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The collection of fecal material and developments in sequencing technologies have enabled 

cost-efficient, standardized, and non-invasive gut microbiome profiling. As a result, microbiome 

composition data from several large cohorts have been cross-sectionally linked to various 

lifestyle factors and diseases.1–5 In spite of these advances, prospective associations between 

microbiome composition and health have remained uncharacterized due to the lack of 

sufficiently large and representative population cohorts with comprehensive follow-up data.6–8 

Here, we analyse the long-term association between gut microbiome variation and mortality in a 

large, well-phenotyped, and representative population cohort (n = 7211, FINRISK 2002; 

Finland).9 We report specific taxonomic and functional signatures related to the 

Enterobacteriaceae family in the human gut microbiome that predict mortality during a 15-year 

follow-up. These associations can be observed both in the Eastern and Western Finns who 

have differing genetic backgrounds, lifestyles, and mortality rates.10,11 Our results supplement 

previously reported cross-sectional associations,1–4,12 and help to establish a methodological 

and conceptual basis for examining long-term associations between human gut microbiome 

composition, incident outcomes, and general health status. These findings could serve as a 

solid framework for microbiome profiling in clinical risk prediction, paving the way towards 

clinical applications of human microbiome sequencing aimed at prediction, prevention, and 

treatment of disease.  

 

The long research tradition in population-level health surveys, high participation rates, and the 

availability of comprehensive, nationwide health registers that allow monitoring of health 

variations across an individual’s life span have brought Finland to the forefront of population-

based cohort studies.9,13–15 Here, we analyze the fecal microbiome composition in a 

representative random sample of 7211 adults (mean age 49.5 years, 55.1% women) who 

participated in the FINRISK 2002 population survey which included stool sample collection and 
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cross-sectional phenotyping in 2002 (Fig. 1a–b).9 Access to electronic health registers and 

death certificates across the 15-year time span following sample collection is a unique feature of 

this study allowing us to complement the earlier cross-sectional studies by associating gut 

microbiome profiles with a long-term follow-up of health status and mortality after the baseline 

examination. Altogether, 729 of the 7055 participants (10.2%) with complete data available died 

during a median follow-up of 14.2 years.  

 

We investigated links between mortality and the key features of microbiome composition, 

including alpha and beta diversity, core microbiota, and taxonomic co-occurrence networks. We 

identified a total richness of 67 phyla and 2019 genera (Supplementary Tables 1–2). 

Interindividual variation in taxonomic composition was largely attributable to differences in the 

relative abundances of the most prevalent and abundant core groups (Fig. 1c; Extended Data 

Fig. 1; Supplementary Table 2). Most of the groups were rare and observed in <1% of the 

study population. In addition to overall species diversity, we have focused on the core 

microbiome that comprised the 95 genus-level taxonomic groups that exceeded the within-

sample relative abundance of >0.1% in >1% of samples. These included mostly bacterial 

genera (87) and plasmids (4) but also viruses (1) and archaea (3)   (Supplementary Table 2). 

The median relative abundance of the combined core groups was 99.3%. 

 

We performed a prospective analysis by examining how microbiome features predicted mortality 

risk in a 15-year follow-up. Alpha diversity was not a significant predictor of mortality 

(Supplementary Table 3). However, we detected a robust and significant signal between beta 

diversity, or the overall community variation as measured by Aitchison distance, and elevated 

mortality risk. Namely, the third principal component of CLR-transformed species abundance 

matrix (PC3) was  a strong predictor of all-cause mortality (Fig. 2a–b; Supplementary Table 
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3). The observation was robust to factors known to affect microbiome composition and mortality 

risk, i.e., age, sex, BMI, smoking, diabetes, use of antineoplastic or immunomodulating agents, 

systolic blood pressure, and use of antihypertensive medication. Moreover, the findings related 

to PC3 could be observed in independent samples of the Eastern and Western Finnish 

populations whose genetic backgrounds, lifestyles, and life expectancies differ (Extended Data 

Fig. 2).10,11 PC3 was driven by species of the Enterobacteriaceae family that is a part of the 

normal gut microbiome but is known to cause infectious diseases in other body sites Extended 

Data Figs. 3 and 4; Supplementary Table 4).16 Several Enterobacteriaceae genera also 

individually predicted mortality (Supplementary Table 5). There was limited statistical power for 

detecting association between mortality and enrichment of virulence genes as their prevalence 

among the FINRISK samples was low (<1%; Supplementary Table 6). These genes were 

mainly related to virulent strains of E. coli. 

