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Abstract

Taylor-Couette flow between rotating cylinders is a classical problem in fluid mechanics and has been

extensively studied in the case of two concentric circular cylinders. There have been relatively small

number of studies in complex-shaped cylinders with one or both cylinders rotating. In this paper,

we study the characteristics of Taylor cells in an elliptical outer cylinder with a rotating concentric

inner circular cylinder. We numerically solve the three-dimensional unsteady Navier-Stokes equations

assuming periodicity in the axial direction. We use a Fourier-spectral meshless discretization by in-

terpolating variables at scattered points using polyharmonic splines and appended polynomials. A

pressure-projection algorithm is used to advance the flow equations in time. Results are presented for

an ellipse of aspect ratio two and for several flow Reynolds numbers (Re = ωri(b− ri))/ν, where ω =

angular velocity [rad/s], ri = radius of inner cylinder, b = semi-minor axis, and ν = kinematic viscosity)

from subcritical to 300. Streamlines, contours of axial velocity, pressure, vorticity, and temperature are

presented along with surfaces of Q criterion. The flow is observed to be steady until Re = 300 and

unsteady at Re = 350.

1. Introduction

The Taylor-Couette flow [1–4] between two rotating concentric circular cylinders has been extensively

studied in literature since the early works of Mallock [1, 2], Couette [3], and Taylor [4]. Numerous

experimental and computational studies have been since conducted at Reynolds numbers that range

from subcritical to supercritical regimes, and to the turbulent regime. It has been well documented

that at modest Reynolds numbers, the initially two-dimensional flow between the concentric circular

cylinders bifurcates to a three-dimensional flow with pairs of toroidal vortices known as Taylor cells. As

the Reynolds number is increased, the steady Taylor cells transition to spiral vortices, unsteady chaotic

flow, and eventually to turbulence [5–9]. The widely studied geometry has been the two-dimensional

concentric cylinders configuration with narrow and wide gaps [10–16] in tall as well as short aspect ratio
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geometries [17–20]. Numerical simulations [21–25] and Particle Image Velocimetry studies [26, 27] have

provided detailed structure and transitions of these cells. A collage of fascinating flow patterns from

steady toroidal vortices to travelling waves, spiral wavy vortices, and mixed laminar/turbulent patches

have been observed. Coles [5] reported several different flow patterns for gap Reynolds number between

114 and 1600 including patches of laminar and turbulent regions in an alternating spiral pattern.

Andereck et al. [6] conducted experiments with varying combinations of both inner and outer cylinders

rotating and observed that the number of azimuthal wave modes increases for a counter-rotating outer

cylinder compared to a stationary outer cylinder. By increasing the rotational speeds of the inner

and outer cylinders, many flow regimes ranging from modulated wavy vortices to intermittent and

spiral turbulence, and a featureless turbulent flow at Re of 1000 were observed. Numerous practical

applications of the Taylor-Couette flow have been developed for particle separation [28–31], membrane

filtration [28, 32–35], desalination [36], and devices for chemical reaction engineering [37]. For continuous

operation of separation devices, the extended Taylor-Couette-Poiseuille flow [38–40] has been studied

extensively. Studies of heat transfer in Taylor-Couette flow have also been conducted with constant

temperature and constant heat flux boundary conditions [41–45].

While the most widely studied configuration has been the concentric cylinder geometry, geometrical

variations in the shapes of the cylinders provide a large and uncharted opportunity for exploring the

rich fluid physics and exploiting them for new device development. Geometrical variations to the

coaxial configuration may include change of the cross-sectional shapes of the inner and outer cylinders

(with uniformity in the axial direction), axial changes to the cross-sectional dimensions, and creation of

periodic disturbances to name a few. The widely studied cross-sectional shape is an eccentrically placed

inner circular cylinder which produces a non-axisymmetric base flow whose stability characteristics are

different from the concentric case. Such a configuration not only alters the base sub-critical flow but

also the super-critical states of the Taylor cells [46–49]. Krueger et al. [49] performed experiments to

determine the critical rotation rates for different values of eccentricity. As the eccentricity is increased, it

is found that the flow became more unstable, forming Taylor cells at earlier Reynolds numbers. A linear

stability analysis performed by Oikawa et al. [47] indicates that the subcritical flow becomes unstable

at lower Reynolds numbers as the eccentricity is increased. Rui-Xiu et al. [50] used the approach of

DiPrima and Stuart [10, 11, 12], DiPrima and Eagles [13], Stuart and Di Prima [14] to investigate the

linear stability of flow between the eccentric cylinders and found results in agreement with previous

studies. Stability of eccentric Taylor-Couette-Poiseuille flow was studied by Leclercq et al. [51, 52] using

a bipolar coordinate system.

In contrast to the amount of research conducted on the basic Taylor-Couette geometry, there have

been only a small number of studies of Taylor cells in other configurations. Sprague et al. [53], Sprague

and Weidman [54] considered a geometry in which the Taylor vortices are continuously tailored by
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changing both the inner and outer cylinder radii. In concentric spheres, with the inner sphere ro-

tating, Wimmer [55], Nakabayashi and Tsuchida [56, 57] showed the occurrence of Taylor vortices.

