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Abstract

Background: What is a healthy microbiome? The pursuit of this and many related questions, especially in light of the

recently recognized microbial component in a wide range of diseases has sparked a surge in metagenomic studies. They

are often not simply attributable to a single pathogen but rather are the result of complex ecological processes. Relatedly,

the increasing DNA sequencing depth and number of samples in metagenomic case-control studies enabled the

applicability of powerful statistical methods, e.g. Machine Learning approaches. For the latter, the feature space is typically

shaped by the relative abundances of operational taxonomic units, as determined by cost-effective phylogenetic marker

gene profiles. While a substantial body of microbiome/microbiota research involves unsupervised and supervised

Machine Learning, very little attention has been put on feature selection and engineering.

Results: We here propose the first algorithm to exploit phylogenetic hierarchy (i.e. an all-encompassing taxonomy) in

feature engineering for microbiota classification. The rationale is to exploit the often mono- or oligophyletic distribution of

relevant (but hidden) traits by virtue of taxonomic abstraction. The algorithm is embedded in a comprehensive

microbiota classification pipeline, which we applied to a diverse range of datasets, distinguishing healthy from diseased

microbiota samples.

Conclusion: We demonstrate substantial improvements over the state-of-the-art microbiota classification tools in terms

of classification accuracy, regardless of the actual Machine Learning technique while using drastically reduced feature

spaces. Moreover, generalized features bear great explanatory value: they provide a concise description of conditions and

thus help to provide pathophysiological insights. Indeed, the automatically and reproducibly derived features are

consistent with previously published domain expert analyses.
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Background
Traditional microbiology, strongly influenced by Robert

Koch’s postulates, focuses on studies of bacteria (often

pathogens) in isolation, an endeavor successful only for less

than 1% of bacterial strains. While isolates and whole gen-

ome sequenc- ing projects continue to be valuable, metage-

nomic culture-independent approaches have provided a

complementary view and have led to a more differentiated

perception of bacteria as being unexpectedly diverse and

predominantly commensal and beneficial. They allow com-

prehensive views of community composition and dynamics.

Consequently, we can attempt to identify a healthy equilib-

rium of the micro- biota and how diversions from that

equilibrium can be characterized. E.g., which combination

and which abundance patterns of microorganisms ensure

the correct functioning of digestion, are resilient to patho-

gens, train our immune system etc.? Likewise, environmen-

tal health is to a large extend attributable to the associated

microbiota. They keep ecosystems intact by performing

chemical processes such as material transformation. Also,

the role microbiota play in biogeochemical cycles of life

sustaining chemical elements such as carbon, oxygen,

nitrogen can not be understated. Last not least, microbial

community function are of commercial interest. when opti-

mizing agricultural productivity and bioreactor stability in

bioenergy applications and biochemical engineering. In all

these scenarios it is desirable to understand the taxonomic

composition and function of those microbiota and the

dynamics that influence their function. Recent advances in

Next Generation DNA Sequencing have turned
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microbiome research into a very data-intensive field [1]

thanks to steeply dropping costs of DNA sequencing and

advances in multiplexing of many samples in metagenomic

marker gene sequencing. In particular, compositional ex-

ploration is commonly carried out through tag sequencing,

e.g. using hypervariable regions of the 16S rRNA gene.

It is remarkable that microbiota of the lower gut have

been shown to be indicative for colorectal cancer [2, 3].

The abundance patterns of microbes as measured by

tag-sequencing of taxonomic marker genes (16S rRNA

profiles) facilitate the categorization of microbiota with

respect to their function. Sophisticated classifiers are not

required for those cases easily distinguishable through

high prevalence of a pathogen (e.g. Clostridium difficile)

or dysbiosis (drastic loss of alpha-diversity). Those cases

can be addressed using simple statistical measures or

unsupervised learning, for example. However, a large

range of medical conditions that stretch far beyond in-

fectious diseases are related to subtle compositional

changes in microbial communities. A current ongoing

debate is to what extend it is possible to robustly cluster

microbiota into community types or enterotypes (with

respect to the human gut [4]). The hope tied to the iden-

tification of those community−/enterotypes is that crisp,

distinct clusters can be associated with a special func-

tionality and thus lead to a better understanding of a

microbiome related condition and in turn, more targeted

therapeutics. Large scale studies like the Human Micro-

biome Project have shown that human microbiota clus-

ter well by body site [5]. A similar observation was

reported based on a meta-analysis for environmental

microbiota clustering according to their ecosystem [6].

Those clusters are observable through dimensionality re-

duction methods (e.g. ordination methods such as Prin-

cipal Coordinate Analysis) and unsupervised learning

(e.g. hierarchical clustering).

