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1. Introduction 

Methods of local approximations based on 
truncated Taylor series are well understood; 
several methods to compute bounds for the 
approximation errors are available (Christensen 
and Christensen, 2006), (Powell, 1981), 
(Shahriari, 2006). The use of Taylor 
approximations is convenient, among others, 
because methods to determine the 
approximation accuracy are well established. 
Taylor approximations are widely used in 
solving differential equations (Kloeden, Platen, 
1995), (Tachev, 2009), control applications 
(Hedjar et al., 2005), circuit modeling (Jridi 
and Alfalou, 2009), data processing, image 
generation, signal prediction (Hedjar et al., 
2005), and economic modeling (Judd, 1998). 

Another class of widely used and well 
understood approximation methods is based on 
piecewise polynomials, see for example (Powel, 
Chapter 18, p. 212). The use of piecewise 
polynomials approximations is convenient, 
because methods to determine the 
approximation accuracy are well established. 
Proving that some kind of fuzzy systemsare 
identical with the class of polynomials on a 
specified interval is important because 
polynomials constitute a core family of 
functions that stand at the basis of numerous 
mathematical constructs and applications.  

In addition, because Taylor approximations 
and piecewise polynomials approximations are 
so widely used, showing that some kind of 
fuzzy system may implement such 

approximating functions is both of intellectual 
and practical interest. 

It is well known that fuzzy logic systems (FLS) 
endowed with defuzzification perform a 
mapping from the input ܀௡ spaceto the output 
space, the latter being typically the real line R. 
When the fuzzy system has a single input 
taking values in R, the mapping performedis

RR  .The input-output functionsare also 

named characteristic functions.  

Recall that a Sugeno fuzzy system, also named 
TSK (standing for Takagi-Sugeno-Kang) or T-
S fuzzy system, of order zero, is defined by the 
input-output function  
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where Ris  are called singletons and 

]1,0[:  Ri  are the corresponding 
membership functions. In case of TSK systems 
with several inputs, each fuzzified 
independently, with max-type inference and 
weighted sum defuzzification, the output is  
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while for product-type inference the 
characteristic function is (Tanaka& Wang, 
2001), (Yu and Li, 2004), 
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with the membership functions related to the ith 
rule denoted by niih ..1,  , the index h 
denoting the hth input variable. TSK fuzzy 
systems of higher orders are defined in a 
similar way, but instead of conclusions 
represented by constants, they have polynomial 
conclusions. The rules describing a TSK 
system of order n have the form If input x is A, 

then output is )(xPn , where )(xPn  is a 
polynomial of order n. 

Bikdash (Bikdash, 1999), (Bikdash et al., 2001) 
have introduced and applied a modified Sugeno 
(TSK) systems, named Interpretable Sugeno 
Approximators (ISA), which use outputs in the 
form ݑ௞  ൌ  ܾ଴

௞  ൅ ܾଵ
௞ሺ ݔ െ ݎଵ

௞ሻ ൅ ܾଶ
௞ሺ ݔ െ ݎଶ

௞ሻ ൅
ڮ ൅ ܾ௡

௞ሺ ݔ െ ௡ݎ 
௞ሻ, “where ݎ௞  is the rule center, 

i.e., centers of the membershipfunctions of all 
inputs tested by the kth rule, […] and the 
coefficients ܾ  are interpreted as Taylor         
series coefficients.” 

One of the first papers to use neuro-fuzzy systems 
in relation to Taylor approximation was (Yu and 
Li, 2004). However, that approach endeavored 
only to approximate a Taylor approximating 
function, not to implement the Taylor 
approximant. Herera et al. (Herrera et al., 
2004)(Herrera et al., 2005a,b) analyzed TSK 
systems with second order polynomial 
consequent and connected them to Taylor 
approximations.(Wang, Li, Niemann, & Tanaka, 
2000) provided a detailed analysis of the TSK 
systems with linear consequent and their 
approximation power, for the general case. 
(Sonbol and Fadali 2002) and (Sonbol and Fadali, 
2006) also provided an interesting approach for 
Taylor-like approximation with TSK systems, 
which contains some of the ideas presented in this 
paper, while (Fadali, 2002) furthers the analysis 
for general polynomial approximations. 