Subsequently Wimmer [58] extended the study to ellipsoids and coaxial cones. Denne and Wimmer

[59] observed that the Taylor vortices in coaxial cones have a different structure than the cylindrical

Taylor-Couette flow. Soos et al. [60] simulated the flow development in a mixer with a rotating lobed

inner cylinder inside a circular outer cylinder. They observed enhanced mixing in three- and four-lobed

configurations resulting from the cyclic squeezing and expansion of the Taylor cells. Snyder [8, 9, 61]

considered a square outer cylinder with a smooth inner circular cylinder and experimentally character-

ized the Taylor cells. A similar experiment with short cylinders was performed by Mullin and Lorenzen

[62] who found anomalous modes when the end wall boundary layers interacted with the Taylor cells.

Such anomalous cells were also observed by Benjamin and Mullin [63], and Lorenzen and Mullin [17]

at higher Reynolds numbers. One configuration where the inner rotating cylinder is ribbed was consid-

ered by Greidanus et al. [64]. They measured the drag and torque on the rotating cylinder and found a

reduction of 5.3% in drag at a turbulent Reynolds number of 4.7× 104. The ribs were placed vertically

along the circumference of the inner cylinder. The riblets were of small dimension and did not alter the

macroscopic features of the main Taylor vortices but contributed to reduction in the drag by the tur-

bulent boundary layer. Razzak et al. [65] considered axial bellows where the outer cylinders contained

waves of a certain amplitude and wavelength. The numerical study characterized the flow patterns, dis-

tributions of velocities and pressure within the bellow cavities at different Reynolds numbers. Recently,

Kumar [66] studied a geometry with the outer wall diffusing at a fixed angle. The three-dimensional

flow fields were computed for different diffuser angles and different Reynolds numbers. The structure

of the Taylor cells was documented in both steady and unsteady regimes. Other geometries where

the cross-section varies in the axial direction are cones and spheres [55–59]. A stability analysis of

flow between an outer non-circular cylinder and a coaxial inner cylinder was reported by Eagles and

Soundalgekar [67]. Another non-traditional geometry in which Taylor vortices have been investigated

is a “stadium” where two semi-circular end chambers are connected to a rectangular enclosure [68].

The present paper deals with a novel geometry in which we have not found any studies of the

structure and characteristics of Taylor vortices. The geometry is an elliptical cylinder inside which a

circular cylinder is placed concentrically. The inner cylinder is rotated while the outer one is stationary.

Such a geometry has applications to lubrication inside elliptical bearings [69–73]. The base flow in

an elliptical cylinder with a rotating inner cylinder is more complex than that in an eccentric circular

cylinder configuration because of the formation of corner vortices. Because of the larger gap along

the major axis of the ellipse, the circular motion created by the inner rotating cylinder drives another

set of counter-rotating vortices akin to the Moffatt vortices in shear driven cavities [74–81]. The two-

dimensional flow inside an ellipse with a rotating cylinder was recently investigated by us [82] using
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a high accuracy meshless solution procedure [83–86]. In [82], we reported the effects of Reynolds

number, aspect ratio of ellipse, and the eccentricity of placement of the inner cylinder on the flow and

pressure fields. The numerical algorithm and the flow were two-dimensional and did not capture any

three-dimensional vortices generated by instabilities of the base flow.

In this paper, we present results of a three-dimensional study performed with a recently developed

Fourier spectral meshless method. The Fourier spectral method assumes periodicity in the axial direc-

tion and solves the Navier-Stokes equations in Fourier space at scattered locations in the cross-stream

plane. We show the formation of Taylor vortices similar to those in circular cylinders with differences

arising due to the squeezing and expansion of the vortices as the flow passes through the major and

minor axes. Section 2 first briefly describes the numerical algorithm. Section 3 presents results of

validation and grid-independency tests. Results for concentric placement of the inner cylinder are given

in Section 4. A summary of major findings is given in Section 5.

2. Methodology

2.1. Flow Geometry and Equations Solved

The flow geometry studied is shown in Figure 1. An inner cylinder of radius ri rotates inside an

ellipse of the semi major axis a and semi minor axis b. In this study, the aspect ratio a/b is taken as

two, and the gap (b− ri) is taken to be equal to ri. Thus, the semi minor axis of the ellipse is twice the

inner cylinder radius. Non-dimensionally, we have taken the radius of the inner cylinder to be 0.5, and

the gap to be 0.5. The flow is considered periodic in the axial (z) direction, and the number of wave

numbers resolved in Fourier space is decided based on the energy decay with wave number. The flow

Reynolds number is defined as Re = ωri(b− ri)/ν, where ω is the speed of rotation (rad/s) of the inner

cylinder and ν is the fluid kinematic viscosity. The fluid is considered Newtonian, and the density and

viscosity are considered constant. The flow is considered to be incompressible.

Figure 1: The cross section of the model analysed in this study
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The walls of the cylinders are taken as non-penetrating and have no slip. For the heat transfer

computations, the inner wall is heated at a non-dimensional temperature of one, and the outer wall is

held at a non-dimensional temperature of zero. The three-dimensional time-dependent equations are

solved marching in time to determine the onset of unsteadiness of the flow with the Reynolds number.

The equations solved are

∂ui
∂xi

= 0; (1)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ∇2ui (2)

ρcp

(
∂T

∂t
+ uj

∂T

∂xj

)
= k∇2T + S (3)

where, µ is dynamic viscosity of fluid, ρ is the density of the fluid, T is the temperature, ui are

components of velocity, k is the thermal conductivity and S denotes the source term. Here the tensor

summation notation is used for the continuity equation and the advection terms. The steady state

is assumed when the differences in values at adjacent time steps have decreased below 10−5 non-

dimensional units. The torque and Nusselt number are also computed in time and compared between

time steps. The non-dimensional torque is computed as

τc = µriuθL (4)

where, uθ is the tangential velocity of the inner cylinder, ri is the radius of inner cylinder and L is the

length in the axial direction. The Nusselt number is computed using the relation

Nu =
2ri
kt

(
1

2πriL∆T

ˆ θ=2π

θ=0

ˆ z=L

z=0

[
kt
∂T

∂r
ri

]
dθdz

)
(5)

where kt is the thermal conductivity, and ∆T is the temperature difference between the inner and outer

cylinders.