However, microbiota associated to medical conditions

like Colorectal Cancer (CRC), Inflammatory Bowel Dis-

ease (IBD), Crohn’s disease and (pre-)diabetes are not

simply falling into clusters and classification of healthy

and diseased microbiota samples is beyond unsupervised

learning. On the other hand, Supervised learning, in par-

ticular Random Forests, Support Vector Machines and

Boosting, have been applied successfully to a large set of

microbiota classification problems [2, 7–10], but little at-

tention has been devoted to feature selection and feature

engineering. The common approach to design the fea-

ture space for Supervised Learning is the grouping of

16S rRNA sequence reads by Operational Taxonomic

Unit (OTU) in order to reduce the dimensionality of the

dataset from millions of sequences to thousands of

OTUs. The relative OTU abundances then form the fea-

ture vectors representing the microbiota. Gut microbiota

as well as other microbial communities in soil, marine

environments etc. are rather complex in terms of

alpha-diversity as we frequently observe thousands of

OTUs in a single sample. This generally poses a very fea-

ture rich learning task. Further microbiota feature reduc-

tion could simply be achieved by lowering OTU

resolution below the common 97% sequence identity

(yielding fewer but more diverse taxonomic bins) or low

abundance filtering by disregarding OTUs which are ei-

ther appearing only in few samples or which are on aver-

age below a certain threshold. However, these crude

measures are likely to cause loss of important informa-

tion and are henceforth not considered viable for micro-

biota representations.

Despite the above mentioned increase of samples for a

particular classification task, the high ratio of feature space

dimensionality over dataset size still incurs the curse of di-

mensionality and with it the risk of overfitting. Classifica-

tion with fewer but better features is therefore desirable, a

concept commonly referred to as Feature Space Compres-

sion. Owing to the nature of NP-completeness, feature sub-

set selection requires heuristic solutions for large feature

spaces. Feature selection can be done by filter methods,

wrapper methods or embedded methods [9]. Recent work

on microbiota/metagenome classification, such as Fizzy

[11] and MetAML [12], utilize standard feature selection al-

gorithms, not capitalizing on the evolutionary relationship

and thus the hierarchical structure of features. Fizzy imple-

ments a number of standard Information-theoretic subset

selection methods (e.g. JMI, MIM and mRMR from FEAST

C library), NPFS and Lasso. MetAML performs microbiota

or full metagenomic classification, which incorporates em-

bedded feature selection methods, including Lasso and

ENet, with Random Forests (RF) and Support Vector Ma-

chines (SVM) classifiers.

In this study, we aim to distill informative features

from datasets independently of the Machine Learning

approach. In contrast to filter methods for feature selec-

tion, wrapper and embedded methods are often compu-

tationally expensive due to the reiteration of the training

process. The state-of-the-art feature selection methods,

in many cases, cannot handle the potential search space

for the best subset of features in microbiota datasets.

For example, the Correlation-based Feature Selection

(CFS) [13], central part of the popular WEKA toolkit,

does not scale well to the feature space dimension typic-

ally found in microbiota classification tasks with several

thousand OTUs.

Kostic et al. [14] have described their findings with re-

gard to microbiota in colorectal cancer in terms of gen-

era and phyla, which showed that not only are bacterial

taxa powerful predictors for important conditions, but

they also lend themselves naturally to generalization due

to their taxonomy. Remarkably, those high-level features

pose a compact and human understandable biomarker
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formulation of a condition. Like in these examples, ex-

perts often discriminate between microbiata classes in

terms of few taxa of various phylogenetic ranks based on

manual inspection of few samples. However, it is often

unclear whether the chosen terms are of the right level

of generality, i.e. of the most suitable rank.

The goal of this work is to formalize this process by

systematically creating and reproducibly searching a

suitable hypothesis space. In this context it is important

to note that features in microbiota classification and in

Machine Learning tasks in general are often not inde-

pendent. To exploit this, we can borrow from advances

in the Knowledge Management community, where

general-to-specific ordered concept taxonomies are used

to describe nouns, common features of text documents.

Ristoski and Paulheim have recently presented an algo-

rithm that performs feature selection given an under-

lying hierarchy for the features. The authors have shown

that their algorithm outperforms other hierarchy based

and non-hierarchy based feature selection methods [15].

However, the existing hierarchical feature selection algo-

rithms, as in by Ristoski et al. [15], only deal with binary

features (i.e. presence-absence representations), which fail

to adequately represent biological data in high resolution

and cause a high loss of information compared to relative

abundances. Moreover, partial 16S rRNA sequences are

often assigned taxonomic ranks to genus or family level

with sufficient certainty, which makes their hierarchical

information often incomplete. In this paper, we introduce

a hierarchical feature engineering (HFE) method, which

goes beyond mere feature selection. HFE exploits the

underlying hierarchical structure of the feature space in

order to create an extended version of the feature space to

start with, which will go through a number of processing

steps resulting in a much smaller space of informative fea-

tures for supervised machine learning.

In summary, while hierarchical feature engineering

seems a promising approach to Feature Space Compres-

sion, adjustments for the type of data in microbiota clas-

sification tasks are required.

Methods

The introduced pipeline for Microbiota classification is

composed of three main phases, including 1) Structural

Feature Extraction, 2) Hierarchical Feature Engineering, and

3) Supervised Machine Learning, as illustrated in Fig. 1.