We show that a constructive approach is 
possible that allows building a direct, true 
Taylor approximation using either a simpler 
neuro-fuzzy system or a modified TSK system. 
Also, bi-local approximations are introduced, 
as well as neuro-fuzzy systems for 
implementing them. A specific choice of the 
input membership functions allows us the 
direct implementation of the polynomial 
approximations, with zero-order TS systems, 
thus simplifying computations in the 
implementation of the approximators.  

For brevity, we discuss only the case of single 
input single output (SISO) FLS. Also, to keep 

the paper focused, we deal here only with 
Taylor mono- or bi-local approximations, but 
the methods presented herein are readily 
extensible to Tchebychev and to other 
polynomial approximations. These will be dealt 
with elsewhere. 

The flow of the paper is as follows. In the 
second section we introduce the linear 
combiner fuzzy neuron (LCFN) and the 
piecewise polynomial approximations using 
LCFNs. The piecewise Taylor approximant is 
derived as a particular case of the piecewise 
polynomial approximants. The notions of bi-
local approximation and piecewise 
approximant are defined in Section 3 in relation 
to representations of the approximant by fuzzy 
logic systems. The fourth section is devoted to 
a specific class of fuzzy systems able to 
implement Taylor approximants and bi-local 
approximants. The general outline of an 
algorithm for building Taylor-like 
approximations with fuzzy systems is presented 
in the fifth section. The final section is devoted 
to a general discussion and to conclusions. 

A preliminary, partial version of this paper was 
presented in (Teodorescu, 2010). 

2.  Polynomial Piecewise 
Approximations with Linear 
Combiner Fuzzy Neurons 

Our aim is to develop a local approximation of 

a function  CfRRf ,:  around a point 

0x , using fuzzy systems. For brevity, we chose 

00 x , ]1,1[ Cf . The Taylor series of f  

in 0 is denoted by   




0n

n
n xaxf , 

!/)0()( nfa n
n  .  

The piecewise approximation by the neuro-
fuzzy system around 00 x  will have two parts, 

one for 0x  and the other for 0x , both 
having the same value in 0x . First, we show 
how to obtain a fuzzy logic system (FLS) 
function with the characteristic of the form 

  nxbaxg  . Next, such systems are 
linearly combined in what we name a linear 
fuzzy neuron, to obtain a characteristic function 

of the form    


N

n

n
nxxh

0
, used in the 

approximation. The coefficients n  are then 
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equaled to the corresponding coefficients of the 
Taylor decomposition of f  by solving a 
system of equations in the weights of the linear 
combiner and the values of the singletons. 

Lemma 1. A Sugeno 0-order FLS can implement 

the local function   nxbaxg  on  1,0 . 

Recall that a 0-order Sugeno FLS is defined by 
the function  

       

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where Rsk   are the values of the singletons 

associated with the membership functions k  

and p  is the number of membership functions.  

The key idea for building the proposed 
approximators is to choose the input membership 
functions in complementary pairs, ሺ௞ଵ,௞ଶሻ , 
such that for every ݔ  in the definition domain 
௞ଵሺݔሻ ൅ ௞ଶሺݔሻ ൌ 1 , see Fig. 1.Moreover, 
௞ଵ,௞ଶ are expressed by the same power of x. 
The last condition insures that the denominator is 
a constant (not depending on x), while the 
nominator is a polynomial in x. For example, 

choose   ixx 1 on  1,0 ,   ixx  12  on 

 1,0 . Then,     121  xx  and  

   ii xsxsxg  121 ; thus, we obtain 

    ii xbassxsxg  212 , 

whereݏଵ, ଶݏ א  are the singletons associated to ܀
the membership functions ଵ,ଶ by rules as 

Rule 1: If input is ܣሚଵ, output is ݏଵ. 

