algorithm approach for deploying many emer-
gency response mobile units in an urban network. European Journal
of Operational Research 210(2), 287–300.

171 GILLESPIE J, MCCLEAN S, SCOTNEY B, GARG L, BARTON M and FULLERTON

K (2011) Costing hospital resources for stroke patients using phase-
type models. Health Care Management Science 14(13), 1–13.

172 GNANLET A and GILLAND WG (2009) Sequential and simultaneous
decision making for optimizing health care resource flexibilities.
Decision Sciences 40(2), 295–326.

173 GOCGUN Y, BRESNAHAN BW, GHATE A and GUNN ML (2011) A Markov
decision process approach to multi-category patient scheduling in a
diagnostic facility. Artificial Intelligence in Medicine 53(2), 73–81.

174 GOLDBERG J, DIETRICH R, CHEN JM, MITWASI M, VALENZUELA T and CRISS

E (1990) A simulation model for evaluating a set of emergency
vehicle base locations: development, validation, and usage. Socio-
Economic Planning Sciences 24(2), 125–141.

175 GOLDBERG J, DIETRICH R, CHEN JM, MITWASI MG, VALENZUELA T and
CRISS E (1990) Validating and applying a model for locating
emergency medical vehicles in Tuczon, AZ. European Journal of
Operational Research 49(3), 308–324.

176 GOLDMAN J, KNAPPENBERGER HA and ELLER JC (1968) Evaluating bed
allocation policy with computer simulation. Health Services Research
3(2), 119–129.
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Appendix A

Table A1 Descriptions of the OR/MS methods

OR/MS method Description

Computer simulation Technique to imitate the operation of a real-world system as it evolves over time by developing a

‘simulation model’. A simulation model usually takes the form of a set of assumptions about the

operation of the system, expressed as mathematical or logical relations between the objects of interest

in the system [272, 448].

Heuristics Systematic methods to optimize a problem by creating and/or iteratively improving a candidate

solution. Heuristics are used when exact approaches take too much computation time. They do not

guarantee an optimal solution is found [1, 448].

Markov processes Mathematical models for the random evolution of a system satisfying the so-called Markov property:

given the present (state of stochastic process), the future (evolution of the process) is independent of

the past (evolution of the process) [406, 449].

Mathematical programming Optimization models consisting of an objective function, representing a reward to be maximized

or a (penalty) cost to be minimized, and a set of constraints that circumscribe the decision variables

[236, 331, 371].

Queueing theory Mathematical methods to model and analyze congestion and delays at service facilities, by specifying

the arrival and departure processes for each of the queues of a system [363, 449].
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Appendix B

Appendix C

Overview tables of the identified planning decisions
This appendix displays the overview tables of the

identified planning decisions and the applied OR/MS

methods for each of the six care services: ambulatory care

(Table C.1), emergency care (Table C.2), surgical care

(Table C.3), inpatient care (Table C.4), home care

(Table C.5) and residential care (Table C.6).

In the overview tables, the following acronyms are used

when referring to the methods:

Table B1 Search terms to identify the literature base set

Care service Search terms

Ambulatory care services “outpatient clinic$” OR “outpatient facilit*” OR “outpatient care” OR “ambulatory care” OR

“ambulatory health center$” OR “diagnostic ser-vice$” OR “diagnostic facilit*” OR “radiology” OR

“primary care” OR “general practi*” OR “community service$”

Emergency care services “emergenc*” OR “acute” OR “accident” OR “ambulance” AND “health”

Surgical care services “operating room$” OR “operating theat*” OR “surgery scheduling” OR “operating suite” OR

“surgical” OR “surger*”

Inpatient care services “bed$” OR “intensive care” OR “ward$” AND “hospital”

Residential care services “nursing home$” OR “mental care” OR “rehabilitation cent*” OR “rehabilitation care” OR “long-term

care” OR (“retirement” OR “geriatric” OR “elderly” AND “health”)

Home care services “home care” OR “home health care” OR “home-care” OR “home-health-care” OR “home-health care”

OR “home healthcare”

A search engine can replace $ by any one character, but can also leave it empty. A search engine can replace ’*’ by any one or multiple characters, but
can also leave it empty.