Structural feature extraction

The structural features, which represent the bacterial com-

position of a microbial community, comprise the main fea-

ture space for microbiota samples. Those features are

derived from the 16S rRNA sequences via closed-reference

Operational Taxonomic Unit (OTU) picking procedure

provided by QIIME [16], an open-source tool for

microbiome analysis. In closed-reference OTU picking,

only sequences with hits in the reference sequence

database of GreenGenes are used to construct the OTU

table, which consists of a list of OTUs and their abun-

dances per sample. We chose closed-reference OTU

picking because it allows to combine datasets with dif-

ferent variable regions. The taxonomy of the identified

microbiome is automatically constructed from the pre-

defined taxonomy of the OTU representatives in the

reference sequence database. A taxonomy lineage of an

OTU is composed of 7 taxonomic ranks: Kingdom,

Phylum, Class, Order, Family, Genus and Species, re-

spectively from the highest to the lowest level. We add

an eighth level to the bottom of the hierarchy to repre-

sent the OTU level.

Hierarchical feature engineering

The basic architecture of the HFE method is inspired by

Ristoski et al.'s [15] work on feature selection in hier-

archical feature space. The input to HFE is composed of

three items: 1) The -transposed- OTU table o, where

rows represent the n samples from the training dataset

allocated for building a ML model (i.e. the samples avail-

able within 9 partitions out of 10 in 10-fold cross valid-

ation, while the 10th partition is put aside for testing that

ML model. The process is repeated 10 times, so that

each partition is to serve as a testing dataset one time),

and columns represent the m features, (i.e. the OTUs

from the OTU table); 2) the associated n-dimensional

label vector indicating the predefined class of each sam-

ple from the training dataset, e.g. cancer or normal; and

3) the taxonomy T. Our HFE method consists of four

phases, as shown in Fig. 2, including:

1. Feature engineering phase: We consider the

relative abundances of higher taxonomic units ik as

potential features by summing up the relative

abundances of their respective children C in a

bottom up tree traversal: oik =Σc∈C(ik) oc.

2. Correlation-based filtering phase: For each

parent-child pair in the hierarchy, the Pearson cor-

relation coefficient ρ is calculated from the parent

and child vectors of values over all samples. If the

result is greater than a predefined threshold θ, then

the child node is discarded. Otherwise, the child

node is kept as part of the hierarchy. It is worth

mentioning that we aim to remove child nodes that

are redundant to their parents, for which Pearson

correlation serves as a proxy. Friedman et al. [17]

states that the compositional effect for detecting

spurious correlations is less for complex communities

(with thousands of OTUs), which is what our method

is directed at. Moreover, we use correlation simply as a
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heuristic to select features, as opposed to microbial

network reconstruction.

3. Information Gain (IG) based Filtering Phase:

Based on the retained nodes from the previous

phase, all paths are constructed from the leaves to

the root (i.e., each OTU’s lineage). For each path,

the IG [18] of each node on the path is calculated

with respect to the labels/classes L. Then the

average IG is calculated and used as a threshold to

discard any node with lower IG score or an IG

score of zero. Note that this does not apply to

leaves of incomplete paths, which are dealt with in

phase 4. As the IG measure is originally designed to

handle discrete (categorical) features and ours are

continuous features, a step of discretization is

applied via WEKA on the features prior to IG

computing. Note that WEKA’s information gain

calculation for continuous features is based on

supervised multi-interval discretization, as described

in Fayyad et al. [19]. This way, our classification al-

gorithm can handle not only continuous features,

but also multiple classes.

4. IG-based Leaf Filtering Phase: In order to handle

OTUs with incomplete taxonomic information, i.e.

those OTUs for which taxonomic classification

could not be completed with high confidence all

the way down to species level, we introduce a

fourth phase dealing with incomplete paths, which

dis- cards any leaf with an IG score less than the

global average IG score of the remaining nodes

from the third phase or an IG score of zero. There

is no constraint on the percentage of discarded

features in this phase. Many tax- onomically

underspecified OTUs would be retained without

this additional filter, as they do not correlate with

remote ancestors and often have higher information

gain then the average of the few high level taxa in

their lineage. The empirical results show that

adding the features selected by the fourth phase to

the output of the third phase has improved the

overall performance of the produced classification

model when used for CRC detection.

The resultant is a set of informative features, including

OTUs and elements of the taxonomy, which can be

Fig. 1 Proposed pipeline for metagenome classification
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utilized for supervised ML. Furthermore, metadata can

be added to the final feature set. The introduced HFE

method, which is implemented in Python, differs from

the method of Ristoski et al. [15] in two main aspects:

1. The targeted type of features: Ristoski et al. [15]

designed a method for feature spaces of binary

attributes (presence/absence), while our HFE

method can handle feature spaces of continuous

attributes, such as relative abundances.

2. The ability to handle incomplete or missing

hierarchical information: The method by Ristoski

et al. [15] is designed to handle attributes with

complete hierarchical information, while our HFE

method introduces the phase 4, i.e. IG-based leaf

filtering phase, which handles attributes with

missing ranks in the hierarchy.

Supervised machine learning

The final phase in the proposed pipeline is learning and

evaluating a classification model via a ML algorithm util-

izing the HFE and 10-fold cross validation, where the

HFE method is applied separately for each cross valid-

ation fold. In this component, any ML algorithm for

classification is applicable. We use WEKA [20], a com-

prehensive workbench with support for a large number

of ML algorithms, as the development environment for

the classification models. A sample from an example in-

put to the ML-based component is illustrated in Table 1,

where the columns represent the features and the rows

represent the microbial community samples.

