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Abstract: With the widespread use of closed-circuit television (CCTV) surveillance systems in public
areas, crowd anomaly detection has become an increasingly critical aspect of the intelligent video
surveillance system. It requires workforce and continuous attention to decide on the captured event,
which is hard to perform by individuals. The available literature on human action detection includes
various approaches to detect abnormal crowd behavior, which is articulated as an outlier detection
problem. This paper presents a detailed review of the recent development of anomaly detection
methods from the perspectives of computer vision on different available datasets. A new taxonomic
organization of existing works in crowd analysis and anomaly detection has been introduced. A
summarization of existing reviews and datasets related to anomaly detection has been listed. It covers
an overview of different crowd concepts, including mass gathering events analysis and challenges,
types of anomalies, and surveillance systems. Additionally, research trends and future work prospects
have been analyzed.
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1. Introduction

The World Health Organization (WHO) clarifies significant gathering events as any
occurrence, whether planned or unplanned, that attracts a substantial number of partici-
pants to strain the neighborhood, city, or nation hosting the event’s planning and response
resources [1]. The heterogeneous composition of the crowd in terms of color, age, language,
and culture presents several administrative issues for local organizers focused on ensuring
the event’s efficient management. Administrative authorities are more concerned with
understanding the crowd mechanics that explain what could harm large crowds [2]. An
anomaly detection system is a monitoring program that automatically identifies and con-
siders the signs of abnormal or irregular actions directly [3]. With the widespread usage of
video surveillance techniques, manual evaluation of vast quantities of video data gathered
from crowd surveillance CCTV cameras has become complicated, time-consuming, and
ineffective in the case of large crowds [4]. It requires workforce and continuous attention to
decide if the captured actions are normal or abnormal. Therefore, an automatic anomaly
detection functionality is necessary for surveillance systems to accurately identify and
detect anomalies in crowd scenes [5]. Detecting abnormal behaviors rapidly and auto-
matically in crowded environments is significant for improving safety, preventing risks,
and guaranteeing quick response. Anomaly detection in surveillance systems is critical
for assuring safety, security, and in some cases, the prevention of possible disasters [6].
Anomaly detection intends to discover the anomalies in a quick time automatically. Re-
cently, intelligent monitoring systems have become crucial for effective crowd management.
Due to their importance, computer vision, video analysis, and automated crowd anomaly
detection have become popular research topics.

Contribution

A comprehensive overview of the crowd concept, abnormal human behavior, and
surveillance systems have been discussed. A new taxonomic organization of the recent
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developments in abnormal human behavior detection techniques for large-scale (Danse)
crowds has been proposed to identify subfields that are still unexplored or that are seldom
approached from the perspective of deep learning. A wide range of recent deep learning
approaches to detecting anomalies has been covered. It includes research papers and
reviews published in the time interval from 2011 to 2022. Moreover, this review focuses on
studying the human crowd, specifically human abnormal behavior.

2. Crowd and Mass Gathering Event

A large-scale event is crowded and attracts people from multiple locations with diverse
cultural backgrounds, which generates significant management, control, and communica-
tion challenges due to their diversity [7]. These large gatherings are potentially dangerous
for the public. Numerous physical characteristics describe crowd behavior, including the
direction of motion, velocity, energy, and interaction force [8]. The field of crowd analysis
includes three general concepts or levels: crowd management, crowd monitoring, and
crowd control, see Figure 1. Crowd management is defined as using techniques to plan
and manage mass gathering events before, during, and after the event. It ensures the safety
of people, good event planning and managing, predicts and prevents unexpected issues,
and prepares initial plans for emergencies. Crowd monitoring provides the opportunity
to estimate crowd dynamics, detect and predict possible risks, track, support virtual sim-
ulation of crowd behavior, and develop automated systems [9]. Globally, security and
event management agencies are beginning to realize the importance of crowd monitoring,
considering the growing concern about public safety. Crowd control is a public security
practice and actions taken during the situation to prevent abnormal behavior when such as
fights, riots, or crowd crushes occur. An automated crowd scene analysis involves counting,
tracking, and identifying the behaviors of a large crowd of individuals occupying the same
physical space [10]. An estimate of the number of people in a certain area is known as
crowd counting.
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A critical aspect of crowd safety is crowd action recognition, which recognizes the
different actions of an individual or group of individuals. The ability to track objects in
crowded video sequences is critical to interpreting visual scenes [11]. In Islam, Hajj is
considered one of the five pillars and a duty that all physically able, healthy, and financially
capable people must fulfill once in a lifetime. Pilgrims worldwide arrive in one place
over five days to perform religious rites. In the Muslim lunar calendar, this begins on day
8 of Zulhijjah and ends on day 13, Zulhijjah [12]. This annual mass gathering event is
considered one of the biggest in the world. Since the number of pilgrims attending these
events has increased over the years, many challenges could occur, such as overcrowd-
ing at the sites resulting in congestion, stampedes, damages, loss of pilgrims, violations,
and fatalities [1]. The Kingdom of Saudi Arabia seeks to provide pilgrims with the best
possible Hajj experience by providing infrastructure, safety, security mechanisms, and nu-
merous other amenities to manage these crowds. However, it is still seeking more tools for
this task [13].
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3. Crowd Analysis

Most research works divide crowd analysis into two major branches: crowd statistics
and crowd behavior analysis. This study introduces another branch, the tracking approach.
Figure 2 illustrates the newly proposed taxonomy for crowd analysis.
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• Scene Analysis: Automatic video analysis is called video analytics, and it can detect
and analyze temporal and spatial events. The usefulness in finding anomalies in
real-time, monitoring crowds, detecting pedestrians, and tracking vehicles make
video scene analysis an active research topic. The CCTVs distributed in crowded
public areas facilitate the process of analyzing the motion, behavior understanding,
anomaly detection, and determining the type of the crowd, whether it is structured
or unstructured.