Method Abbreviation

Computer simulation CS

Heuristics HE

Markov processes MV

Mathematical programming MP

Queueing theory QT

Literature review LR
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Table C.1 Ambulatory care services

Level Planning decision CS HE MV MP QT LR

Strategic Regional coverage [298, 359, 388,

404]

[2, 130] [385]

Service mix

Case mix [392] [384]

Panel size [388] [187]

Capacity dimensioning:

� Consultation rooms [227, 391, 392] [227] [240, 385]

� Staff [298, 360, 388,

391, 392, 444]

[438] [384] [32] [240, 385]

� Consultation time capacity [136, 138] [98, 138] [240, 385]

� Equipment [161, 298, 404] [240, 385]

� Waiting room [392] [240, 385]

Facility layout [330]

Tactical Patient routing [82, 161, 227, 298,

388]

[227, 461]

Capacity allocation [429] 195, 384 [433]

Temporary

capacity change

[138, 429]

Access policy [12, 152, 284, 334,

356, 427]

284 [334] [358, 461]

Admission control [429] [173] [168, 173] [238, 348, 349]

Appointment scheduling [14, 73, 77, 110,

136, 152, 153, 205,

219, 220, 245, 258,

276, 283, 284, 298,

326, 356, 392, 433,

434, 443, 446]

[73, 241, 284] [158, 188, 241,

253, 280, 317, 387]

[25, 73, 106, 357] [52, 98, 128, 254,

273, 357, 433, 461]

[76, 197, 240, 385]

Staff-shift

scheduling

[338] [63] [65, 141, 199, 330]

Offline operational Patient-to-appointment

assignment:

� Single appointment [85, 439] [198, 335, 439]

� Combination appointments [340]

� Appointment series [93, 94, 95]

Staff-to-shift assignment [238] [199]

Online operational Dynamic patient (re)assignment [351] [100, 188, 280] [100]

Staff rescheduling
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Table C.2 Emergency care services

Level Planning decision CS HE MV MP QT LR

Strategic Regional coverage

� Emergency care centers [56] [33] [19, 222] [68, 177, 222, 237,

353, 407]

33 [183, 237, 279,

342, 353]

� Ambulances [56, 140, 154, 160,

174, 203, 230, 352,

366, 393, 454]

[20, 33, 35, 139,

170, 229]

[16, 33, 35, 36, 37,

41, 99, 134, 140,

160, 175, 203, 229,

237, 352, 353, 380,

393]

[33, 170, 229, 269,

290, 380]

[161, 183, 237,

279, 342, 353]

Service mix

Ambulance districting [174, 366] [33] [33] [33, 74, 269]

Capacity dimensioning:

� Ambulances [37, 140, 160, 230,

352, 366, 454]

[35] [35, 36, 140, 352] [380, 401]

� Waiting room 90 336

� Treatment rooms [78, 266] [90] [336]

� Emergency wards [15, 270, 322] [322, 323] [90]

� Equipment [78] [90] [336]

� Staff [54, 155, 266, 322, 458] [322, 323] [189] [56, 240, 336]

Facility layout [458] [330] [336]

Tactical Patient routing [54, 78, 155, 265, 299,

425]

[90, 302] [240, 336]

Admission control [54, 78] [302]

Staff-shift scheduling [230, 381, 382, 458] [381, 382] [184, 185, 189] [199, 240, 336]

Offline operational Staff-to-shift assignment [75] [18, 23, 75, 103,

139]

Online operational Ambulance dispatching [8, 274, 281, 454] [274] [281] [401]

Facility selection [366]

Ambulance routing

Ambulance relocation [8, 167, 454] [300, 368] [167] [61]

Treatment planning and prioritization [78, 155]

Staff rescheduling [458] [322]
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Table C.3 Surgical care services

Level Strategic decision CS HE MV MP QT LR

Strategic Regional coverage [50] [365]

Service mix

Case mix [239] [46, 225] [192]

Capacity dimensioning:

� Operating rooms [370] [21] [240]

� Operating time capacity [239, 285, 369, 421] [402] [285] [301]

� Presurgical rooms

� Recovery wards [255, 256, 257, 369,

370]

[240]

� Ambulatory surgical ward

� Equipment

� Staff [64, 107, 221] [64, 107] [240]

Facility layout [291] [330] [301]

Tactical Patient routing [291] [13] [13, 341] [192, 301]

Capacity allocation [51, 117, 120, 121,

262, 339, 459]

29, 30, 31, 395,

431]

[169, 423, 424,

462]

[29, 30, 31, 47,

48, 80, 107, 199,

262, 344, 365, 395,

402, 403, 419, 420,

459]

[462] [45, 72, 192, 196,

240, 287, 330, 422,

433, 436]

Temporary capacity change [117] [48, 107, 402] [196, 199, 436]

Unused capacity (re)allocation [117, 125] [125] [215] [196]

Admission control [51, 115, 247, 410] [313] [3, 4] [45, 192]

Staff-shift scheduling [112] [30, 63, 126] [199, 345]

Offline operational Staff-to-shift assignment

Surgical case rescheduling [10, 51, 86, 114, 117,

119, 120, 123, 145,

194, 255, 257, 261,

262, 370, 403, 441]

[10, 13, 71, 108,

113, 149, 151, 193,

194, 221, 261, 263,

292, 355, 361, 389,

418]

[169, 196, 313,

327]