Results

In this section, we evaluate the performance of the pro-

posed methodology when applied on real biological data-

sets from different studies. Moreover, we conduct a

comparison between our HFE method and other tools

incorporating feature selection methods on biological

datasets.

Experimental settings

For each dataset, the initial feature set is the OTU table

generated via the Structural Feature Extraction Phase of

the introduced pipeline. It is noteworthy that we use the

same version of GreenGenes with all datasets, i.e. May

2013 GreenGenes (GG version 13.5). The performance of

the classification model trained on the initial feature set of

a dataset is considered the baseline for comparison.

For each initial feature set, conventional unsupervised

learning, represented here by Principle Coordinate Ana-

lysis (PCoA) technique, is utilized to cluster similar sam-

ples together in order to distinguish between the

different groups of samples. Studies, where the unsuper-

vised learning is sufficient for clear group separation,

Fig. 2 The HFE algorithm. Note that OTUs are possibly associated to

higher taxonomic ranks (e.g. OTU 2) due to incomplete taxonomic

classification. We refer to them as leaves in incomplete paths. The

feature space first grows from Rm to Rm +m', where m' is the number

of internal nodes in T (phase 1). Subsequently the feature space is

reduced by the number of sufficiently correlated child nodes (s1,

phase 2) and relatively uninformative features (s2 and s3, phase 3

and 4, resp.), yielding the final feature space Rm +m − s1 − s2 − s3. The

n samples represent the training dataset
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are exploited for validation. Otherwise,the studies are

used to demonstrate and evaluate the capabilities of the

introduced pipeline with more complicated classification

tasks. The PCoA calculations and plots are produced by

QIIME (version 1.8.0). Three different values, i.e. 0.6, 0.7

and 0.8, that constitute for a strong correlation have

been examined as correlation threshold θ, a free param-

eter in HFE, when applied on initial datasets in order to

generate reduced sets of informative features. The classi-

fication results show no significant difference in per-

formance among the three values when utilized by the

Correlation-based Filtering Phase in HFE. Therefore, the

default value for θ is set to 0.7. The classification models

are generated under WEKA environment, where the de-

fault settings of the selected ML algorithms are used, via

10-fold cross validation [21] in order to avoid overfitting.

The results are presented in terms of the area under the

Receiver operating characteristic (ROC) curve, i.e. AUC,

precision (P), Recall (R) and F-measure (F). The signifi-

cance of the differences in performance between the

proposed method (HFE) and other strategies is illus-

trated through the p-value calculated via conducting a

statistical t-test, in which a p-value less than 0.05 consti-

tutes a significant improvement in the performance.

Machine learning algorithms

A number of variant ML algorithms are examined as part

of the Supervised ML component, including Decision Trees

(DT), Random Forests (RF) and Naïve Bayes (NB)

algorithms [20, 21], to demonstrate the improvement in the

accuracy achieved regardless of the ML algorithm. WEKA

has implementations of the selected ML algorithms, includ-

ing J48, RandomForest and NaiveBayes built-in classifiers,

respectively. We use the python-weka-wrapper (version

0.3.6) library, which enables the use of WEKA from within

Python.

16S rRNA sequence datasets

The biological datasets utilized for the pipeline perfor-

mance’s evaluation are NGS based 16S rRNA sequence

profiles provided by metagenomics studies, using univer-

sal primers and suitable for classification.

Human body site prediction

For the classification task of Human Body Site predic-

tion, we use the initial dataset HMPv35 100nt even1k,

i.e. an OTU table via closed-reference OTU picking

against GG 13.5 with the sequences being trimmed to

100 nucleotides prior to OTU picking and then rarified

to 1000 sequences per sample, provided by the Human

Microbiome Project [22]. The dataset is composed of

4,845 samples taken from 5 human body sites: Airways,

Skin, Oral, Gastrointestinal tract and Urogenital tract.

The initial feature set consists of 5,430 OTUs.

Environment prediction

For the classification task of Environment Prediction, we use

the initial dataset, i.e. an OTU table via closed-reference

OTU picking against GG 13.5, provided from the

Meta-analysis of environmental microbiomes done by

Henschel, Anwar and Manohar [6]. The dataset is composed

of 10,101 samples categorized into 24 (singular and compos-

ite) environments. The main environments are Soil, Marine,

Freshwater, Biofilm, Plant associated, Animal/Human

associated, Anthropogenic, Geothermal and Hypersaline.

The initial feature set consists of 30,860 OTUs.