• Statistical Analysis: Crowd density estimation and crowd counting are examples of
statistical analysis, which involves analyzing patterns and trends in quantitative data.
The number of people per meter can be used to calculate crowd density. While crowd
counting is a method of counting how many people are present in a space. These
estimations are effective in controlling the flow of the crowd in a specific area and
avoiding overcrowding, accidents, and stampedes.

• Tracking: Object tracking is the process of determining the location of moving objects
over time [14]. An object can be tracked online or offline, and one object or several
objects can be tracked simultaneously. The changes in features over time can be used
to track anomalies detected by object detection.

4. Crowd Scene Analysis Challenges

Occasionally, some moving entities in videos do not appear clearly to the observer in
some circumstances. There are diverse kinds of challenges, as illustrated in Figure 3:

• Occlusion: this happens when two or more objects come too close jointly and seem to
merge, which leads to the system losing track of the trackable object or tracking the
wrong object because of overlapping [15].

• Scale Variation: it occurs when there is a wide range of sizes of the tracked objects,
which causes the tracking system to lose precise tracking.

• Illumination Variation: refers to the variation in the quantity of origin light mirrored
on an image and can be caused by changes in lighting, shadows, or noise.

• Speed: while objects in a scene often move at different speeds, the predictor should
recognize objects in motion videos accurately by being fast during prediction.

• Background Clutter: it refers to the existence of large numbers of objects in the image,
which makes it difficult for a detector to recognize individual objects due to their
non-uniform arrangement. There is a possibility that objects that need identifying will
blend into the background, making them difficult to detect.

• Variety: occurs when an object has more than one shape and size.
• Camera Position and Angle: it is possible to have inconsistencies in perspective due

to different angles and camera positions, as well as the tilting and up-and-down
motion of the camera.
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5. The Concept of Anomaly

The word anomaly comes from the Greek word “anomolia”, which indicates irregular
or uneven patterns [16]. In the data mining and statistics communities, anomalies are also
known as abnormalities, deviants, and outliers [17]. It can be defined as an unusual pattern
that does not conform to expected behavior or place. For textual data, the anomaly can
be detected by plotting the data; the data points that are greater than or less than other
data are referred to as anomalies or outliers, which is inconsistent with other data. On
the other hand, for videos or image data, the anomaly can be identified by analyzing and
understanding the behavior or patterns of objects in that area; the object that behaves
differently from expected patterns is an anomaly object. Anomaly detection refers to
the detection and localization of patterns or any behavior that does not correspond to
expectations. A person may exhibit abnormal behavior in public alone or as part of a group.
Thousands of pilgrims gather simultaneously in the Hajj area, which is an illustration of a
heavily populated place. Different abnormal activities could happen, such as congestion,
walking against the pedestrian path, standing in places not designated for standing and
obstructing the movement of pilgrims, sitting in places other than those designated for
sitting, and running and scrambling at the gates and the train station. Moreover, violence is
a representation of abnormal behavior, which is a physical force that affects the surrounding
area and people; it can be detected through a smart surveillance system that helps to control
the safety of the environment and limit violations and other accidents [18].

6. Anomaly Detection

Monitoring public security often involves the detection of abnormal behavior in
surveillance videos of crowds. Anomaly detection in crowded scenes refers to the detection
of irregularities, abnormalities, or discovering patterns that are out of alignment with
normal behavior in images or video sequence data. In [19], anomaly detection is described
as identifying patterns that are extremely distinct from the rest. According to [20], anomaly
detection refers to the identification of crowd movements, where the abnormal behaviors
in crowded locations usually emerge as crowd commotion. The detection of anomalies
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aims to identify and categorize anomalies in given datasets [21]. Anomaly detection can
be classified into three categories: supervised, unsupervised, and semi-supervised. The
dataset that has both data and labels can be used for supervised anomaly detection. The
labels determine the type of event, whether it is “normal” or “abnormal.” Unlabeled
datasets are employed for the unsupervised anomaly detection method. The unsupervised
method considers that most of the events in the dataset are normal and otherwise assumed
an anomaly. In situations where the dataset has not been completely labeled nor unlabeled,
meaning that some data are labeled, and some are unlabeled, semi-supervised anomaly
detection techniques are used. As a rule, anomaly detection procedures assess the patterns
in the available normal data, illustrate them, and then model them in order to uncover new
patterns in the new data [22]. Surveillance systems [23–27], intrusion detection [28–30],
fraud detection [31,32], and health monitoring [33–35] are just a few of the domains where
anomaly detection has applications.

7. Types of Anomalies

Basically, the term anomaly refers to anything that is unusual, irregular, or uncharac-
teristic and differs from the normal event [36]. An anomaly can be broken down into three
types: point anomalies, extended anomalies, and collective anomalies.

• Point Anomalies: occur when a single individual entity has observed irregular behav-
ior from the rest of the data [37].