Rule 2: If input is ܣሚଶ, output is ݏଶ. 

 

Figure 1. Plot of the complementary membership 
functions ݔ, 1 െ ,ଶݔ ,ݔ 1 െ ,ଷݔ ଶ, andݔ 1 െ  ଷ, usedݔ
as input membership functions in the TS systems 

Above, the fuzzy set ܣሚଵ  has the membership 
function denoted by  ଵ, while the fuzzy set  ܣሚଶ 
has the membership function ଶ. 

Consequently, a fuzzy logic system as above 
implements a natural power (ݔ௜, ݅ א  of the (ۼ
input, up to a constant. Polynomial Taylor 
expressions can be obtained by summing 
several such fuzzy systems.  

Subsequently, we use the notation NT  to 

denote the thN  order Taylor approximation of 
order n of a given function in 0x , 
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0, xNT to denote the approximation in 00 x , 

and 1NR  to denote the remainder of the Taylor 

series in 0x  for the thN  order approximation. 
Summarizing the above discussion: 

Proposition 1.  A linear combiner fuzzy neuron 

defined by 


N

i ii xfwxf
0

)()( , where if  

represents the characteristic function of the thi  
elementary fuzzy system in the neuron, 
implements the Taylor approximation of f  in 

0, for 0x , if the singletons and the weights 
satisfy the conditions (1), 
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or, in matrix form,   ASSW  21
T ,  

02 aT SW , with unknown column vectors 

1S , 2S , and W .  

Proof. In a basic description, the linear 
combiner computes the weighted sums from a 
set of fuzzy systems, each described by a 
couple of rules as 

Rule1௜: If input is ܣሚଵ௜, output is ݏଵ௜. 

Rule2௜: If input is ܣሚଶ௜, output is ݏଶ௜. 

where ሚଵ௜ܣ  corresponds to the membership 
function ଵ௜ሺݔሻ ൌ ௜ݔ  and ܣሚଵ௜  corresponds to 

the membership function ଶ௜ሺݔሻ ൌ 1 െ  .௜ݔ

The vectors 1S , 2S , and W may be seen as 
vectors of parameters of the fuzzy neuron. 

Notice that the sum 02 aT SW may be 
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interpreted as a bias and can be cancelled or 
modified with an external bias to the neuron. 
The true unknowns are 21 SSS  and W , and 

the system of equations reduces to ASW T , 

02 aT SW . 

Recall that the linear combiner has the equation 

 


m

j jj xwy
1

, where m  is the number of 

inputs jx  and jw  are called weights. Using 

N  FLS as in Lemma 1, with appropriately 
defined membership functions, Ni 0 , and 
weights applied to the outputs of the systems, 
we obtain: 
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Elementary computations lead to the conditions 
(1), proving the proposition. 

The system (1) is underdetermined, with linear 
independent equations, and has solutions 
because by choosing a set of values for the 
unknowns iw  and allowing for an external bias 

2SW  , the system becomes linear with exactly 

N  independent equations and N  unknowns, 

iii ssu 21  . The function  xg  so obtained is 

the thN  order Taylor approximation of f in 

଴ݔ ൌ 0,   




0n

n
n xaxf .  

Remark. By translation and scaling, the interval 
 1,0  can be replaced with any interval to fit 
the desired partition of the definition domain, 
according to the choice of membership 
functions, provided that the radius of 
convergence of the Taylor series remains larger 
than the scaled interval. When scaling, the 
convergence radius of the Taylor series has to 
be observed. 

Example. Approximate with two different 
linear combiner fuzzy neurons the function 

xxf sin)(  around 0x , for 0x , using a 
cubic approximant.  

The corresponding Taylor series is  
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02 ka . Choose the interval  1,0 and 3N .  

Then,   1121111  assw , 

  6/1332133  assw , and 

  00,20,10323121  sswswsw .  