Colorectal Cancer detection

Colorectal cancer (CRC) is the third most common type

of cancer around the world, and it is responsible for los-

ing over half a million people every year [23]. Develop-

ing effective screening methods can be crucial for early

detection and increasing the survival rate. Nowadays,

fecal occult blood test (FOBT) is commonly used as the

screening technique for CRC [2, 3], but due to its lim-

ited accuracy, there is still a need for a more reliable

noninvasive screening method. In this study, we apply

our pipeline on two CRC datasets that have been built

to explore the potential of using the microbiome from

fecal samples for CRC screening:

Table 1 Sample from a final feature set. Note that it contains original features (OTUs with numerical identifiers) and high level taxa

s_obeum 1075307 192066 g_Coprococcus g_Streptococcus s_bromii 360660 class

0.00 186.34 0.00 1925.47 186.34 0.00 124.22 Cancer

169.49 24.21 72.64 1573.85 145.28 605.33 72.64 Normal

105.26 105.26 0.00 526.32 1684.21 842.11 0.00 Normal

8.64 0.00 0.27 1578.41 2869.76 327.29 0.27 Cancer

0.00 299.63 299.63 786.52 636.70 0.00 0.00 Cancer

107.66 0.00 0.00 1148.33 2571.77 0.00 83.73 Normal

8.48 0.00 0.53 2575.43 341.47 715.25 0.00 Cancer

29.33 29.33 0.00 1261.00 87.98 821.11 29.33 Normal

The numbers represent relative abundances multiplied by 105
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� The first CRC dataset (CRC1) is available from

Zeller et al.'s [2] study. It is composed of 90 cancer

samples and 92 control samples. The initial feature

set consists of 18,170 OTUs.

� The second CRC dataset (CRC2) is available from

Zackular et al.'s [3] study. It is composed of 30

cancer samples and 30 control samples. The initial

feature set consists of 6807 OTUs.

Moreover, we have built a combined CRC dataset

(CRC1+2) of the above two CRC datasets in order

to build a larger dataset in terms of number of

samples, due to being a desired dataset property for

ML. The initial feature set consists of 19,009 OTUs.

Empirical results

The Human Microbiome Project Consortium's [22] data-

set (for characterizing the microbiota of various human

body sites) and Henschel et al.'s [6] dataset (for character-

izing the microbiota of various environments) can be han-

dled by unsupervised machine learning, as shown in

Additional file 1: Figures S1 and S2, to distinguish be-

tween samples of different groups with acceptable per-

formance. Albeit an easy learning task, we use HFE in

order to show its applicability to diverse, large scale data-

sets. Additional file 1: Table S1 illustrates the pipeline’s

cross validation results when applied to the two datasets

in terms of AUC. DT, RF and NB are utilized as the se-

lected ML algorithms in the supervised ML component.

HFE compares well to the baseline but, importantly, uses

substantially less features.

In the case of CRC detection, unsupervised learning can-

not clearly distinguish between samples of different groups,

as illustrated in Additional file 1: Figure S3. Tables 2, 3 and

4 show the pipeline’s classification results when applied on

the CRC datasets (CRC1, CRC2, CRC1+2, respectively), in

terms of AUC, precision, recall and f-measure, compared

to the baseline results when no feature selection was used.

The variability among the different folds of cross validation

is captured via the standard deviation of AUC, precision,

recall, f-measure and the size of the engineered feature sets,

which shows standard deviation scores that range from

0.074 to 0.217 for the evaluation scores, and a range from

6.633 to 12.328 when it comes to the size of the feature

subsets across folds in the CRC studies. In the largest CRC

dataset, i.e. CRC1+2, in particular, the mean and standard

deviation of the feature subset size across folds are 96 and

6.633 (variance ≈ 44), respectively, while the size of the fea-

ture subset intersection obtained across folds is 31 features.

Comparing variability results among the CRC datasets

shows that the larger the feature space the smaller the vari-

ance of the feature subset size and the larger the feature

subset intersection obtained across folds. For building the

classification models for both baseline and HFE feature sets,

we consider DT, RF and NB algorithms for their ability to

computationally handle a varied range of feature space

under WEKA framework. The results in Table 2 through

Table 4 show that using HFE improves the performance in

general across the CRC datasets when compared to the

baseline performance, especially using Random Forest as

the ML algorithm. It is worth mentioning that we have

conducted a comparison between the performance of the

proposed method with and without the 4th phase, i.e. re-

sponsible for handling features with incomplete hierarchical

information, in order to examine whether it adds value to

the pipeline, and the results showed that the features se-

lected by the 4th phase improves the quality of the perform-

ance in terms of AUC, by 3.7%, 12% and 6.7% when applied

to CRC1, CRC2 and CRC1+2, respectively, using RF as the

ML algorithm. Moreover, we conduct a comparison among

Fizzy, MetAML and HFE, in terms of AUC and number of

selected features, of which DT, NB and RF are used for

building the classification models. Fig. 3 and Table 5 illus-

trate the comparison between Fizzy and HFE when applied

to the CRC datasets using several ML algorithms, which

shows significant improvements in the performance using

HFE over Fizzy’s feature selection algorithms (JMI, MIM,

mRMR and NPFS-MIM), with p-value of 0.0007, 0.0035

and 0.0358 for Fizzy-(JMI/MIM/mRMR) vs. HFE when ap-

plied on CRC1, CRC2 and CRC1+2, respectively, and an

overall p-value of 0.0494 for NPFS-MIM vs. HFE when

Table 2 The performance of the proposed pipeline when applied on CRC1 dataset, in terms of mean AUC, precision (P), recall (R)

and F-measure (F), and their standard deviation

BL HFE

AUC P R F AUC P R F

DT Score 0.635 0.621 0.621 0.620 0.678 0.707 0.676 0.675

std. 0.130 0.150 0.170 0.130 0.103 0.105 0.105 0.096

NB Score 0.686 0.678 0.676 0.674 0.721 0.715 0.704 0.705

std. 0.110 0.130 0.150 0.110 0.116 0.113 0.102 0.103

RF Score 0.770 0.677 0.676 0.675 0.795 0.728 0.709 0.706

std. 0.110 0.130 0.150 0.100 0.143 0.125 0.107 0.111

Features count: 18,170 count: 97 std.:12.328
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applied to the CRC datasets. It should be noted that Fizzy

requires the number of features to be predefined ahead to

the actual feature selection process, except for NPFS.