• Contextual Anomaly: An instance that could be considered anomalous in some
specific circumstances is called a contextual anomaly, which is also called a conditional
anomaly [36]. When a data value has irregular behavior compared to the rest of the
data in a specific context, but not in all circumstances [38], therefore, if something is
anomalous in some specific context, then it can be classified as a contextual anomaly.

• Collective Anomalies: often represent a collection of related entities as a correlated
group that has observed anomalies against the remaining data. They are called
collective anomalies [39].

8. Surveillance System

The surveillance system is a real-time administration program developed to identify
and detect irregular activities directly automatically; it can be called an anomaly detection
system [3]. Using advanced technology to manage crowds could be the proper approach to
avoid any potential issues [40]. CCTV cameras are the most common safeguard instrument
used to observe individuals and their activities. It is a typical policy to ensure safety.
Approximately 770 million CCTV cameras have been installed around the world [41].
The constant observation of these cameras by humans is very difficult in a large crowd.
The limitations of CCTV raised the requirements of continuous manual monitoring of
the screens by the workers, which is very difficult to respond immediately to any actions
and time-consuming. To overcome this limitation, an automatic system that could detect
and identify abnormal behavior automatically and notify the authority to act at the same
time is required. To detect the actions and categorize them effectively, deep learning
techniques such as CNN, RNN, LSTM, and more are used, which produce outstanding
results. This intelligent system is qualified to detect objects that differ significantly from
the normal state, such as fighting, vagrancy, stampede, and incidents [42]. It is equipped
in various areas, such as academies, roads, playgrounds, and hospitals, to encourage the
management process [18].

9. Previous Reviews on Anomaly Detection

Several surveys have been published on crowd analysis and abnormalities detection.
Some of the studies focus on general ideas and concepts, and some other research focuses
on a specific area. As summarized in Table 1, this section presents some of the most
significant reviews published between 2011 and 2022, which represent significant results
and contributions. The main contribution of this review is the depth of concentration on
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the deep learning methods, role, and performance in human abnormalities detection in
crowded areas. For dense crowds, a new taxonomic organization presents recent develop-
ments in human abnormal behavior detection. Furthermore, participate in the discovery of
subfields that are still unexplored or that are rarely covered. Future directions and trends
are demonstrated as open challenges for future research. This review focuses on studying
the human crowd, specifically abnormal human behavior.

Table 1. Summarized presentation of review papers in anomaly detection.

Ref. Year Focus

[43] 2011 Computer vision techniques for analysis of urban traffic

[44] 2012 Anomaly detection in automated surveillance systems

[45] 2012 Detecting abnormal human behavior in the context of a video

[46] 2012 Discuss frameworks for recognizing human activity

[47] 2012 Human behavior analysis with semantic enhancement

[48] 2013 Intelligence video surveillance system (IVSS) using a multi-camera network

[49] 2014 Machine learning techniques for novelty detection

[50] 2015 Describe the difficulties that come with modeling for video anomaly detection

[51] 2016 Currently available anomaly detection video datasets issues

[52] 2017 Computer vision techniques used for crowd disaster avoidance

[53] 2017 Computer vision techniques for analyzing dense crowd scenes

[54] 2017 Explore various available methods used to identify abnormal crowd behavior

[55] 2017 Crowd statistics and behavior understanding

[56] 2018 Implementation of deep learning techniques for video anomalous detection

[57] 2018 Available methods for human abnormal behavior detection

[58] 2018 Unsupervised- and semi-supervised learning-based for video anomaly detection

[59] 2018 Feature extraction and description techniques for abnormal behavior recognition

[17] 2019 Deep-learning-based anomaly detection techniques for various domains

[60] 2019 Object trajectories, clustering, anomaly detection, summarization, and synopsis generation

[61] 2020 Video anomaly detection in road traffic

[62] 2020 Deep learning-based methods for analyzing crowded scenes

[63] 2021 Deep learning technique used for anomaly detection

[64] 2021 State-of-the-art deep learning-based approaches for detecting video abnormalities

[2] 2021 Explore various studies related to crowd analysis

[42] 2021 Deep learning-based algorithms for recognizing video anomalies, opportunities, and challenges

[65] 2021 For security systems, automated and real-time surveillance technologies of irregular action
recognition are used to identify dynamic crowd behavior

[66] 2021 Analyzed and compared crowd anomaly detection methodologies

[67] 2022 Crowd count, human detection and behavior, anomaly detection, and importance of crowd analysis

[68] 2022 Crowd modeling and analysis

[69] 2022 Comparative analysis of existing crowd behavior analysis methods

[70] 2022 Deep learning framework for anomaly detection

[71] 2022 GAN-based anomaly detection

[72] 2022 Summarization of video analytics deep learning techniques in the Hajj scenes

[73] 2022 Evolution of anomaly detection methodologies in intelligent video surveillance
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10. Taxonomy of Anomaly Detection in Crowd Scenes

With the increasing demand for security and safety of people in large-scale crowd
areas, CCTV is used to monitor the crowds. Analyzing the video streams provided by
CCTV is an important task to detect and localize the anomaly behavior in the crowd.
However, the literature includes many studies that need to be classified to understand deep
learning for efficient crowd management better. This section presents a classification of the
previous studies according to classical ML vs. DL, anomaly type, the scope of application,
real-time vs. offline, and human crowd vs. non-human crowd, as described in Figure 4.
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10.1. Classical ML vs. DL