Choosing 00 w , 11 w , we obtain 111 s , 

021 s , 113 s , 02123  ss , 6/13 w , 
which is the required truncated Taylor series. 
This case is rather trivial and against the 
current view in the fuzzy systems domain, as 
each fuzzy system is described by only one 
membership function on the interval  1,0 ,  
thus, it is described by a single rule. The 
solution is not unique. Choosing 00 w , 

31 w , we obtain 111 s , 021 s , 113 s , 

02123  ss , 6/13 w ,  

As this elementary example shows, the use of 
fuzzy systems brings nothing new to the 
solution of the problem of approximation with 
Taylor piecewise polynomials, except the 
demonstration of the fact that fuzzy systems are 
powerful enough to implement such 
approximations. Hence, the advantage of using 
fuzzy systems implementations of the 
piecewise Taylor approximants is justifiable at 
the algorithmic and technological level only.  

The use of piecewise Taylor approximant is 
counterintuitive from the standpoint of fuzzy 
systems practice, because the characteristic 
function will not behave in general as an 
interpolation function, as usually with fuzzy 
systems. That is, the characteristic function will 
pass through the approximation points but will 
not take the approximated function values in 
the points where the membership functions 
have value 1. To remedy this drawback, a 
modification of the Taylor approximants is 
needed, as discussed in the next section. 

3. Bi-local Approximants  

Next we assume for brevity that the functions 
f  and g  are real valued functions of a single 

real variable belonging to C . 

Definition 1. An approximant݃  of݂  is named 
bi-local of order ),( nm  in },{ 21 xx  if the value 

of the first m derivatives of g in 1x  equal the 
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corresponding derivatives of f in 1x  and if the 

first n derivatives of g in 2x  equal the 
corresponding derivatives of f in the same point,  

( ) ( )

1 1
( ) ( ), 1...k kg x f x k m= =  

and  (2) 

( ) ( )
2 2

( ) ( ), 1...h hg x f x h n= =  

The existence of bi-local approximants is 
guaranteed by the following construction. Let  
݃ be a polynomial of order 1 nm , 

 


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0
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k

k
k xxg . Choose the first m 

coefficients to represent the Taylor coefficients 
of f in 1x , thus ensuring that 

)()( 1
)(

1
)( xfxg kk  , mk ..1 . Rewrite g as 
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
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nm

k

k
k xxxg

0 2 )()( , with the first m 

coefficients predetermined by the Taylor 
approximation in 1x . Taking the derivative up 
to the order n and imposing the conditions that 
the derivatives have the required values in 2x , 

)()( 2
)(

2
)( xfxg hh  , nh ..1 , a system of 

independent linear equations is formed. 
Therefore the bi-local approximation exists. 
We denote the bi-local approximant of f by 

)( 1,, 21
xT fxx

nm . If ݃is the bi-local approximant 

as above, then the Taylor approximant of order 
m of f  in 1x  is 

),(

)(

1,,
,

0 10 11,

21

1

xT

xxaxT

fxx
nm

m

i

i
i

m

i

i
ifx



  

 

moreover 

).(

)(

2,,
,

0 20 22,

21

1

xT

xxbxT

fxx
nm

nm

i

i
i

n

i

i
ifx



  



 

A set of similar conditions are produced by the 
conditions on the values of the derivatives in 
the two points: 
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Bi-local approximations are useful because in 
general the intuitive fuzzy logic system concept 
assumes that at the limits of the intervals 
defining the supports of the membership 
functions, the characteristic function of the 
fuzzy logic system takes the desired values, 
moreover its derivative is continuous. In other 
words, fuzzy logic systems typically implement 
bi-local piecewise approximations of order 
(1,1) with continuous derivatives. Having the 
derivatives taking specified values may be 
useful in some applications. In that case, the 
characteristic function of the fuzzy logic 
system should implement a bi-local 
approximation of order (2,2) of the desired 
behavior (function). 