2.2. Numerical Method

2.2.1. Spectral Decomposition

To implement the third dimention of the Cartesian space, a Fourier spectral method is used. Because

of periodicity, the governing variables, ψ(x, y, z, t), are first expressed in Fourier space by the expansion

(Fornberg [87], Canuto et al. [88]):

ψ (x, y, zl, t) =
k=N∑
k=−N

ψ̂k(x, y, t) exp (ikzl) , l = 0, 1, ..., 2N (6)

where, ψ̂k is a complex valued function corresponding to wave number k ranging from −N to N and

i2 = −1. ψ̂k can be represented with an inverse Fourier transform given as in eq. (7). ψ being a

real valued function (the field variables), the transform coefficient functions ψ̂k(x, y, t) are complex
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conjugates for positive and negative values of k.

ψ̂k(x, y, t) =
1

2N + 1

l=2N∑
l=0

ψ (x, y, zl, t) exp (−ikzl) , k = −N, ..., 0, ..., N (7)

The partial differential equations can be transformed to wave number space by computing each

derivative in the transformed space. For example, the partial differential equation

∂ψ

∂t
+

[
∂(uψ)

∂x
+
∂(vψ)

∂y
+
∂(wψ)

∂z

]
= Γ

[
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

]
+ S (8)

in transformed space becomes

∂ψ̂k
∂t

+

[
∂(̂uψ)k
∂x

+
∂(̂vψ)k
∂y

+ ik̂(wψ)k

]
= Γ

[
∂2ψ̂k
∂x2

+
∂2ψ̂k
∂y2

− k2ψ̂k

]
+ Ŝk (9)

where, [u, v, w] are components of velocity, Γ is diffusion coefficient and S is the source term.

For integrating the time-dependent Navier-Stokes equations, we use the popular fractional step

procedure [89] which consists of a momentum step, followed by a pressure computation step which

projects the momentum velocities to a divergence-free state. In our current work, we use an explicit

procedure to compute advection and diffusion fluxes. However, the pressure-projection step requires

solution of an implicit equation, and thus an iterative algorithm. The momentum step computes

intermediate values for the velocities by explicitly updating them in wave number space. Thus,

̂̃uk − ûnk
∆t

= −

[
∂ ̂(unun)k

∂x
+
∂ ̂(vnun)k

∂y
+ ik ̂(wnun)k

]
+ ν

[
∂2ûnk
∂x2

+
∂2ûnk
∂y2

− k2ûnk

]
(10)

̂̃vk − v̂nk
∆t

= −

[
∂ ̂(unvn)k

∂x
+
∂ ̂(vnvn)k

∂y
+ ik ̂(wnvn)k

]
+ ν

[
∂2v̂nk
∂x2

+
∂2v̂nk
∂y2

− k2v̂nk

]
(11)

̂̃wk − ŵnk
∆t

= −

[
∂ ̂(unwn)k

∂x
+
∂ ̂(vnwn)k

∂y
+ ik ̂(wnwn)k

]
+ ν

[
∂2ŵnk
∂x2

+
∂2ŵnk
∂y2

− k2ŵnk

]
(12)

The superscript n denotes values at previous time step. Note that the explicit time step is usually much

more restrictive than that of a semi-implicit or fully implicit algorithm. However, the explicit algorithm

is simpler to implement. Since these momentum velocities do not satisfy the continuity equation, a

pressure Poisson equation is solved to project the intermediate velocities to a divergence-free state. The

pressure Poisson equation in wave space is given by

∂2p̂n+1
k

∂x2
+
∂2p̂n+1

k

∂y2
− k2p̂n+1

k =
ρ

∆t

[
∂ ̂̃uk
∂x

+
∂ ̂̃vk
∂y

+ ik̂̃wk] (13)
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After the pressure Poisson equation is solved, the momentum velocities are corrected in wave space as

ûn+1
k = ̂̃uk − ∆t

ρ

∂p̂n+1
k

∂x

v̂n+1
k = ̂̃vk − ∆t

ρ

∂p̂n+1
k

∂y

ŵn+1
k = ̂̃wk − ∆t

ρ
ikp̂n+1

k

(14)

Once the velocities are updated in wave space, they are back-transformed to physical space for com-

putation of the next time step values. The temperature equation is subsequently solved with explicit

computation of the advection and diffusion terms. To compute the cross-stream derivatives ∂ψ
∂x

,∂ψ
∂y

, etc.

we use a meshless method that interpolates variables at scattered data using polyharmonic radial basis

functions (PHS-RBF). For complex geometries, it is common to use unstructured finite volume meth-

ods [90] or finite element methods. Here we use the meshless method for the flexibility and accuracy

it provides. We discretize the cross-section by a set of scattered points generated here as vertices of a

finite element grid, using the GMSH software [91]. The set of scattered points do not use any underlying

grid and are not connected by edges and elements.