Classical ML is a collection of algorithms and techniques used to build a model that can
learn from existing observations and exploit the learned data to predict new observations
by finding patterns in data; it works better with small data [74–82]. DL is a subset of ML,
which is based mostly on artificial neural networks [83–93]. When classical ML techniques
are compared with DL techniques, the DL techniques achieve more significant performance
and accuracy in many domains such as natural language, object detection, speech, image
classification, and semantic segmentation [94]. ML acts satisfactorily on small to medium
datasets, while DL acts sufficiently on large datasets. According to hardware requirements,
ML can work on a local CPU, while DL requires powerful computing power such as a
GPU. For feature engineering, ML needs to be explicitly identified or annotated features
by humans, while DL can learn and discover features automatically by neural networks.
For the training time, ML models usually take a short training time, while DL requires
computationally intensive time and power for training. ML utilizes many automated
algorithms that allow the model to generate predictions from employed data. While DL
uses a quite different and complicated architecture called a neural network, that hands
data via processing layers to interpret data and generate predictions. Current works on
crowd anomaly detection can generally be classified into unsupervised, supervised, semi-
supervised, and reinforcement learning. The dataset with both data and labels can be used
for supervised anomaly detection. In anomaly detection, the labels indicate the type of
event, whether it is “normal” or “abnormal”, or determine a specific type of anomaly such as
fighting, burglary, and more. Unlabeled datasets have been employed for the unsupervised
anomaly detection method. The unsupervised method considers that most of the events
in the dataset are normal and otherwise assumed an anomaly. Semi-supervised anomaly
detection techniques are used in situations where the dataset has not been completely
labeled nor unlabeled, meaning that some data are labeled and some are unlabeled. The
Supervision type column determines the type of the method: unsupervised [74–77,85,86],
supervised [78–81,83,84,87–92], semi-supervised [82], and reinforcement learning [93]. The
model column determines the algorithm used in work, CNN, RNN, GAN, KNN, SVM,
GMM, . . . , etc. The anomaly column determines the type of anomaly that each study tries
to detect. The dataset column names the dataset used in each study.

10.2. Violation Type

It is well known that the physical world produces abnormal behaviors that appear
beyond explanation. Detecting these abnormal behaviors is not easy because it comes
in several types. The studies [74,76–78] focus on detecting non-pedestrians and escape
panics as abnormal behavior in a crowded place. Moreover, the study [79] includes more
abnormal behavior such as irregular pedestrian movement and action differences from
regular recognized events. It uses a single shot multi-box detector (SSD) to detect abnormal
behavior in three different datasets PASCAL, VOC, and High-Speed Railway. The proposed
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improved SSD network achieved increased results on the three datasets by 2.52% and 4.74%,
respectively. While [75] proposes a novel Gaussian kernel-based integration model (GKIM)
for anomalous entities detection and localization in pedestrian flows. Then, a block-based
detection framework was developed by training a recurrent conditional random field
(R-CRF) using the GKIM features. This [75] study divides the detection process into two
types, groups and individuals.

The group anomaly behavior includes suddenly scattered crowds, and individuals
include non-pedestrians, escape panics, and action differences from regular recognized
events. The proposed framework outperforms the compared methods in terms of equal
error rate (EER) and detection rate (DR) in both frame-level and pixel-level with three
different datasets UCSD, UMN, and UCD. A deep learning model that can detect normal or
abnormal actions on an academic campus using CCTV footage has been introduced in [80],
which uses three different datasets, UCSD, UMN, and LV, to detect the anomaly. The model
consists of two parts and two neural networks, CNN and RNN: First, CNN is used for high-
level feature extraction from video frames. Second, based on the obtained features, the RNN
classifier predicts the class as normal or abnormal using LSTM architecture. A pre-trained
model VGG-16 was used in image feature extraction with videos obtained from CCTV
cameras. The results show that the introduced model allows for the prevention of crimes
before it occurs. The real-time CCTV images were tracked and analyzed automatically and
achieved an accuracy of 87.15%. Fighting and violence are the most common abnormal
behaviors that occurred in public places, which are addressed for detection in [81,82,85–89].
The vehicles and bicycles that drive oppositely, at fast speed, or at not allowed places,
for example, on the pedestrian side, which cues as dangerous for people, is considered
abnormal behavior in [82,85,91,92]. In universities, specifically inside the campus, fighting,
and fainting are irregular behaviors. An abnormal behavior recognition system based on
3D-CNN and LSTM has been developed in [87] to detect abnormal behavior in universities.
The 3D-CNN and LSTM models are employed to maintain motion correlation between
consecutive feature images using 3D-ResNets architecture. Crossing the track at the train
station or railway outside the pedestrian zone is considered a wrong behavior that should
be avoided [83,84].