[13, 21, 69, 70,

71, 80, 86, 106,

107, 108, 149, 150,

151, 193, 235, 261,

262, 263, 289, 292,

339, 341, 355, 361,

379, 402]

[441] [45, 72, 197, 287,

301, 330, 385]

Online operational Emergency case scheduling [118, 341] [197]

Surgical case rescheduling [3, 289] [196, 197]

Staff rescheduling
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Table C.4 Inpatient care services

Level Planning decision CS HE MV MP QT LR

Strategic Regional coverage [209] [56, 364] [43]

Service mix

Case mix [190] [24, 414]

Care unit partitioning [132, 133, 176, 209,

224, 374]

[24, 264, 414] [323] [186, 216, 303,

307, 308, 412,

450]

Capacity dimensioning:

� Beds [7, 17, 88, 92, 96,

132, 133, 176, 190,

204, 208, 209, 210,

224, 248, 251, 297,

322, 319, 320, 321,

354, 374, 410, 428,

445, 447, 451, 452]

[7, 62, 146, 166,

171, 211, 212, 213,

286]

[172, 278, 322,

323]

[11, 27, 60, 88,

89, 102, 129,

162, 178, 186,

206, 216, 223,

248, 278, 354,

412, 416]

� Equipment

� Staff [191, 207, 322] [264] [104, 172, 207,

271, 322]

[65, 141, 342, 385]

Facility layout [67] [330] [67]

Tactical Bed reallocation [208, 242] [24, 431] [6] [242]

Temp. bed capacity change [204, 210, 297, 451] [24] [186, 450]

Admission control:

� Static bed reservation [249, 297, 354, 410] [42, 142] [163, 232, 243,

303, 378, 413]

� Dynamic bed reservation [249] [214, 252] [28] [28]

� Overflow rules [180, 209, 297, 374] [216]

� Influence surgical schedule [3, 132, 145, 180, 204,

247, 249, 402, 432,

452]

[24, 431] [423, 424] [3, 4, 402] [129, 186]

Staff-shift scheduling [191] [264] [30, 104, 437,

453]

[396] [65, 141, 199, 246,

342, 385]

Offline Admission scheduling [95]

Patient-to-bed assignment [79, 105] [79, 105]

Discharge planning [426] [442] [376]

Staff-to-shift assignment [40, 415] [40, 234, 362,

415, 453]

[65, 84, 141, 246,

342, 385]

Online Elective adm. rescheduling [248] [282] [248, 377]

Acute admission handling [248] [248, 377]

Staff rescheduling [191] [347] [65, 642, 385]

Nurse-to-patient assignment [390] [315] [315, 347]

Transfer scheduling [405]
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Table C.5 Home care services

Level Planning decision CS HE MV MP QT LR

Strategic Placement policy [457] [268] [81] [34]

Regional coverage [34]

Service mix [34]

Case mix [34]

Panel size [101]

Districting [44] [34]

Capacity dimensioning:

� Staff [417] [202] [66] [34]

� Equipment [332] [34]

� Fleet vehicles [34]

Tactical Capacity allocation:

� Patient group identification [66] [34]

� Time subdivision [49, 260] [101]

Admission control [268] [101, 217] [66]

Staff-shift scheduling [260] [34]

Offiline operational Assessment and intake [383, 457] [268] [81, 144, 217] [34]

Staff-to-shift assignment [38, 144] [38, 144] [34]

Visit scheduling:

� Short-term care plan [26, 143, 144] [268] [143, 144, 217] [34]

� Staff-to-visit assignment [26, 38, 143, 144] [268] [38, 59, 143, 144,

217]

[34]

� Route creation [26, 38, 57, 58,

143, 144]

[38, 57, 58, 59, 81,

143, 144]

[34]

Online operational Visit rescheduling [26, 143, 144, 409] [26, 143, 144, 409]
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Table C.6 Residential care services

Level Planning decision CS HE MV MP QT LR

Strategic Placement decision [304, 417] [22, 457] [87, 147, 148, 165, 202, 231,

293, 294, 295, 296, 304, 305,

306, 307, 308, 312, 337, 373,

375, 397, 398, 399, 400, 435,

455, 456]

[181]

Regional coverage [56, 97, 131] [342]

Case mix [159]

Capacity dimensioning:

� Beds [109, 137, 250,

304, 333, 417]

[87, 147, 148, 165, 171, 202,

231, 293, 294, 295, 296, 304,

305, 307, 308, 312, 333, 337,

373, 375, 397, 398, 399, 400,

435, 455, 456]

[83, 179, 181,

250, 442]

� Staff [109]

Tactical Admission control [333] [166, 275, 333]

Offline operational Treatment scheduling [367]

Recall that since the literature on residential care services showed a low variety in addressed planning decisions, we have chosen for residential care services, as opposed to the other care services, to
only present planning decisions for which we found references (see the section ‘Residential care services’).
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