The first step in the meshless method is to interpolate a variable between the scattered points. We

use a cloud based interpolation in which any variable at a base point is interpolated over a cloud of

neighbor points using the PHS-RBF. An arbitrary variable s(x) is interpolated as

s(x) =

q∑
i=1

λiφ(||x− xi||2) +
m∑
i=1

γiPi(x) (15)

where, φ(r) = r2a1+1, a1 ∈ N is the PHS-RBF, m is the number of monomials (Pi) upto a maximum

degree of l and (λi, γi) are q +m coefficients. We use a1 = 1 in this study. q equations are obtained by

collocating eq. (15) over the q cloud points. m additional equations required to close the linear system

are imposed as constraints on the polynomials [92]:

q∑
i=1

λiPj(xi) = 0 for 1 ≤ j ≤ m (16)

In a matrix vector form, we can write these equations as

 Φ P

P T 0

λ
γ

 =
[
A
]λ
γ

 =

s
0

 (17)

where, transpose is denoted by the superscript T , λ = [λ1, ..., λq]
T , γ = [γ1, ..., γm]T , s = [s(x1), ..., s(xq)]T

and 0 is the vector of zeros. Dimensions of the submatrices P and Φ are q×m and q× q respectively.

Let (l = 2) be the degree of appended polynomial, and let the dimension of the problem (d = 2),

there are m =
(
l+d
l

)
= 6 polynomial terms, given as [1, x, y, x2, xy, y2]. The differential operators can
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be obtained by differentiating the RBF and the polynomials.

L[s(x)] =

q∑
i=1

λiL[φ(||x− xi||2)] +
m∑
i=1

γiL[Pi(x)] (18)

Equation (18) applied to all the points in the domain leads to a rectangular matrix vector system given

by eq. (19).

L[s] =
[
L[Φ] L[P ]

]λ
γ

 (19)

where, L[P ] and L[Φ] are matrices of sizes q×m and q×q respectively. Substituting eq. (17) in eq. (19)

results in:

L[s] =

([
L[Φ] L[P ]

] [
A
]−1
)s

0

 =
[
B
]s

0


=
[
B1 B2

]s
0

 = [B1][s] + [B2][0] = [B1][s]

(20)

If the discrete values are known, the coefficients (λ, γ) can be evaluated and hence the function can

be evaluated at any arbitrary location within the interpolation zone. Or, if L[s] satisfies a governing

equation, the values of s(x) at any arbitrary location can be evaluated. In the present algorithm, the

intermediate momentum velocities are first computed in wave number space for all the cross-sectional

points and for all wave numbers. Since this is an explicit step, only updates are needed. The pressure

Poisson equation is then solved implicitly, also in wave number space. We use the BiCGSTAB algorithm

from the eigen library [93] to solve the implicit discrete pressure-Poisson equations for the required

wave numbers. After the velocities are updated to be divergence-free, they are transformed to physical

space, and a new time step is initiated. The time marching is continued until steady state or until the

prescribed time is reached. Application of this algorithm to the Taylor-Couette problem in an elliptic

outer cylinder are described in the next sections below. Further details of the meshless method for

two-dimensional problems can be found in [83, 84, 86, 94].

3. Validation and Grid Independency

The above-described numerical algorithm has been implemented in an open-source C++ code Mem-

Phys [95] and checked for correctness. The computer code was validated in a number of two-dimensional

flows which have only the zeroth wave number in the axial direction including the subcritical cylindrical

Couette flow as presented in fig. 2a. Subsequently, the code was verified to reproduce the axisymmetric

Taylor-Couette flow in a concentric annular gap. Comparisons of flow patterns and the torque on the

inner cylinder were made with data of Fasel and Booz [96]. The critical Reynolds number for the onset

of the Taylor vortices was also narrowed to the range of 68-70 (figs. 2b to 2d), which is in good agree-

ment with the value of 69.19 quoted by Fasel and Booz [96]. Figure 2b plots the averaged amplitudes

of x-velocity over the domain for the first four Fourier modes against Reynolds numbers between 60 to

8



100.

(a) (b)

(c)

(d)

Figure 2: Plots and contours for validating the code for subcritical and supercritical stages of Taylor Couette setup: a)
Comparison of analytical and numerical solution of cylindrical Couette flow data (subcritical stage) taken on a radius
length at an axial location of z = 0.5; b) Plots of four domain averaged amplitudes of x-velocity at several Reynolds
numbers. Transition of cylindrical Couette flow to Taylor Couette flow is seen to occur between Reynolds number of 68
and 70; c) Contours of axial velocity in the r − z plane near supercritical Reynolds number; and d) Non-dimensional
torque vs Reynolds number plot for circular Taylor Couette flow validated with Fasel and Booz [96]

Calculations of three-dimensional flow in an elliptical enclosure with a rotating inner cylinder were

then initiated by first determining the number of scattered points needed for accuracy, and the number of

wave modes needed in the axial direction to resolve the streamwise variations of field variables. These
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grid-independency calculations were performed at Re = 300, which is slightly below the Reynolds

number at which the flow is observed to become unsteady. We use three different sets of scattered

points in the cross-sectional plane. In the periodic direction, we consider twenty five modes (N = 25)

and study the energy content as a function of the wave number. The cross-sectional distributions of

scattered points (fig. 3) are characterized in terms of average point spacing between adajacent scattered

points. The energy content in each wave number is then plotted for the three velocities at eight discrete

locations (r = 0.6, 0.7, 0.8, 0.9 and θ = 0°, 90°). In fig. 4 we show here four representative plots of

the amplitudes of the velocities versus the streamwise wave number. It is seen that the medium point

spacing of 0.0158 gives values very close to those of ≈ 0.008. Also, the amplitude of the velocities

drops below 1.0e-5 for wave numbers greater than 15. We therefore conclude that the results with point

spacing of ≈ 0.0158 and 15 wave numbers are sufficiently accurate while computationally economical.