Therefore we assign sizes that are similar to the ones pro-

duced by HFE, i.e. 97, 28 and 92 for CRC1, CRC2 and

CRC1+2, respectively, and then ones that are slightly above

those of HFE, i.e. 110, 50 and 100, respectively as well, to

allow for comparison. The number of features selected by

NPFS-MIM for each CRC dataset is 654, 167 and 513, re-

spectively. Moreover, Table 6 compares the performance of

MetAML vs. HFE when applied to the CRC and IBD data-

sets provided by Pasolli et al. [12], which are taxonomic

profiles at species-level generated from shotgun sequencing

data. The results show that HFE outperforms the best re-

sults achieved by MetAML in terms of AUC, with a

p-value of 0.0492, when RF is used with/without embedded

feature selection methods, i.e enet and lasso, while using far

less features. Note that HFE also overcomes MetAML’s

limitation to deal with complete taxonomic information.

We thus expect the performance margin to increase fur-

ther, when including OTUs with incomplete taxonomic lin-

eages to the dataset. Additional file 1 Figure S4 through

Additional file 1: Figure S7 illustrate comparisons between

the confusion matrices of the CRC datasets’ baseline

models and HFE-based models with respect to the same set

of algorithms, and show how the performances are im-

proved with the use of HFE regardless of the number of

categories in the classification task, i.e. Cancer vs. Normal

or Cancer vs. Normal vs. Adenoma.

Figures 4, 5 and 6 highlight the top 20 HFE informative

features for Cancer vs. Normal classification, in terms of IG

score, and the nature of their log2 fold change (positive

(+ve)/negative (-ve)) across the CRC datasets. Some of the

common HFE informative features between CRC1 and

CRC2 datasets can be found in the top 20, including OTUs

and/or taxonomic units associated with Coprococcus,

Ruminococcaceae, Bacteroides, Lachnospiraceae and

Clostridiales, which are reflected in the informative

feature set of the combined CRC dataset (CRC1+2) as

well, supporting the attempt to constitute a general-

ized feature set for CRC detection. Moreover, our

findings per dataset are comparable with those of the

original studies. For CRC1, both our and Zeller et al.'s [2]

results with regard to informative features include OTUs

asso- ciated with Fusobacteriaceae, Peptostreptococcus,

Clostridium, Bacteroides, Lactobacillus, Eubacterium, Bifi-

dobacterium, Dorea, Lachnospiraceae, Ruminococcus and

Streptococcus. For CRC2, both our and Zackular et al.'s [3]

results with regard to informative features include OTUs

associated with Fusobacterium, Bacteroidales,

Table 3 The performance of the proposed pipeline when applied on CRC2 dataset, in terms of mean AUC, precision (P), recall (R)

and F-measure (F), and their standard deviation

BL HFE

AUC P R F AUC P R F

DT Score 0.697 0.700 0.700 0.700 0.657 0.692 0.617 0.582

std. 0.160 0.210 0.270 0.200 0.158 0.226 0.150 0.174

NB Score 0.647 0.650 0.650 0.650 0.583 0.566 0.550 0.515

std. 0.200 0.290 0.290 0.250 0.217 0.214 0.150 0.163

RF Score 0.669 0.674 0.667 0.663 0.975 0.915 0.883 0.884

std. 0.200 0.240 0.290 0.220 0.075 0.104 0.130 0.130

Features count: 6807 count: 28 std. 10.677

Table 4 The performance of the proposed pipeline when applied on CRC1 + 2 dataset, in terms of mean AUC, precision (P), recall

(R) and F-measure (F), and their standard deviation

BL HFE

AUC P R F AUC P R F

DT Score 0.630 0.625 0.625 0.625 0.588 0.600 0.561 0.566

std. 0.110 0.100 0.140 0.100 0.108 0.116 0.115 0.115

NB Score 0.647 0.655 0.657 0.654 0.731 0.701 0.654 0.657

std. 0.100 0.090 0.140 0.090 0.164 0.132 0.113 0.113

RF Score 0.736 0.670 0.667 0.654 0.809 0.753 0.737 0.738

std. 0.110 0.080 0.110 0.080 0.074 0.090 0.091 0.092

Features count: 19,009 count: 92 mean: 96 std.: 6.633
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Lachnospiraceae, Gammaproteobacteria, Bacteroides, and