Example. Find a bi-local approximation of 
order (3,2) of the function 

)sin()(
2

xexf x   , used by Herrera 
(Herrera et al., 2005a,b) and by other authors to 
demonstrate the approximation capabilities of 
fuzzy logic approximants. The approximating 
points are 01 x and 12 x . Using 
Mathematica™, we find the Taylor expansions 
as 33

3,0 )6/()( xxxT  , respectively: 

)6/()1)(6((

/)1(2(/)1()(

33

2
3,1

ex

exexxT




,  

0)1()1( 3,1  Tf , eTf /)1(')1(' 3,1  . 

The graph of the approximated function is 
shown in Fig. 2. The required bi-local 
approximant has the form  

5
5

4
43,0 )()( xxxTxg  , or 

5
5

4
4

33 )6/()( xxxxxg  ,  

with conditions 0)1( g  and eg /)1('  . 
These conditions produce  

0)6/()1( 54
3 g and

eg /54)6/(3)1(' 54
3   

with solutions e/3/2 3
4   and 

e/6/2 3
5  .  
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Figure 2.The approximated function

)sin()(
2

xexf x    

 
Figure 3.Cubic Taylor approximation in 0 of the 

function )sin()(
2

xexf x  
 

ATaylor approximant is plot in Figure. 3. 
Figures 3 to 6 compare the results. 

 

 

Figure 4.Bi-local approximation in 0 and 1 of the 

function )sin()(
2

xexf x    

 

Figure 5.Two Taylor order 3 approximations in 0 
and in 1, and the bi-local approximation of order 

(3,2) in {0, 1}. 

The advantage of bilocal approximations with 
respect to piecewise Taylor approximations is 

easy to grasp: the latter is discontinuous. An 
example is shown in Fig. 6, where Taylor 
approximations on the partition ሾെ2, െ1.5ሿ ׫
ሾെ1.5, െ1ሿ ׫ ሾെ1, െ0.5ሿ ׫ ሾെ0.5,0ሿ  are 
compared with the graph of the function. The 
glitches (and lack of continuity) in -1.5 and 
especially in -1, -0.5 and 0 are apparent. 

 

Figure 6.Approximation by piecewise Taylor 
polynomials for the interval [-2, 0], for 

)sin()(
2

xexf x    

Proposition 2. The neuro-fuzzy system can 
implement bi-local Taylor approximations at 
both ends of the interval ]1,0[  simultaneously, 
provided that conditions (2) are satisfied. 

The proof is direct.  

Imposing the condition for neuro-fuzzy 

   
 




N

i

i
i

i
i

i N

xsxs
wxy

1

21 1
 

 
 
N

ssxs
w

ii
i

N

i i
2112

1


  

  






 


N

i

iiii
i N

ss
x

N

s
w

1

212 ii

i

xa  

we obtain 

 


N

i

i
i a

N

s
w

1 0
2 or 012 aNswi   

N

ss
w ii

i
21 

  

The next proposition provides a bound of the 
error of the bi-local approximation. 

Proposition 3. The maximal error max  of the 
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The proof is elementary. 

4. Taylor Approximations with 
Single Fuzzy Logic Systems 

Exact Taylor approximations can be obtained 
with a single fuzzy logic system as well, 
allowing a slight, somewhat counter-intuitive 
modification of the system, namely allowing 
several memberships functions with the same 
support. While usually membership functions 
have overlapping but not identical support, 
there is no reason to forbid the case when 
several membership functions have the same 
support. Then, define on the [0,1] interval the 
membership functions     xxx

A
 1~

1
, 

    xxx
A

 12~
2

,     3
3~

3
xxx

A
 , 

    3
4~ 1

4
xxx

A
 , … and define the TSK 

system by the rules  
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~
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122

~
sythenAisxIf  , 

123

~
sythenAisxIf  , 

224
~

sythenAisxIf  ,…  

The output is computed, as usually, as  

          xxssxy iiiiii 212211 /
. 

We name such a system modified TSK system.  