The flow is considered steady and converged when the time variations in the variables decrease and

stay below 1.0e-5.

Figure 3: Sample point distribution of 1874 points
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(a) (b)

(c) (d)

Figure 4: a) Amplitude of x velocity vs wave number at θ = 0° r = 0.7; b) Amplitude of z velocity vs wave number at
θ = 0° r = 0.7; c) Amplitude of x velocity vs wave number at θ = 0° r = 0.9; and d) Amplitude of z velocity vs wave
number at θ = 0° r = 0.9;

4. Results for Concentric Inner Cylinder

4.1. Torque and heat transfer rates

Figures 5a and 5b show the non-dimensional torque and Nusselt number as a function of the Reynolds

number. The non-dimensional torque and heat transfer are computed as given in eqs. (4) and (5). From

fig. 5a we observe that as expected the non-dimensional torque is constant for the subcritical Reynolds

numbers and suddenly increases nonlinearly with Reynolds number. In a similar manner, the Nusselt

number jumps when transition occurs to a Taylor-Couette flow from a base Couette flow. The base

two-dimensional flow was previously presented in [82] where several flow patterns are documented for

varying flow and geometric parameters. Both the Nusselt number and the non-dimensional torque have

a monotonic increasing trend with Reynolds number once transition to a supercritical state occurs.

The transition is seen to occur at a Reynolds number between 70 and 75, although in this study we

did not precisely determine its value. Figure 6 plots the amplitudes of the first five oscillatory modes

and the zeroth mode for the Reynolds numbers computed. It can be seen that the amplitudes of the

oscillatory modes suddenly jump to moderate values at Reynolds number between 70 and 75, consistent

with observations of torque and Nusselt number. The values of amplitude in the fig. 6 are not scaled.
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However to observe the bifurcation, the actual amplitudes are not required. We observe again that the

first bifurcation occurs at a Reynolds number between 70 and 75, transitioning from a Couette flow to

a Taylor-Couette flow.

(a) (b)

Figure 5: a) Plot of non-dimensional torque vs Reynolds number for the present case with elliptical outer cylinder in
comparison with simple Taylor Couette flow from Donnelly and Simon [97], and Fasel and Booz [96]; and b) Nusselt
number vs Reynolds number for the present case

4.2. Plots of streamlines

In figs. 7 to 10, we present the streamlines for progressively increasing Reynolds numbers from 70 to

300 (the flow is seen to be steady at all these Reynolds numbers). Below the critical Reynolds number,

the streamlines show an outward flow along the semi-major axis and an inward flow along the semi-

minor axis. This is due to the expansion and contraction of the flow as it squeezes into the smaller gap

and then expands to the larger cross-sectional area. The inward streamlines reflect a secondary vortex

formed by the shear of the primary rotating flow caused by the rotating cylinder. We observe the same

patterns for Re = 50, 60 and 70. The first Reynolds number where the Taylor vortices appear is 75,

although they may have developed at a slightly smaller Reynolds number. At Re = 75 and beyond, the

streamlines in the (r− z) plane show the formation of Taylor cells. As in the case of concentric circular

cylinders, a periodic pair of counter-rotating vortices is formed with a height equal to the width of the

smaller gap (at the minor axis). However, the vortices are no longer axisymmetric (as in the case of

circular cylinders), but expand and contract between the major and minor axes of the ellipse. It can

be seen that on the semi-major axis, the vortex occupies the entire gap with a vortex height of 0.5 and

a width of 1.0 units. In the direction of the minor axis however, the cell is more of a square shape with

width and height of 0.5. The expansion of the Taylor cells into the larger gap is evident from these

(r − z) plane plots.
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(a) (b)

(c)

Figure 6: Plots of amplitudes of first six Fourier modes averaged over the entire domain for the three velocity components
against Reynolds number: a) averaged amplitude of the x-velocity vs Reynolds number; b) averaged amplitude of the
y-velocity vs Reynolds number; c) averaged amplitude of the z-velocity vs Reynolds number

(a) (b)

Figure 7: Streamlines in a section along: a) the semi-major axis; b) the semi-minor axis; for Re = 70
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(a) (b)

Figure 8: Streamlines in a section along: a) the semi-major axis; b) the semi-minor axis; for Re = 75

(a) (b)

Figure 9: Streamlines in a section along: a) the semi-major axis; b) the semi-minor axis; for Re = 200

(a) (b)

Figure 10: Streamlines in a section along: a) the semi-major axis; b) the semi-minor axis; for Re = 300

4.3. Axial velocity distributions

4.3.1. Contours of axial velocity in r-z planes

Figures 11 and 12 show the contours of axial velocity in (r− z) planes cutting the major and minor

axes for four of the several Reynolds numbers computed. The plots reveal the same structure of the
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Taylor cells shown by the plots of streamlines but now indicate the magnitudes of the axial velocities.

The pair of vortices show the upward and downward motion of the flow. As seen earlier, there is no

axial flow at Reynolds number below 75. At Re = 75, we first notice the appearance of the Taylor cells.

This value of Reynolds number is close to the value also observed for concentric circular cylinders. We

notice that along the major axis, the center of the Taylor cells is located approximately at r = 0.95.