 

We then investigated the overall capacity of taxonomic composition in predicting mortality risk. 

After identifying significant linear and nonlinear associations between the abundances of 43 

genera and mortality (Extended Data Fig. 5a; Supplementary Table 5), we applied a random 

survival forest model to identify a taxonomic signature that is maximally predictive of all-cause 

mortality (Extended Data Fig. 3b; Supplementary Table 7). The top predictors in this 

supervised analysis also included multiple Enterobacteriaceae genera (Extended Data Fig. 

5b). However, community composition did not improve mortality prediction compared to the 

covariates (C-statistic 0.798 for covariates versus 0.794 for covariates plus community 

composition; P = 0.049. C-statistics for the community composition alone was 0.633).  

 

In order to pinpoint specific taxonomic markers that could predict mortality risk, we 

complemented the community-level analyses by shifting the focus towards more refined sub-

community analysis. We identified groups of tightly clustered genera based on taxonomic co-
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occurrence network analysis. All four strongest network modules, or subnetworks (Fig. 3; 

Extended Data Fig. 6), included genera that were predictors of all-cause mortality. We 

observed the strongest intra-network correlations and mortality associations for the subnetwork 

that consisted mainly of Enterobacteriaceae genera (Fig. 3b). This subnetwork was observed in 

both Western and Eastern Finnish populations (Extended Data Fig. 7). The total abundance of 

this subnetwork predicted mortality (hazard ratio = 1.15, 95% confidence interval [CI], 1.07–

1.23; P = 0.010). 

 

 

Using Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology groups, we assessed the 

potential microbial functional roles in individuals with an elevated mortality risk (Fig. 4; 

Extended Data Fig. 8; Supplementary Table 8). Many mortality-associated markers were 

involved in the KEGG categories related to drug biodegradation, carbohydrate metabolism, lipid 

metabolism, and infectious diseases. These associations were both positive and negative (Fig. 

4; Extended Data Fig. 8; Supplementary Table 8). Numerous prior studies have 

demonstrated that gut microbes can affect lipid and glucose metabolism and their circulating 

levels which, in turn, may affect the risk of cardiometabolic disease.17,18 Furthermore, it has 

been previously demonstrated that the gut microbiota can exert direct effects on drug 

metabolism, potentially affecting disease risk through drug efficacy and toxicity.19 Functional 

pathways that were negatively associated with mortality also included biological processes 

related to the nervous system (Extended Data Fig. 8). These functional predictions support our 

findings at the taxonomic level, while also suggesting that gut-drug-interactions, gut 

microbiome-metabolome interactions, and the gut-brain axis could play a role in the 

development of disease.20,21 
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Our analysis provides a systematic quantification of the long-term health associations of the 

human fecal microbiome. In spite of using a remarkably heterogeneous outcome variable (all-

cause mortality), we could identify specific gut microbiome features that predicted all-cause 

mortality during the 15-year follow-up. However, despite being a heterogeneous outcome, all-

cause mortality is also a robust end point as it is virtually free of misclassification or loss to 

follow-up. All deaths in Finland are registered in a nationwide database, except for a fraction of 

the rare cases where a person permanently moves abroad. The observed associations suggest 

that specific taxonomic configurations of the human gut microbiome may reflect health-

associated changes that are linked to increased mortality, or potentially play a unique role in the 

maintenance of health and development of incident disease.5,16,20  

 

In particular, we observed a robust link between mortality and several species and genera of the 

Enterobacteriaceae family. In prior cross-sectional human studies, Enterobacteriaceae have 

been observed to be enriched in patients with inflammatory bowel disease and colorectal 

cancer.22 It has been speculated that Enterobacteriaceae, normally dominant in the upper 

gastrointestinal tract, become enriched in the stool due to a faster stool transit time that occurs 

in diarrhea, a symptom of many gastrointestinal diseases.23 Host-mediated inflammation has 

also been shown to disrupt the gut microbiome and promote the overgrowth of 

Enterobacteriaceae.24 On the other hand, increased prevalence and enhanced virulence 

potential of gut E. coli have both been linked to urinary tract infections.25 In fact, extraintestinal 