Clostridiales. It is worth noting that the informative

feature set of the combined CRC dataset encloses a

number of OTUs, which have not been reported spe-

cifically by Zeller et al. and Zackular et al. [2, 3], in-

cluding Fusobacteriales, Oscillospira and some OTUs

associated with Porphyromonas, Rikenellaceae, Prevo-

tella, Akkermansia muciniphila, Lawsonia, and S24-7

of Bacteroidales, which are highly presented in Cancer

samples, and Yaniellaceae, Cellulomonadaceae, Coprococ-

cus, Bifidobacteriaceae, Bifidobacterium breve, Bacilli,

Lactobacillus ruminis, Lactobacillus delbrueckii, Rhizo-

biales, and some OTUs associated with Blautia and Blau-

tia producta, which are highly presented in Normal

samples. The observation of OTUs assigned to Akkerman-

sia muciniphila to be overrepresented in Cancer samples

is particularly intruiging as Akkermansia muciniphila has

been associated with healthy metabolism [24, 25].

Discussion
It seems plausible that taxa on all ranks potentially make

for good features in microbiota classification: each rank

subsumes different spectra of organisms that share traits

that are encoded by predominantly vertically inherited

genes from a shared ancestor. The proposed Hierarchical

Feature Engineering (HFE) method exploits the intrinsic

hierarchical nature of a set of different microbial communi-

ties to determine which members of the bacterial taxonomy

are informative so to distinguish between the samples

representing different conditions. HFE tackles a number of

challenges that accompany the use of microbial composi-

tions as the feature space in classification tasks, including

the type of features, which is continuous (relative abun-

dance), the size of the feature space, which is usually thou-

sands of features (OTUs), and the number of categories/

classes in the classification task, which can be more than

two. If taxonomy depth (seven ranks) is considered a con-

stant, HFE has a time complexity of O(n(m + m')) (see Fig.

2), which makes it suitable for large feature spaces unlike

other feature selection methods, such as CFS and wrapper

methods, which are computationally expensive and there-

fore do not scale well. Even in methods based on

all-against-all correlation analysis alone the complexity is

O(nm2) and thus increasingly infeasible with thousands of

features and samples. As illustrated in the Results section,

the microbial biomarkers identified by HFE for CRC

detection are supported by the evidence previously

presented in Zeller et al. and Zackular et al. [2, 3].

Moreover, our results of applying HFE on the CRC

Fig. 3 AUC comparison of HFE vs. Fizzy when applied to the CRC datasets

Table 5 Comparison between the performance of our HFE

method and Fizzy when applied to the CRC datasets, in terms

of mean AUC

CRC1
#Features

CRC2
#Features

CRC1 + 2
#Features

ML 110 97 50 28 100 92

F-JMI DT 0.555 0.561 0.526 0.594 0.580 0.612

NB 0.670 0.672 0.446 0.350 0.631 0.611

RF 0.737 0.749 0.574 0.418 0.688 0.632

F-MIM DT 0.535 0.548 0.590 0.557 0.539 0.561

NB 0.632 0.588 0.578 0.422 0.611 0.637

RF 0.618 0.563 0.528 0.374 0.627 0.675

F-mRMR DT 0.525 0.530 0.458 0.557 0.591 0.623

NB 0.553 0.544 0.615 0.614 0.562 0.559

RF 0.653 0.665 0.593 0.540 0.686 0.705

#Features by NPFS 654 167 513

NPFS-MIM DT 0.634 0.528 0.615

NB 0.628 0.579 0.619

RF 0.746 0.657 0.671

#Features by HFE 97 28 92

HFE DT 0.680 0.660 0.590

NB 0.750 0.583 0.731

RF 0.800 0.980 0.810
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dataset provided by Kostic et al. [14] are consistent

with their findings of 16S rRNA sequencing analysis,

especially with regard to Fusobacterium and its associ-

ated taxonomic units being enriched in CRC samples

compared to normal ones. Our results, as highlighted

in Additional file 1: Figure S8, show that high abundance

of Fusobacteriia, which is at class level, is a potential indi-

cator of CRC. It is worth noting that in Zeller et al. and

Zackular et al. [2, 3] the authors report biomarkers at spe-

cific taxonomic levels without considering alternatives. In

contrast, our findings, as shown in Additional file 1: Figure

S8 through Additional file 1: Figure S11, include bio-

markers at different taxonomic levels, ranging from

phylum to species level in addition to OTUs.

A noteworthy caveat is that the outcome of HFE does

not reflect the direction of causality in the respective tasks,

but rather sheds light on a number of potential bio-

markers that help to distinguish between two or more

community types. Similar to mono- vs. polygenic traits in

an organism, the identified biomarkers indicate that con-

ditions, such as CRC, adenoma and normal, are often of

polymicrobial nature rather than caused by a single mi-

crobe and it can vary from a population to another. Classi-

fication error rates rise substantially, when a third

category—adenoma samples—is included. The confusion,

adenoma samples introduce (as shown by the confusion

matrices in Additional file 1: Figures S7), indicates that ad-

enoma are associated with a microbiota succession that

makes it harder to discern the three categories. Note

though that HFE again outperforms the baseline.