The downward axial flow traverses radially and reaches the outer wall and occupies the entire gap.

We see only one single Taylor cell which is elongated in the radial direction along the major axis. At

the outer wall, the radial flow turns upwards and flows to the inner wall. This pattern is the opposite

for the clockwise rotating cell. As the flow occupies the outer wall region, the axial velocities become

smaller because of the larger area for the flow. As the Reynolds number is increased, the Taylor cells

get somewhat distorted, and the centers of the cells move closer to the outer wall (r ≈ 1.1). The

cells continue to distort with increase in Reynolds number and at Re = 300, the flow transitions to a

complex structure. We observe that the flow is however still steady at this Reynolds number. Figure 12

shows the results for the plane cutting the minor axis of the ellipse. Here, the gap is 0.5 only and the

cell structure resembles the circular cylinder case. Even at Re = 300, the cells appear well-structured.

Note that the Reynolds number is defined by the gap at the minor axis, hence the Reynolds number

defined by the gap along the major axis will be three times larger. Hence the flow in the major axis

gap may have transitioned to some form of spiral vortices.

(a) Re = 70 (b) Re = 75

(c) Re = 200 (d) Re = 300

Figure 11: Contours of axial velocity in the plane along semi major axis of ellipse
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(a) Re = 70 (b) Re = 75 (c) Re = 200 (d) Re = 300

Figure 12: Contours of axial velocity in the plane along semi minor axis of ellipse

4.3.2. Contours of axial velocity in z-θ planes: r = 0.8

Figure 13 show the contours of axial velocity in the (z − θ) planes. We have arbitrarily selected a

radius of 0.8 (ri = 0.5, b = 1.0, and a = 2.0) and plot the contours of the axial velocity. For Re = 75,

the first Re considered in the super-critical region, we see alternate regions of positive and negative

velocities. This contrasts with horizontal bands throughout the θ space seen for the concentric circular

cylinder case. The alternate regions are due to the shift in the vortex centers as the Taylor cells move

from the major to the minor gaps. We have plotted the contours for r = 0.8, which corresponds to the

left of the vortex center in the major gap with upward (positive) velocity above z = 0.5 and negative

axial velocity below around z = 0.5. However, in the minor gap, the center of the vortex moves closer to

r = 0.75 (center of the gap) and therefore at r = 0.8, a downward flow in the upper region and a upward

flow in the region below is seen. It is still one single toroidal vortex with the toroid converging and

diverging between the major and minor gaps. Because we have considered a constant absolute radius,

we observe these alternating patterns. The same patterns are seen for Re = 100 (not shown here) and

for Re = 200. For Re = 300, the above pattern gets distorted with break-up of the cell structure. As

mentioned earlier, this may be a prelude to the onset of unsteadiness in the flow, although the flow at

Re = 300 converged to a steady state.
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(a) Re = 70 (b) Re = 75

(c) Re = 200 (d) Re = 300

Figure 13: Contours of z-velocity for different Reynolds numbers in a constant radius plane where radius, r = 0.8

4.3.3. Contours of axial velocity in r-θ planes

Figures 15a, 16a and 17a show contours of axial velocities in three constant z planes (r−θ) for Re =

75. As expected, the Taylor cells are mirror symmetric about the vertical plane, but are antisymmetric

about the horizontal plane. The plots for Re = 200 (figs. 15b, 16b and 17b) show similar features as for

Re = 75. However, we observe small amounts of distortion of the inner concentric flow, accompanied by

longer ‘tongues’ in the flow along the outer walls. With increase of Reynolds number to 300 (figs. 15c,

16c and 17c), the inner rotating flow gets further distorted with also changes in the outer tongues.

These distortions again point to the forthcoming unsteadiness in the flow beyond Re = 300. The flow

has also lost symmetry (mirror symmetry) about the vertical (horizontal) axes.

Figure 14: Contour of axial velocity for a subcritical Reynolds number of 70
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(a) Re = 75 (b) Re = 200

(c) Re = 300

Figure 15: Mid-section cutting through the center of Taylor cell rotating clockwise for supercritical stage

(a) Re = 75 (b) Re = 200

(c) Re = 300

Figure 16: Section between Taylor cells for supercritical stage
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(a) Re = 75 (b) Re = 200

(c) Re = 300

Figure 17: Mid-section cutting through the center of Taylor cell rotating counter clockwise for supercritical stage

4.3.4. Isosurfaces of axial velocity

Figures 18 and 19 present the isosurfaces of axial velocity for different supercritical Reynolds number.

The tubular structures are isosurfaces of axial velocity for two different velocities alternately being

+0.005 and −0.005 respectively. Two of them together constitutes on Taylor cell. The Taylor cells

appear to be shifting to a wavy structure as Reynolds number changes from 200 to 300. This is more

pronounced in the view on minor axis section as in fig. 19. There is a small pinching of the tubular

structures seen in fig. 18, as they cross the mid section. This is the location where the fluid exits

the small gap area where the pressure is higher. Fenstermacher et al. [7] has observed higher order

instabilities as the oscillations and twisting of Taylor vortex cells in simple Taylor Couette flow before

they transition to turbulence. The first transition from Taylor vortex is to the wavy vortex flow,

characterised by waviness in azimuthal direction. We observe twist and oscillations, characteristics of

wavy vortex flow, in the elliptical case as can be observed in fig. 19d for a Reynolds number of 300.