E. coli strains often exist in the gut without consequences but have the capacity to disseminate 

and colonize other host niches including the blood, the central nervous system, and the urinary 

tract, resulting in disease.26,27  
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A particular strength of our analysis is the availability of a random population sample comprising 

thousands of adults from a homogeneous northern European population and the access to 

comprehensive electronic health registers. As such, this can complement the findings from 

earlier cross-sectional population studies that have had a more limited representativeness 

based on their focus on specific populations,1,28 lack of random sampling,1–4 or low participation 

rates.29 Although our data lacked certain covariates that have been recently linked to 

microbiome composition, such as stool consistency and fecal chromogranin A,1–4 our findings 

are based on a representative population sample, and the findings were supported in both 

Eastern and Western Finnish populations. Despite the lack of cohorts that could be used for 

external replication of our prospective results, our findings have implications on the design of 

future studies that aim to map microbiome-health associations across extended periods of time. 

 

Until now, prospective long-term data linking microbiome composition with incident outcomes 

have been unavailable. Our data provide a proof-of-concept that the microbiome can be used to 

assess the overall mortality risk, and potentially for disease risk assessment. Additional studies 

will be needed to assess which disease states can be most effectively predicted through 

microbiome profiling. In addition, our findings can help establish a framework for recruiting 

disease-susceptible individuals to randomised trials to assess causal effects of gut microbiota 

variation on health outcomes. However, extensive research is still warranted before human 

microbiome sequencing can be used for prediction, prevention, and targeted treatment of 

disease.  

 

Methods 
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Study sample  

The FINRISK population surveys have been performed every 5 years since 1972 mainly to 

monitor trends in cardiovascular disease risk factors in the Finnish population. The FINRISK 

2002 study was based on a stratified random sample of the population aged 25–74 years from 

specific geographical areas of Finland (Fig. 1).9 The survey included participants from North 

Karelia and Northern Savo in eastern Finland, Turku and Loimaa regions in southwestern 

Finland, the cities of Helsinki and Vantaa in the capital region, the provinces of Northern 

Ostrobothnia in northwestern Finland, Kainuu in northwestern Finland and the province of 

Lapland in northern Finland. The sampling was stratified by sex, region and 10-year age group 

so that each stratum had 250 participants. In North Karelia, Lapland and the cities of Helsinki 

and Vantaa, the strata with 65–74 year old men and women were also sampled, each with 250 

participants. The original population sample was thus 13500 (minus 64 who had died or moved 

away between sampling and the survey); the overall participation rate was 65.5% (n = 8798). 

The sampling has been previously described in detail.9 We successfully performed stool 

shotgun sequencing in n = 7231 individuals. After excluding 20 individuals with low read counts 

(<50000), n = 7211 participants (mean age 49.5 years, 55.1% women) remained for 

unsupervised analysis, of whom n = 7055 had the full covariate information available for survival 

analysis (Fig. 1). The study protocol of FINRISK 2002 was approved by the Coordinating Ethical 

Committee of the Helsinki and Uusimaa Hospital District (Ref. 558/E3/2001). All participants 

signed an informed consent. The study was conducted according to the World Medical 

Association’s Declaration of Helsinki on ethical principles. Due to a lack of external cohorts with 

microbiome and long-term mortality data, we used two internal subsamples of 4979 Eastern 

Finns (mainly from Northern Karelia, Northern Savo, Kainuu, and Northern Ostrobothnia 

regions) and 2232 Western Finns (mainly from Helsinki, Turku, and Loimaa regions). Altogether 