10.3. Scope of Application

Managing a large-scale crowd in crowded places is a business solution that offers an
intelligent analysis of crowd mobility. It can be applied to applications that contain crowds,
such as at shopping centers, queue detection, cultural events, public places theft detection,
playgrounds, streets and highways, sports stadiums, train stations, and airport terminals,
see Figure 5. For the Hajj aspect, an abnormal behavior detection approach based on optical
flow and generative adversarial network (GAN) for crowd scenes anomaly detection has
been proposed [27]. The optical flows are used to identify dynamic features. Then, an
optical flow framework based on GAN has been employed with a transfer learning strategy
to identify abnormal human behavior in large-scale crowd scenes during the Hajj. To
differentiate between normal and abnormal behaviors, the U-Net and Flownet have been
used. The suggested approach is evaluated using three datasets: UMN scenes 1, 2, 3, UCSD,
and Abnormal Behaviors HAJJ datasets. The results indicate that the accuracy achieved
with UMN scenes is 99.4%, 97.1%, and 97.6%, respectively.

Moreover, it achieves 89.26% with UCSD and 79.63% with the proposed Abnormal
Behaviors HAJJ dataset. The model can work perfectly, but the accuracy requires to be
enhanced by training the model with more samples and annotating more details. Moreover,
a new crowd density prediction model for Hajj and Umrah crowd video analytics system
has been proposed [95] to enhance the protection and safety of pilgrims in Makkah. CNN
analyzed the crowd by counting the number of people in a specific area. The suggested
model exceeds the state-of-the-art methods with a considerable decrease of MAE, which
results in 240.0 and improved by 177.5 degrees, and MSE, which results in 260.5 and
improved by 280.1 degrees, with the HAJJ-Crowd dataset. Indeed, COVID-19 is also spread
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by crowds, which are classified as sensitive sources. For crowd management during the
pandemic, a recommendation system has been developed that suggests the closest shopping
centers or stores with the least estimated crowds near the user’s location [96], which helps
to avoid crowding and scrambling in stores. The top-K approach and behavioral game
theory have been used to predict the user’s choice and estimate the crowd level for the
requested place. The model outcomes indicate an increase in the trust factor from 0.5 to
0.76 and reduce the crowd level by an average of 40%. A lightweight CNN framework [84]
has been proposed for anomaly detection in smart cities that is functional for a real-world
surveillance environment. The introduced framework contains three key phases: First, the
lightweight CNN model is used to extract spatial features from sequence surveillance video
frames. Second, create a feature vector from a series of 30 frames of the video. Third, the
feature vector is fed to the residual LSTM to identify abnormal activities in a real-world
environment. The system’s outcome shows that using CNN features with the residual
blocks in LSTM for sequence learning is effective for anomaly detection and recognition. A
deep learning model that can detect normal or abnormal actions on an academic campus
using CCTV footage has been introduced [80]. In case of an abnormal event, the model
sends an alert message to the authority. The proposed model achieved an accuracy of
87.15% in abnormality detection in the academic campus area. Moreover, an industrial
aspect required an intelligent real-time video surveillance system for anomaly detection to
protect safety, which was developed in [97] and achieved good results.
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10.4. Real-Time vs. Offline

Locating moving objects in videos over time is known as object tracking [98]. It
has a variety of applications in computer vision, such as analyzing human behavior in
crowds [99,100], pedestrian tracking systems [101], body motion tracking in crowds [102],
detecting anomalies in crowds [103,104], and monitoring traffic flow [105]. The capability
to comprehend and model an object’s motion is crucial to the success of a tracker. Tracking
can be performed with one object or several objects simultaneously. Even if an environment
contains several objects, only a single object is tracked in single tracking regardless of
how many objects are presented. While multiple object tracking involves observing all the
objects in the environment over time [106]. However, tracking and abnormality detection
are imperative, whether performed online in real-time or offline. An online approach
gathers real-time data about people and their behavior to achieve an understanding of
their behavior so that abnormalities can be detected immediately. Since the frames are
processed at the same time of occurrence, the subsequent frames cannot be used to predict
and improve results; only previous frames can. In another situation, offline trackers will
be used when tracking an object in a stream that has been recorded. Using the previous
and subsequent frames, the program conducts batch processing of the frames to analyze
the video stream and provide accurate results. An intelligence system that controls the
crowd by detecting abnormal behavior using deep learning techniques through a real-time
video surveillance system has been introduced [107]. This system allows avoiding injury
or any other action which causes harmful effects to the community because of the crowd
using both CNN and KNN. A real-time lightweight computational architecture for violence
detection in a crowded public place using convolutional long short-term memory (Conv-
LSTM) has been developed [108]. A dataset of crowd anomalies was used to validate the
algorithm, which achieved 95.16% accuracy.
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Moreover, an efficient system that can detect and locate abnormal behavior in surveil-
lance videos in crowded events has been introduced [109]. The proposed system is based
on a new Motion Information Image (MII) model expressed using optical flow and CNN.
The outcomes reveal that the introduced system is very efficient and can identify and
locate abnormal behaviors in real-time. The algorithm’s accuracy outperforms the exist-
ing algorithms at both pixel and frame levels. In addition, a new system for real-time
anomalous event detection in videos called MOVAD has been proposed [25]. It achieved
comprehensive performance that exceeds the current state-of-the-art methods. Intelligent
anomaly detection and classification systems were introduced in [85] to detect abnormal
behavior in surveillance videos using Faster RCNN with Deep Reinforcement Learning
(DRL) techniques for offline tracking. The proposed model has outperformed the other
methods with the maximum accuracy of 98.50% and 94.80% on the test004 and test007
datasets. Another accurate and effective deep learning framework for detecting abnormal
behavior in videos with Vgg-16 and LSTM has been developed [110]. Experimental results
show that the proposed method achieves the best detection results at the frame and pixel
levels. Indeed, a recurrent neural network (RNNs) and two-dimensional convolutional
neural networks (2D CNN) have been developed for violence detection [111], that achieved
an accuracy of 99%, 93.75%, and 96.74%, respectively, on the Hockey dataset, Violent Flow,
and Real-Life Violence Situations Dataset.