From here the flow becomes unsteady as the Reynolds number reaches 350. Turbulent cases are not

simulated in this study.
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(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 18: Isosurfaces of axial velocity for w = ±0.005 viewed from x− z plane (view on the major axis section of ellipse)

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 19: Isosurfaces of axial velocity for w = ±0.005 viewed from y− z plane (view on the minor axis section of ellipse)

4.4. Pressure distributions

4.4.1. Contours of pressure in r-z planes

At subcritical Reynolds numbers, the pressure distribution is primarily due to the rotational flow.

For the concentric Couette flow at subcritical Reynolds number, the distribution is axisymmetric and

one-dimensional. However, for the case of the elliptical outer cylinder, the pressure distribution is

non-axisymmetric and two-dimensional. As the Reynolds number increases to the supercritical value,

a three-dimensional pressure distribution consistent with the velocity distribution and the streamlines

evolves. Figures 20 and 21 show the pressure distributions in the (r−z) plane along the semi-major and

semi-minor axes, along with the velocity vectors. At subcritical Re = 70, the pressure varies only with

radius as there are no Taylor cells. When the Taylor cells form at Re = 75 and beyond, the pressure

on the inner cylinder distorts to increase at the dividing point between the lower and upper vortices.

The higher pressure moves the downward and upward moving flows radially towards the inner cylinder.

As shown for the axial-velocity contours, the pressure contours (and velocity vectors) become distorted

at Re = 300. Until such a Re, the flow in the semi-major (r − z) plane is very much well-structured.

The pressure distributions shown in the semi-minor (r − z) planes are comparatively well structured

even at Re = 300. The higher pressure occurs at z around 0.5 which is the junction of the upward and

downward flow.
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(a) Re = 70 (b) Re = 75

(c) Re = 200 (d) Re = 300

Figure 20: Pressure plots in the plane along semi major axis of ellipse

(a) Re = 70 (b) Re = 75 (c) Re = 200 (d) Re = 300

Figure 21: Pressure plots in the plane along semi minor axis of ellipse

4.4.2. Isosurfaces of pressure

Figures 22 and 23 show the isosurfaces of the pressure in two views for pressure magnitude of 0.01.

The surfaces of the pressure show the distortions due to the Taylor cells. The bellow like shape of the

isosurface indicate that there exists an alternating high pressure and low pressure regions along the

axis. High pressure region are observed at the sections in between the Taylor cells and low pressure at

the midsection of the Taylor cells. The formation of finger-like structures in the isosurfaces of pressure

in fig. 22 can be seen to form as the flow approaches the minor axis of ellipse. This region being the

shortest gap acts as a venturi to increase the speed of flow in between and as a result in the decrease

of pressure. The tips of these finger-like structures being at an axial section between the two counter
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rotating Taylor cells, the pressure is observed to reduce below a value of 0.01.At Re = 300 a slight

deformation in the structure is observed, where the surface seems to be slightly inclined to the axis

indicating formation of a spiral flow.

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 22: Isosurfaces of pressure for p = 0.01, viewed from x− z plane (view on the major axis section of ellipse)

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 23: Isosurfaces of pressure for p = 0.01, viewed from y − z plane (view on the minor axis section of ellipse)

4.5. Vorticity distributions

Vorticity, η, is defined as the curl of velocity vector (∇×u) with components in x, y, and z directions.

It measures the amount of rotation of a fluid element along the local axis. The magnitude of vorticity

vector measures the strength of the local rotation of the fluid. In the following subsections, contours of

vorticity magnitude in different planes and the isosurfaces of vorticity magnitude are presented.

4.5.1. Contours of vorticity magnitude in r-z planes

At subcritical Re, the vorticity is only due to motion in the x− y plane. Since the cross-section is

an ellipse, we see differences in distribution along major and minor axes. In figs. 24 and 25, we have

plotted the contours of vorticity magnitude in two r− z planes corresponding to major and minor axes.

At subcritical Re of 70, the vorticity is quite small. However, at Re = 75, due to the formation of

the Taylor cells, the vorticity near the inner wall (r = 0.5) increases due to the shear component ∂w
∂r

.

This vorticity incresase as the cells strengthen with Reynolds number. Although the cells rotate in

opposite direction, since we have plotted the magnitude, it is seen to be symmetric about z = 0.5. At

the top and bottom of the contours, we see ”fingers” of vorticity, which are a result of the flow turning
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at the corners of the Taylor cells. These increase with Reynolds number and at Re = 300, we see some

asymmetry probably due to the onset of spiral flow. We observe the same features in the minor gap,

but the fingers of vorticity are stronger at the bottom for Re = 300. This may be because the spiral

vortices in the major gap are realigning to be more axisymmetric in the minor gap.

(a) Re = 70 (b) Re = 75

(c) Re = 200 (d) Re = 300

Figure 24: Contours of vorticity magnitude in the plane along semi major axis of ellipse

(a) Re = 70 (b) Re = 75 (c) Re = 200 (d) Re = 300

Figure 25: Contours of vorticity magnitude in the plane along semi minor axis of ellipse

4.5.2. Isosurfaces of vorticity magnitude

More visual information can be obtained from surfaces of iso-vorticity in the major and minor gap

regions. We show surfaces of vorticity magnitude of 2.0 non-dimensional units. It can be seen that

vorticity is concentrated near the inner rotating cylinder and in the return flows from the inner and

outer cylinder. The slight tilt at Re = 300 is seen in the major gap with the vortices tilting upwards.
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The tilt of vorticity reinforce the same patterns seen for the pressure and axial velocity.