HFE is generally applicable to Machine Learning tasks

with hierarchically structured feature spaces. Moreover,

integrating additional metadata as features in our HFE

algorithm is straightforward: after HFE terminates, the

feature space can be normally extended with further un-

structured features. For Microbiome classification, it

seems promising to include functional features with

hierarchical nature, e.g. metabolic pathways and en-

zymes. As for other domains of application, we intend to

apply HFE to classification of gene expression datasets

using suitable hierarchies of genes, such as Gene Ontol-

ogy (GO), EC or CAZyme.

Table 6 Thw performance of HFE vs. MetAML when applied to the CRC and IBD datasets provided by Pasolli et al. [12], in terms of

mean AUC and standard deviation

CRCMetAML IBDMetAML

RF RF

Mean Std. #Features Mean Std. #Features

MetAML-RF 0.874 0.102 490 0.891 0.100 434

MetAML-RF-Enet:Emb 0.870 0.108 70 0.898 0.103 125

MetAML-RF-Lasso:Emb 0.769 0.135 90 0.883 0.118 70

HFE 0.910 0.093 34 0.919 0.090 26

Fig. 4 The taxonomic tree of the top 20 informative features extracted by the HFE method, in terms of IG, for Cancer vs. Normal classification for CRC1
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Conclusions

In this study, we tackle the problem of microbiota classifi-

cation by introducing a hierarchy-based feature engineering

method that can handle feature spaces with high dimen-

sionality as in microbiome datasets and exploits the under-

lying hierarchical structure to construct a much smaller set

of informative features for supervised machine learning.

The existing hierarchical feature selection algorithms only

deal with binary features, which fail to adequately represent

biological data and cause a high loss of information com-

pared to relative abundances. Moreover, partial 16S rRNA

sequences are often assigned taxonomic ranks to genus or

family level with sufficient certainty, which makes their

hierarchical information often incomplete. Our Hierarchical

Feature Engineering (HFE) method goes beyond mere fea-

ture selection into feature engineering as it creates initially

an extended version of the feature space, which will be

processed through filtering steps to produce a much

smaller set of informative features. HFE method can handle

continuous features and incomplete hierarchical informa-

tion. We demonstrate substantial improvements over the

baselines (without applying feature selection) and the

state-of-the-art microbiota classification tools in terms of

classification accuracy, regardless of the actual Machine

Learning technique while using drastically reduced feature

spaces for Colorectal Cancer Detection. Furthermore, by

looking at the variability results among the CRC datasets,

we notice that the larger the feature space the smaller the

Fig. 5 The taxonomic tree of the top 20 informative features extracted by the HFE method, in terms of IG, for Cancer vs. Normal classification for CRC2

Fig. 6 The taxonomic tree of the top 20 informative features extracted by the HFE method, in terms of IG, for Cancer vs. Normal classification for CRC1 + 2
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variance of the feature subset size and the larger the feature

subset intersection obtained across the different folds in

cross validation. This indicates that with large enough train-

ing data the HFE’s choices have the potential to be general-

ized for that classification task. The findings show that HFE

makes similar feature choices when applied to different

CRC datasets, separately, supporting the attempt to consti-

tute a generalized feature set for CRC detection. Moreover,

generalized features bear great explanatory value: they pro-

vide a concise description of conditions and thus help to

provide pathophysiological insights. Indeed, the automatic-

ally and reproducibly derived features are consistent with

previously published domain expert analyses.

Additional file

Additional file 1: Figure S1. The PCoA plot of The Human Microbiome

Project Consortium (2012) dataset, which is generated via the beta diversity

through plots:py script available by QIIME Figure S2. The PCoA plot provided

in the Meta-analysis of environmental microbiomes conducted by Henschel et

al. (2015) Figure S3. The PCoA plot of the combined CRC dataset Figure S4.

Comparison between the baseline and HFE confusion matrices when applied

on CRC1 dataset (Zeller et al., 2014) for Cancer vs. Normal classification Figure

S5. Comparison between the baseline and HFE confusion matrices when ap-

plied on CRC2 dataset (Zackular et al., 2014) for Cancer vs. Normal classification

Figure S6. Comparison between the baseline and HFE confusion matrices

when applied on CRC1 + 2 dataset for Cancer vs. Normal classification Figure

S7. Comparison between the baseline and HFE confusion matrices when ap-

plied on CRC1 + 2 Figure S8. The taxonomic tree of all the informative fea-

tures extracted by the HFE method for Cancer vs. Normal classification with

respect to the dataset provided by Kostic et al. (2012).dataset for Cancer vs.

Normal vs. Adenoma classification Figure S9. The taxonomic tree of all the in-

formative features extracted by the HFE method for Cancer vs. Normal classifi-

cation with respect to CRC1 dataset (Zeller et al., 2014) Figure S10. The

taxonomic tree of all the informative features extracted by the HFE method

for Cancer vs. Normal classification with respect to CRC2 dataset (Zackular et

al., 2014) Figure S11. The taxonomic tree of all the informative features ex-

tracted by the HFE method for Cancer vs. Normal classification with respect to

CRC1 + 2 dataset Table S1. The cross-validation results of the proposed pipe-

line when applied for human body site prediction and environment predic-

tion, in terms of AUC. (PDF 27886 kb)
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