Proposition4. A single-input single output 
modified TSK system implements a Taylor 
approximation of order N provided that the 
conditions (3) are satisfied,  
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Equaling the output to the desired Taylor 

polynomial,   
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 the conditions required are  
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Example 3. Consider the case of Taylor 
approximation in 0x  of the function xsin , 
with a single FLS with membership functions 
defined on  1,0 . The relevant conditions are 


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Choose 1,0 1112  ss .  Then, the system has 

the remaining parameters 
6/1,0 3132  ss .Other solutions are 

possible, for example choose 
5.0,5.0 1211  ss  and obtain  

3/26/12/1,5.0 3132  ss . The input 

membership functions and the output singletons 
are sketched in Figure 7. 

Next, assume that we need a local 
approximation in 1. The relevant conditions are: 
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The values 2is  can be pre-fixed. To cover the 

case ݔ ൌ 1 , we need appropriate input 

0221 aasass iiiii 
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membership functions shifted from 0 to 1, as in 
Figure 8. 

 

 

Figure 8.Plot of the functions ݔ, 1 െ ,ଶݔ ,ݔ 1 െ  ,ଶݔ
and ݔଷ, 1 െ  ଷ, and of their translated versions, usedݔ

as input membership functions  

We can improve the fuzzy system 
implementation asking that the function f  is, 
at the same time, bi-local Taylor approximated 
in 0x  and in 1x . Denote the Taylor 
approximation of order N  in 1x  by: 
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Then, using  
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N

i
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1 012 ,  


N

i i bs
1 01 , 

021 aass iii  , 021 bbss iii  , which implies 

00 / abba ii  , that is the FLS approximation is 
valid only for functions having the Taylor 
approximations of order ܰ in 0 and in 1 identical, 
up to a multiplicative constant, in the coefficients. 

5. Greedy-like Algorithm for 
Building Approximations with 
Bi-local Approximants 

The algorithm for building the corresponding 
neuro-fuzzy system approximation consists in 
the following steps:  

Input: approximation interval ሾܿ଴, ௙ܿሿ , 
approximated function, maximal local error. 

Output: interval partition, approximating 
function (fuzzy system) 

Initialize ݄ ൌ 0 . Define step ∆  for interval 
length increment. Then, 

a. determine the desired partition of the 
interval domain;  

b. determine the Taylor approximants in the 
border points of the partition intervals;  

c. write the systems of equations (1) for the 
left and right neuro-fuzzy approximating 
polynomials;  

d. pre-determine an appropriate subset of 
unknowns and solve the system of equations. 

The details of the algorithm are as in the 
examples shown in the previous sections. 

6. Discussion and Conclusions 

The key ideas in this paper were i) the use of 
paired complementary membership functions 
that guarantee constant denominators of the 
characteristic functions of the TSK fuzzy 
systems; ii) the use of a linear combiner fuzzy 
neuron to split the problem of approximation 
into approximation by natural powers of the 
variable; iii) the use of an external bias to 
simplify computations and the choice of 
weights; iv) the definition of the notion of bi-
local polynomial approximation and its use in 
relation to the Taylor approximation, and v) the 
universal local approximation capabilities of 
the systems described.  

The theoretical usefulness of Taylor-like 
approximations consists in showing that the 
neuro-fuzzy systems described are universal 
local approximators in Taylor series sense. The 
linear combiner fuzzy neurons based on order 
zero Sugeno fuzzy systems are piecewise 
polynomial continuous approximators in the 
sense of (Powell, 1981, pp. 28-29). 

The results show that linear combiner fuzzy 
neurons are universal local approximators 
similar to truncated Taylor series, moreover are 
implementing continuous piecewise 
approximators. While the theoretical issues 
have been discussed only for the ሾ0,1ሿ interval, 
scaling and translation insures that any other 
interval can be used, provided that the interval 
is smaller than the radius of convergence of the 
Taylor series. 

The main computational issues related to the 
methods described reside in the complexity of 
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solving systems of linear equations and of 
finding the partition of the universe of 
discourse that ensures a specified 
approximation error. 

The two methods described in the precedent 
sections – one based on single fuzzy logic 
systems and the other based on neuro-fuzzy 
systems – may be applied to other types of 
families of polynomials (series), like 
Tchebychev polynomials. 
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