Moreover, an abnormal behavior recognition system based on 3D-CNN and LSTM
has been developed [87]. The 3D-CNN and LSTM models are employed to maintain
motion correlation between consecutive feature images using 3D-ResNets architecture. The
experiments show that the proposed method has an excellent performance in abnormal
behavior recognition on some challenging datasets. An automatic abnormal behavior
detection system of videos based on VGGNet and BSVM has been developed [112], it
was applied through transfer learning strategies to detect abnormal events. The results
illustrated that the VGGNet-19 network obtained better accuracy than other hand-crafted
descriptors, with an average accuracy of 97:44%. A new fully convolutional neural networks
(FCNs) architecture system for global abnormal behavior detection and localization in
videos has been developed [113]. The proposed architecture is fast and accurate for anomaly
detection in video data, which achieved a 370-fps processing speed on a standard GPU.

10.5. Human Crowd vs. Non-Human Crowd

The concept of “crowds” is not limited to specific objects. The term “crowds” can
include different types of objects such as human crowds, vehicle crowds, crowds of animals,
crowds of birds, and many more examples. A fundamental requirement for analyzing
crowd scenarios is identifying the kind of crowd. Table 2 presents a summary of deep learn-
ing anomaly detection projects with different targets, including humans and non-humans.
An anomaly detection system combining the optical flow method and convolutional neural
network (CNN) has been introduced to identify and inform the irregularities of human and
vehicle crowds in difficult video scenes [83]. The proposed system achieved an average ac-
curacy of 86.3% and an average time of 12 s with the human crowd, while vehicle anomaly
detection achieved 89.7% accuracy with an average time of 11 s. A novel architecture called
DeepCrowd, which can detect and classify five different types of a crowd (vehicle crowd,
human crowd, bird crowd, animal crowd, mixed crowd), has been developed [114]. The
DeepCrowd system achieved a good accuracy of 83.11% in detecting and classifying the
type of crowd. A unified autonomous system has been developed to detect risky human
behavior in video surveillance systems or monitor systems RGB image based on a deep
convolutional network [82]. The result shows the potential and possibility of the proposed
system, which provides adequate achievement in distinguishing abnormal behavior in a
real-world situation. For sparse crowds, an adaptive training-less method for anomaly
detection in surveillance videos has been introduced [115]. It achieves comparable perfor-
mance results with several state-of-the-art methods on publicly available UCSD, UMN,
CUHK Avenue, and ShanghaiTech datasets.
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Table 2. Categorization of the state-of-the-art anomaly detection methods in crowd scenes.

Ref. Type Approach Anomaly Scope Processing Target Dataset

Classical Machine Learning

[74] Unsupervised K-means Non-pedestrians,
escape panics Public Places Offline Human UCSD, UMN

[93] Unsupervised Dictionary
learning

Suddenly scattered,
non-pedestrians,

escape panics
Public Places Offline Human

UCSD, UMN
PETS2009,

Avenue

[92] Unsupervised Soft Clustering Non-pedestrian,
escape panics Public Places Offline Human UMN, UCSD

[91] Unsupervised k-means Non-pedestrian Public Places Offline Human UCSD

[89] Supervised Optical flow Non-pedestrians,
escape panics Public Places Offline Human UCSD, UMN

[75] Supervised GKIM, R-CRF Non-pedestrians, panics,
irregular movement Public Places Offline Human UCSD, UMN, UCD

[76] Supervised K-means, Linear SVM Crowd running, crash,
kidnap, burglary, fighting Public Places Offline Human UCSD, UMN, LV

[77] Supervised SVM Panics, fighting, running, standing Public Places Offline Human UMN, BEHAVE

[78] Semi-Supervised GMM, SVM Violent, panics Public Places Real-Time Human UMN, Violent flows

Deep Learning

[79] Supervised SSD, VGG-16 Bullet train, pedestrian Railway Offline Human Train PASCAL VOC, Railway

[90] Supervised SSD, VGG-16 Small object Railway Real-time - ILSVRC CLS-LOC, Railway

[88] Unsupervised GAN Biking, fighting, vehicle, running Public Places Offline Human Vehicle
CUHK Avenue
UCSD, Campus
ShanghaiTech

[87] Unsupervised 3D-CNN
LSTM Panics, fighting, protest Public Places Offline Human UMN, CAVIA, Web

[94] Supervised Modified 3D
ConvNet Violent Public Places Offline Human Crowd violence
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Table 2. Cont.