4871 and 2184 samples had complete covariate information, respectively. We used this to 
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examine the robustness of the results in distinct subpopulations within the cohort. These two 

subsamples were chosen due to their well-known differences in genetic backgrounds, lifestyles, 

and mortality rates.10–12 

Baseline examination 

The FINRISK 2002 survey included a self-administered questionnaire, physical measurements 

and collection of blood and stool samples. The questionnaire, together with an invitation to the 

health examination, was sent by mail to all subjects. Trained nurses carried out a physical 

examination and blood sampling in local health centres or other survey sites. The participants 

were advised to fast for ≥4 hrs and avoid heavy meals earlier during the day. The venous blood 

samples were centrifuged at the field survey sites, stored in −70°C, and transferred daily to the 

laboratory of the Finnish Institute for Health and Welfare. Data for physiological measures, 

biomarkers, dietary factors, demographic factors, and lifestyle factors was collected. Details on 

the methods have been previously described.9 

Stool Sample Collection 

At the baseline examination, all willing participants were given a stool sampling kit with detailed 

instructions. The participants mailed their samples overnight between Monday and Thursday 

under Finnish winter conditions to the laboratory of the Finnish Institute for Health and Welfare 

where the samples were stored at -20°C. The stool samples were stored unthawed until they 

were transferred in 2017 to the University of California San Diego for microbiome sequencing. 
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Stool DNA extraction and library preparation 

A miniaturized version of the Kapa HyperPlus Illumina-compatible library prep kit (Kapa 

Biosystems) was used for library generation, following the previously published protocol.30 DNA 

extracts were normalized to 5 ng total input per sample in an Echo 550 acoustic liquid handling 

robot (Labcyte Inc).  A Mosquito HV liquid-handling robot (TTP Labtech Inc was used for 1/10 

scale enzymatic fragmentation, end-repair, and adapter-ligation reactions). Sequencing 

adapters were based on the iTru protocol,31 in which short universal adapter stubs are ligated 

first and then sample-specific barcoded sequences added in a subsequent PCR step. Amplified 

and barcoded libraries were then quantified by the PicoGreen assay and pooled in 

approximately equimolar ratios before being sequenced on an Illumina HiSeq 4000 instrument 

to an average read count of approximately 900,000 reads per sample. 

 

Taxonomic and functional profiling from sequencing data 

We analysed shotgun metagenomic sequences using a pipeline built with the Snakemake 

bioinformatics workflow library.32,33 We trimmed the sequences for quality and adapter 

sequences using Atropos,34 and removed host reads by genome mapping against the human 

genome assembly GRCh38 with Bowtie2.35 We assigned sequences taxonomy using SHOGUN 

v1.0.536 against a database containing all complete bacterial, archeal, and viral genomes 

available from NCBI RefSeq as of version 82 (May 8, 2017). We processed the results to 

estimate the relative abundance of taxa. Functional profiles were calculated from a combination 

of observed  and predicted KEGG Orthology group (KO) annotations from the RefSeq genomes 

following the default parameters of the SHOGUN tool36. Briefly, the final KO table represents a 

weighted average of directly observed functional genes and those estimated to be present but 

unsampled based on their predicted presence within an observed genome. A full description of 

the method has been published.36 
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Virulence genes 

The 7211 FINRISK samples were matched to the Virulence Factor Database (VFDB; DNA 

sequences of the full database).38 Anvi’o (v5.5) was used to build a Bowtie2 database from the 

VFDB FASTA files and to map the FINRISK reads to the VFDB genes using the Anvi’o default 

setting and 99% sequence similarity.39 The coverage was analyzed with samtools (v1.9). A 

coverage of 500bp and 90% of the VFDB gene length was required. The prevalence of the 

VFDB genes accepted with these filters is shown in Supplementary Table 6.40 

Register linkage for pre-existing (prevalent) diseases, medication use at baseline, and mortality  

In Finland, each permanent resident is assigned a unique personal identity number at birth or 

after immigration, which ensures reliable linkage to the computerised health registers. The 

nationwide Finnish health registers ensure in practice 100% coverage of all major health events 

(Hospital Discharge Register), all prescription drug purchases (Drug Purchase and Special Drug 

Reimbursement Registers), and all deaths (Causes-of-Death Register). The quality of the 

diagnoses in the Finnish national registers has been previously validated.13,14 We obtained 

dates and causes of deaths from the national Causes-of-Death Register. The participants were 

followed through Dec. 31, 2016. We observed 729 deaths between the baseline and end of 

follow-up period; 519 deaths occurred in Eastern Finns and 210 in Western Finns (511 and 210 

with complete covariate information). 