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 26: Isosurfaces of vorticity magnitude for η = 2.0, viewed from x − z plane (view on the major axis section of
ellipse)

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 27: Isosurfaces of vorticity magnitude for η = 2.0, viewed from y − z plane (view on the minor axis section of
ellipse)

4.6. Q criterion

Q criterion is a mathematical tool used in fluid dynamics to identify regions prone to turbulence.

A positive and high value of Q criterion, helps to visualise regions of high vorticity and shear, where

vortex stretching is dominant. These regions are more likely to be turbulent compared to a negative Q

criterion value indicating vortex compression. It is commonly used to visualise the location and extent

of turbulent regions in a fluid flow. The value of Q is defined as the second invariant of the velocity

gradient tensor given by:

Q =
1

2
(||Ω||2 − ||S||2) (21)

where S is the strain rate tensor given as S = 1
2

[(∂ui/∂xj) + (∂uj/∂xi)] and Ω is the rotation rate or

vorticity tensor given as Ω = 1
2

[(∂ui/∂xj)− (∂uj/∂xi)]

4.6.1. Isosurfaces of Q criterion

The Q criteria surfaces in figs. 28 and 29 indicate the tendency of flow to become turbulent. The

region where the flow is more prone to turbulence is the region between two counter rotating Taylor

cells. At Re = 300, where the wavy Taylor cells are formed, the Q surface is also tilted and wavy in
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nature. This actually indicates that the region between Taylor cells, where the axial velocity peaks, is

where the flow tends to be turbulent before any other portion of the flow regime.

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 28: Isosurfaces of Q = 1.0, viewed from x− z plane (view on the major axis section of ellipse)

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 29: Isosurfaces of Q = 1.0, viewed from y − z plane (view on the minor axis section of ellipse)

4.7. Temperature distributions

We finally present results of heat transfer from the inner wall. The inner wall is heated at a non-

dimensional temperature of 1.0 and the outer wall is maintained at T = 0. The heat transfer rates in

the form of the Nusselt number were earlier presented in fig. 5b.

4.7.1. Contours of temperature in r-z planes

The temperature contours for supercritical Reynolds number show the effect of fluid motion in the

Taylor cells. The hot fluid from the top and bottom circulations is carried from inner wall to the outer

wall and returns the colder fluid from outer wall to the inner cylinder. This is seen to increase with

Reynolds number as the strength of the circulation increases. The same pattern is seen in the minor

gap plane. Similar to all the other field variables that we have discussed, the contours shown in figs. 30

and 31 has a symmetry about the plane z = 0.5 for Reynolds number lesser than 300. The lose of

symmetry that we see at the Reynolds number of 300 is due to the wavy nature of Taylor cells at this

regime.
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(a) Re = 70 (b) Re = 75

(c) Re = 200 (d) Re = 300

Figure 30: Contours of temperature in the plane along semi major axis of ellipse

(a) Re = 70 (b) Re = 75 (c) Re = 200 (d) Re = 300

Figure 31: Contours of temperature in the plane along semi minor axis of ellipse

4.7.2. Isosurfaces of temperature

Isosurfaces of temperature are in the form of bellows for supercritical cases with Reynolds number

less than 300. Since temperature is solved as a scalar transport equation, it follows the fluid flow. i.e,

the bulge on the bellows occur at the region between the Taylor cells where it meets the outer cylinder,

since the flow is radially outward in this region. Similarly the trough of the bellow shape occurs at

the section between the Taylor cells where the flow is radially inward meeting the inner cylinder. The

surface for Re = 300 has the slanted nature as the Taylor cells have a spiral nature.
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(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 32: Isosurfaces of temperature for T = 0.1, viewed from x− z plane (view on the major axis section of ellipse)

(a) Re = 75 (b) Re = 100 (c) Re = 200 (d) Re = 300

Figure 33: Isosurfaces of temperature for T = 0.1, viewed from y − z plane (view on the minor axis section of ellipse)

5. Summary

In this paper, we have applied a novel Fourier-spectral meshless technique to study the development

and characteristics of Taylor cells in an ellipse (aspect ratio of 2) with an inner circular cylinder rotating

concentrically. The meshless technique solves the Navier-Stokes equations in Cartesian coordinates

at scattered locations using stencils derived through Radial Basis Function interpolations. We have

assumed periodicity in the axial direction, allowing a Fourier-spectral expansion along the axis of

the cylinders. The Navier-Stokes equations are first converted to the Fourier space and the resulting

equations for wave numbers are solved by the meshless method. The distributions of velocity, pressure,

temperature, and vorticity are presented for subcritical and supercritical regions. The torque on the

inner cylinder and the critical Reynolds number for formation of the Taylor cells are found to be

nearly the same as the concentric circular cylinder results in literature. However, the structure of

the Taylor cells is different in the ellipse because of the compression and expansion of the Taylor

vortices as they pass between the major and minor gaps. At low Reynolds numbers, the Taylor cells

are concentrically structured forming a square shape in the minor gaps and a rectangular shape in

the major gaps respectively, as a result of the stretch and squeeze between the gaps. However, these

structured cells slowly deform when the Reynolds number reaches 300, indicating a transition to a

wavy pattern. We present isosurfaces of the axial velocity, pressure, vorticity, and temperature which
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indicate the shape of the Taylor cells. These surfaces of iso-values appear consistent with the squeezing

and expansions of the cells between the gaps.
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