Ref. Type Approach Anomaly Scope Processing Target Dataset

[80] Supervised CNN
RNN

Use mobile in class,
fighting, fainting University Offline Human KTH, CAVIAR

[81] Supervised CNN Walking, jogging,
fighting, kicking, punching Public Places Offline Human CMU, UTI

PEL, HOF WED

[82] Supervised VGG-16 LSTM Kicking, pointing
punching, pushing Public Places Offline Human UT-Interaction-Data

[83] Supervised Optical Flow CNN Panic, running
fast speed, crash Public Places Offline Human

Vehicle UCSD, UMN

[84] Supervised CNN
Residual LSTM

Fighting, explosion,
accidents, shooting, robbery,

shoplifting, burglary
Smart Cities Real-Time Human UCF-Crime, UMN, Avenue

[85] Reinforcement Learning Faster RCNN Car, bicycle Surveillance
System Offline Vehicle UCSD

[25] Supervised CNN, RNN
KNN, Optical Flow Bicycles, skateboards, wheelchairs Public Places Real-Time Human

vehicles

CUHK Avenue
UCSD, campus,

ShanghaiTeh, UR fall

[27] Supervised Optical Flow GAN Standing, sitting, sleeping, running,
moving in opposite, non-pedestrian Hajj Real-Time

Human
Cars

Wheelchairs
UMN, UCSD, HAJJ datasets

[95] Supervised CNN Density Hajj, Umrah Real-Time Human HAJJ-Crowd

[96] - point-of-interests (POI) Crowding, scrambling Shopping Centers Real-Time Human -

[97] Unsupervised CNN, Conv-LSTM People littering, skateboard,
Discarding items, loitering Industrial Real-Time Human CUHK Avenue

UCSD Ped 1 UCSD Ped 2

[107] Supervised CNN, KNN Injury Public Places Real-Time Human UMN

[108] Supervised Conv-LSTM Violence Public Places Real-Time Human Standard crowd anomaly

[109] Supervised CNN, MII
Optical Flow Escape or panic situation Public Places Real-Time Human UMN PETS2009

[110] Unsupervised Vgg-16 and LSTM Non-pedestrian Public Places Offline Human
Cars

UCSD Ped2
CUHK Avenue
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Table 2. Cont.

Ref. Type Approach Anomaly Scope Processing Target Dataset

[111] Unsupervised RNN, 2D CNN Violence Public Places Offline Human Hockey, Violent-Flow,
Real-Life Violence Situations

[112] Supervised VGGNet-19 BSVM Running, Carts Bikers, Skateboarder Public Places Offline Human UMN, CSD-PED1

[113] Supervised FCNs Car Skateboarder Wheelchair
Bicycle, Wrong direction Public Places Offline Human UCSD, Subway

[114] Supervised 2D CNN - Public Places Offline
Vehicle,

Human Animal,
Bird Mixed

CVML Crowd Variety

[115] Supervised Optical Flow Panics, loitering, running,
throwing objects

Surveillance
System Offline Human UCSD, UMN CUHK

Avenue ShanghaiTech
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11. Publicly Available Datasets for Crowd Applications

Large-scale applications for crowd management have received significant attention
over the last ten years. For the management and control of crowds, crowd analysis is crucial
in intelligent video surveillance systems. The collection of crowd motion video data is not
an easy task. During the past few years, more and more datasets have been created that
focus on crowd density estimation, crowd analysis, and anomaly detection in crowded
scenes. The use of these datasets allows for improving the quality of crowd applications.
Table 3 presents a summary of publicly available crowd datasets.

Table 3. Summary of available crowd datasets.

Ref. Year Name Scale Train Test Total Description

[116] 2021 CVCS Medium - - 31 Multi-view crowd counting

[117] 2021 DroneCrowd Large - - 112 Detection, tracking, and counting animal
crowds with drones

[27] 2020 HAJJv1 Large Human abnormal behavior in Hajj

[118] 2020 UCF-QNRF Large - - 1535 Crowd counting and localization

[119] 2020 NWPU-Crowd Large - - 5109 Crowd counting and localization

[120] 2019 DLR-ACD Large - - 33 Crowd counting, density estimation,
and localization

[121]
[122]

2019
2020

JHU-CROWD
JHU-CROWD++ Large - - -

4372
Crowd counting dataset under different

weather conditions

[123] 2018 CrowdFlow Large - - 10 Crowd analysis, crowd flow, and
movement estimation

[124] 2018 SCUT-HEAD Large - - 4405 Head detection

[125] 2018 SmartCity Large - - 50 Crowd counting

[126] 2017 Multi-Task Crowd Large - - 100 Crowd counting, violence detection, and
density level classification

[127] 2016 Shanghai Tech Part A
Part B Large - - 482

716 Crowd counting and density estimation

[128] 2015 WorldExpo ’10 Large - - 3980 Crowd counting in a cross-scene

[129] 2015 WWW Crowd Large - - 10,000 Crowd understanding

[130] 2015 SHOCK Large - - - Analyze spectator crowd behavior at
stadiums/theaters/events

[131] 2014 CUHK Crowd Large - - 474 Analyze group behavior in crowd scenes.