Covariates 

We calculated body mass index as weight in kilograms divided by height in metres squared. 

Smoking (N=1648) was defined as daily use of tobacco products. We defined diabetes (N=401) 

as having a health event with an International Classification of Diseases code41 of E10-14 in the 

Hospital Discharge Register or having a drug reimbursement code for diabetes in the Special 
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Drug Reimbursement Register prior to baseline. We defined systolic blood pressure based on 

the mean of three measurements performed by a nurse using a mercury sphygmomanometer. 

The participants self-reported antihypertensive medication use (N=1096). Use of antineoplastic 

or immunomodulating agents (N=62) was defined as a purchase of medications with an 

Anatomical Therapeutic Chemical code of L recorded in the Drug Purchase Register up to four 

months prior to baseline.42 

Statistical Methods 

We conducted all statistical analyses using R43. In all association analyses, we standardised all 

phenotype variables except dichotomous variables. We controlled all cross-sectional and 

prospective association analyses for age, body mass index, sex, smoking, diabetes, use of 

antineoplastic or immunomodulating agents, systolic blood pressure and self-reported 

antihypertensive medication, unless otherwise indicated. We corrected for multiple testing using 

False Discovery Rate correction (Benjamini-Hochberg).44 We report the P-values, where we 

considered an FDR-corrected P < 0.05 significant.  

 

Core microbiota 

We determined the 1% microbial core at the 0.1% detection limit (i.e., the taxa prevalent at least 

in 1% of the samples at >0.1% relative abundance).  

 

Principal co-ordinates and component analyses of microbiome variation 

We calculated a Principal Coordinates Analysis (PCoA) of Bray-Curtis beta diversity matrix 

using compositional microbial species-level abundance data with the R package phyloseq45). 

We also analysed the beta diversity characterized by between-samples Aitchison distance by 

performing a Principal Component Analysis (PCA) using CLR-transformed species-level 

abundances (R function “prcomp”). 
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Alpha diversity 

We characterised the alpha diversity of the microbiome with the Shannon index using species-

level abundance data.  

 

Subnetwork detection 

We detected sparse taxonomic co-occurrence subnetworks with SPIEC-EASI46 (R package 

SpiecEasi) with default parameters and the (bounded) StARS model selection (“bstars”). We 

carried out StARS with the prior regularisation beta set at the recommended threshold.47 We 

excluded subnetworks with fewer than three members. 

 

Survival Analysis 

We tested the association between CLR abundance of each genus and all-cause mortality using 

Cox proportional hazards models48 (two-tailed Wald tests for the coefficient corresponding to the 

genus; R package survival49). Moreover, to recover potential non-linear associations, we 

modelled genus abundance both linearly and with penalised cubic splines (R function “pspline” 

with the default parameters). The alpha diversity and principal components 1–5 were treated 

similarly. We assessed the proportional hazards assumption using Schoenfeld residuals. 

 

We tested the relation of the core genera with mortality using multivariate random survival 

forest50 (R package randomForestSRC51). We used default settings and measured the predictor 

sets’ performance with Harrell’s C-statistic52 in 5-fold cross-validation and then calculated the 

importance scores using all subjects.  

 

Functional Analysis 
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We associated each KO group with mortality in Cox proportional hazards models. The KO 

groups were log(1+x)-transformed and analyzed using a standard linear model to determine the 

direction of association for all KO groups. We used the FuncTree application to analyse and 

visualise the functional enrichment of the gut microbiome in individuals with at an increased risk 

of death.53 For the module, pathway, and biological process layers, we used node sizes that 

corresponded to the average inverse P value of all KO groups that could be assigned to that 

node. Analyses were performed separately for KO groups that were related positively or 

negatively with mortality. 

 

Data availability 

The data that support the findings of this study are available from the FINRISK Data Access 

Committee at Finnish Institute for Health and Welfare based on reasonable request [contact 

details available from T.N.]. The data are not publicly available due to them containing 

information that could compromise research participant privacy/consent.  

 

Code availability 

The source code for the analyses will be shared with a permanent DOI from Zenodo. 
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Figure legends 

Figure 1. Study sample and gut microbiome characteristics.  

 

A At baseline, the study sample (N=7211) had a balanced sex ratio (55% women), a mean age 

of 49 years (range 24-74; left panel), and a mean body mass index (BMI) of 27 kg/m2 (range 16-

57; middle panel). During a median follow-up time of 14.2 years, 721 of 7055 (10.2%) 

participants with complete data who were included in the prospective analysis died (right panel). 

B A total of 7211 out of 13500 randomly sampled individuals (53.4% participation rate) from six 

catchment areas in Finland underwent stool sampling, a physical examination, and filled in a 

questionnaire on health behaviour, history of diseases and current health. C Principal 

21 
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coordinates analysis (PCoA) indicates sample similarity based on species-level taxonomic 

composition. The colour indicates the dominant genus in each sample. Altogether 96% of the 

samples are dominated by one of the most common dominant genera that are indicated in the 

figure.  
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Figure 2. Microbiome principal components as predictors of death.  

Association between the first three principal components (PC) and mortality risk. Blue area 

indicates the  95% confidence interval (CI) of the hazard ratio. Unit variance increase in the PCs 

were related to hazard ratios of 0.918 (95% confidence interval [CI], 0.852–0.989; FDR-adjusted 

P = 0.0505), 0.933 (95% confidence interval [CI], 0.869–1.001; FDR-adjusted P = 0.072), 1.155 

(95% confidence interval [CI], 1.077–1.239; FDR-adjusted P = 2.1x10-4) for PC1 - PC3, 

respectively. Analyses are adjusted for age, body mass index, sex, smoking, diabetes, use of 

antineoplastic and immunomodulating agents, systolic blood pressure and self-reported 

antihypertensive medication. 
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Figure 3. Microbial subnetworks, community structure, and their relation to mortality.   

 

A Abundance variation across the study population for the subnetwork that exhibits the 

strongest mortality associations (CLR-transformed abundances centered at zero and scaled to 

unit variance). The samples are ordered  by the total relative abundance of the subnetwork. B 

The observed subnetwork structure and mortality risk . The total subnetwork abundance was 

associated with mortality with a hazard ratio of 1.15 (95% confidence interval [CI], 1.07–1.24; P 

= 0.012). The respective hazard ratios were 1.17 (95%, 1.08–1.27; P = 0.027) in the Eastern 

and 1.11 (95%,0.98–1.27; P = 0.607) in the Western Finnish populations. The analyses are 

conducted for microbial core and adjusted for age, body mass index, sex, smoking, diabetes, 

use of antineoplastic and immunomodulating agents, systolic blood pressure and self-reported 

antihypertensive medication; P values are FDR-adjusted.  
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Figure. 4. Functional pathways associated with increased risk of death.  

For the module (red), pathway (green), biological process (light blue), and biological category 

(dark blue) functional layers, node size corresponds to the average inverse P value of the 

KEGG Orthology group assigned to that node. Only KO groups that were positively associated 

with mortality were included. Node titles are shown for nodes in the three highest layers with a 

size > 200.  
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Extended data 

 

Extended Data Fig. 1 Relative abundances for the 32 most abundant and prevalent core 

genera that were detected at >0.1% relative abundance in the majority (>50%) of 

individuals in the study cohort.  

Each dot represents one individual, and the darker regions indicate more populated areas of the 

abundance landscape. On average, these genera cover 93.2% of the community based on their 

combined relative abundance. 
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Extended Data Fig. 2 Association between the third principal component (PC3) 

and mortality in the Eastern and Western Finnish populations. 

Blue area indicates the 95% confidence interval (CI) of the hazard ratio. Unit variance increase 

in PC3 was related to hazard ratios of 1.147 (95% confidence interval [CI], 1.055–1.246; FDR-

adjusted P = 2.6x10-3) and 1.207 (95% CI, 1.061–1.372; FDR-adjusted P = 4.1x10-3) in Eastern 

and Western Finnish populations, respectively. Analyses are adjusted for age, body mass index, 

sex, smoking, diabetes, use of antineoplastic and immunomodulating agents, systolic blood 

pressure and self-reported antihypertensive medication.  
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Extended Data Fig. 3 Principal component driver species. 