[132] 2014 Crowd Saliency Large Crowd movement, counter flow, source, sink,
and instability motion

[133] 2013 UCF-CC-50 Large - - 50 Extremely dense crowd dataset for
crowd counting

[134] 2012 AGORASET Large - - - Crowd motion simulation

[135] 2012 Violent flows Large - - 246 Classify and detect violent and
non-violent behavior

[136] 2012 Mall Medium - - 2000 Crowd counting

[137] 2012 Grand Central Medium - - - Crowd train station dataset

[138] 2009 PETS2009 Medium - - 875 Crowd counting, density estimation,
tracking, and event detection

[139] 2009 UMN Small - - 11 Abnormal crowd behavior detection

[140] 2008 UCSD Peds 1
UCSD Peds 2 Small 6800

2550
7200
2010

40
12 Abnormal crowd behavior detection

12. Discussion

A review examining recent research in crowd anomaly detection in automated surveil-
lance systems has been presented in this paper, which includes the key aspects of the
problem domain, approach, and method. Since video surveillance systems are widely
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used in public places, crowd anomaly detection has become an increasingly critical part
of the intelligent video surveillance system. In intelligent video surveillance, anomaly
detection and localization remain challenging problems. The definition of the anomaly is
significantly different from one situation to another, which means anomalies in a specific
situation may not be an anomaly in another situation. Consequently, the type of event
depends on the surrounding circumstances. Several types of abnormal behaviors depend
on the environment and circumstances, making detecting them difficult. To discover these
behaviors, it is necessary to understand the surrounding environment and the expected
and unexpected behavior to facilitate the classification of any other behavior that may
occur. The anomaly behavior varies according to the environment; specifying the behavior
more precisely ensures a more accurate discovery of the events. According to Table 2,
most of the studies in this area focus on one target, abnormal behavior detection, and few
studies investigate multiple targets. However, addressing multiple targets is very common
as a realistic scenario and can be challenging since each target must be addressed with a
different feature extraction method.

Furthermore, most human anomaly detection applications cover a range of viewing
fields from around 10 M to a medium size area of around 100 M. It is very rare to find
some applications that examine the effects of human abnormalities detection in very small
or very large fields of view, such as that seen in a satellite image. In addition, object
occlusions, inconsistencies in perspective due to different angles and camera positions,
as well as tilting and up-and-down motion of the camera, can occur in large-scale crowd
scenes, making crowd analysis very challenging. The use of multiple CCTVs that cover
complete angles to monitor the crowd and provide a full (360◦) view of objects in that
area to avoid occlusion. Furthermore, drones and satellite images will add more valuable
results during crowd monitoring and abnormality detection. According to the literature
and previous applications, classical machine learning techniques are often outperformed
by deep learning techniques. Machine learning algorithms can still provide good results
by training the model well, but deep learning algorithms provide more accurate results
in large and complex applications for greater accuracy. However, simple, direct, and clear
requirements projects can be performed with machine learning algorithms without wasting
resources. Indeed, some of the literature on video surveillance systems does not provide
an exact distinction between real-time anomalous event detection and offline anomalous
detection. The two approaches are different from each other in the data processing. Offline
video tracking involves analyzing sequential video frames and relating target objects
based on their appearance in each frame. While real-time object tracking involves tracking
moving objects in video from a camera over time. Moreover, many types of objects can
be characterized as crowds. The term crowd does not refer to any single type of object.
Identifying the nature of the crowd is a prerequisite for analyzing crowd scenarios. It could
be a crowd of people, vehicles, animals, or any other object.

13. Trends and Future Works

Detecting abnormal crowd behavior in video scenes is a hot research topic currently.
Additional developments and improvements will help to achieve effective crowd manage-
ment and ensure human safety. Video anomaly detection has a wide range of potential
application domains such as crime detection, pedestrian tracking systems, traffic violations,
body motion tracking in crowds, abnormal crowd behavior, intrusion detection, fraud
detection, abandoned objects, health monitoring, weapons at sensitive areas, and industrial
protection. For future research, the ability to analyze crowd behavior at the macro and
micro levels will generate valuable information to understand and manage crowd behavior.
The research on large-scale crowd object detection still needs further development. In a
dense crowd, it is not easy for the object detector to pinpoint the position where events
happen in video frames. Additional improvement in this aspect will produce an accurate
detection result. Most of the research has recently focused on supervised approaches while
monitoring the real environment produces large streams of unannotated data. Therefore,



Sensors 2022, 22, 6080 16 of 22

there is a need to improve the unsupervised real-time anomaly detection applications. New
research areas have been identified, especially related to the crowds during pandemics the
world is suffering.

Moreover, the use of adaptive deep networks is an advanced solution that utilizes real-
time data to detect the anomaly. Exploring and determining the specific type of abnormal
behavior for multiple people in the crowd under more diverse situations is another open
challenge. Another important aspect of most deep learning projects, specifically for anomaly
detection in crowds, is how to optimize and improve the model’s performance during
running time. This point opens another chance for achieving a competitive detection time
in the crowd. Further improvements are required for low resolution, illumination variation,
and occlusion in data. Finally, the researchers emphasize the importance of advancing the
topic quickly and appropriately.

14. Conclusions

Over the last decade, CCTV surveillance has become more prevalent in crowded
public places. This has led to more video data being produced than can be analyzed by an
individual. Therefore, automated systems are necessary for analyzing large volumes of
video streams in crowded areas to detect anomalies, ensure safety, and respond quickly.
This paper reviews the recent development of automated anomaly detection systems from
the perspective of computer vision. In addition, the taxonomic organization of existing
works in crowd analysis and anomaly detection has been introduced. Previous applications
provided great applications in detecting abnormal behavior. However, there is still a greater
necessity to obtain higher performance and greater accuracy in detecting anomalies in
crowded areas. Even though there have been numerous studies on detecting abnormal
human behavior, more research is still needed to address numerous issues. Crowd abnormal
behavior detection should be more accurate and robust against different situations in large-
scale and heterogeneous crowds. Using advanced technology in monitoring the crowd,
such as drones and satellites, will provide additional valuable insight.
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