The 20 most important driver species of the first three principal components.  
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Extended Data Fig. 4. Third principal component drivers in Eastern and Western Finland.  

Most important PC3 drivers in Eastern and Western Finland.   
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Extended Data Fig. 5 Relation of individual genera and core genera with mortality.  

A Examples of observed linear and non-linear associations between bacterial abundances and 

mortality. Blue area indicates the 95% confidence interval of the hazard ratio (HR). B 

Importance scores for top 20 genera based on multivariable random forest modeling. Analyses 

in panels A and B are adjusted for age, body mass index, sex, smoking, diabetes, use of 

antineoplastic and immunomodulating agents, systolic blood pressure and self-reported 

antihypertensive medication. Increased Escherichia, Shigella and Kluyvera were positively 

related to mortality, Parasutterella and Faecalibacterium were negatively associated with 

mortality, while this relation was nonlinear for Phocea and Anaerostipes. 
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Extended Data Fig. 6. Microbial subnetworks and community structure 

A  Standardised log relative abundances of genera included in observed five microbial 

subnetworks across the study sample. We ordered the samples with hierarchical clustering 

(Ward method) based on Spearman correlation of CLR z-scores. B The observed network 
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structure and the risk of death related to its components. HR, hazard ratio. Analyses are 

adjusted for age, body mass index, sex, smoking, diabetes, use of antineoplastic and 

immunomodulating agents, systolic blood pressure and self-reported antihypertensive 

medication; P values are FDR-adjusted. Subnetworks with only two or one genera not included 

in the plot.  
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Extended Data Fig. 7. Network structure in Eastern and Western Finns 

The mortality-associated taxonomic co-occurrence network (Escherichia, Shigella, 

Lambdavirus, Salmonella, and others) can be observed both in the Eastern (n=4871; 519 

deaths)  and  Western (n=2184; 210 deaths) population with the identical procedure (SPIEC-

EASI with the same parameter settings) as in the main analysis. Analyses are conducted 

separately for the Eastern and Western population and are adjusted for age, body mass index, 

sex, smoking, diabetes, use of antineoplastic and immunomodulating agents, systolic blood 

pressure and self-reported antihypertensive medication; P values are FDR-adjusted. 

Subnetworks with only two or one genera not included in the plot.  
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Extended Data Fig. 8. Functional pathways associated with decreased risk of death.  

For the module (red), pathway (green), biological process (light blue), and biological category 

(dark blue) functional layers, node size corresponds to the average inverse P value of the 

KEGG Orthology group assigned to that node. Only KO groups that were positively associated 

with mortality were included. Node titles are shown for nodes in the three highest layers with a 

size > 150.  
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Supplementary Information 

 

Supplementary Table 1. Distribution of phyla in FINRISK 2002. 

table_shogun_phylum_distribution.tsv 

 

Supplementary Table 2. Distribution of all and 1%-core genera in FINRISK 2002. The 1%-core 

microbiome is defined as the genera present with a within-sample relative abundance over 0.1% 

in at least 1% of samples. 

table_shogun_genus_distribution.tsv 

 

Supplementary Table 3. Significant relations of principal components 1–3 and alpha diversity 

with mortality. 

table_cox_diversities.tsv 

 

Supplementary Table 4. Top 20 drivers of the principal components 1–5. 

table_PC_drivers.tsv 

 

Supplementary Table 5. Association between individual genera and mortality 

table_cox_genus.tsv 

 

Supplementary Table 6. Prevalence of the VFDB virulence genes among the FINRISK 

samples. 

VFDB_Table.tsv 
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Supplementary Table 7. Importance scores for core genera and covariates in random survival 

forest. 

table_random_survival_forest_importance.tsv 

 

Supplementary Table 8. Association between KEGG Orthology groups and mortality 

table_functional_cox.tsv 

 

Supplementary Table 9. SPIEC-EASI correlation coefficients between core genera. 

table_shogun_spieceasi_cor_coefficients.tsv 
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