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The polar format algorithm (PFA) for spotlight synthetic

aperture radar (SAR) is based on a linear approximation for

the differential range to a scatterer. We derive a second-order

Taylor series approximation of the differential range. We provide

a simple and concise derivation of both the far-field linear

approximation of the differential range, which forms the basis

of the PFA, and the corresponding approximation limits based on

the second-order terms of the approximation.
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I. INTRODUCTION

The polar format algorithm (PFA) [1—3] has long
been a mainstay of spotlight synthetic aperture radar
(SAR) image formation. The key to the PFA is an
approximation commonly known as the far-field
assumption. This expression gives a linear estimate
for the phase of monostatic SAR phase history data.
By interpolating the collected frequency domain
data onto a uniformly sampled rectangular grid, the
far-field linear approximation allows matched filtering
of the sampled phase histories through the use of a
two-dimensional discrete Fourier transform (DFT),
thus admitting the use of fast Fourier transforms
(FFTs) and allowing image formation in O(N2 log2N)
operations.
In the work presented here, we develop a simple,

concise derivation of the far-field linear approximation
and the associated approximation limits. We describe
the monostatic SAR data collection geometry and
the quantity, known as differential range, which
arises from it. The first-order terms of the Taylor
expansion of differential range define the far-field
assumption. The limits that this linear approximation
imposes on the image scene size are determined by
the second-order terms of that same expansion.
Far-field approximations of the differential range

have been derived in several works: see e.g., [1—3].
However, in the context of the complex overall topic
being addressed, the beauty and simplicity of this
derivation is frequently difficult to extract. In addition,
the derived far-field assumption is used not only for
SAR image formation, but in other applications as
well. For example, SAR image exploitation techniques
for automatic target recognition often make use of
the far-field approximation when describing target
chips and full scenes in the phase history domain
(i.e., frequency space) [4—7, 9, 10]. We present a
simple and concise derivation of the Taylor expansion
of the differential range for a monostatic geometry.
From this expansion, we state the far-field assumption,
and we also derive the scene size limits imposed by
this linear phase approximation.

II. MONOSTATIC SAR DATA COLLECTION

We consider the monostatic SAR geometry shown
in Fig. 1. A scene to be imaged is centered at the
origin of the coordinate system. The combined
transmit and receive radar antenna platform moves
nominally in the +y-direction. The actual path of
the antenna platform is ra(¿) = (xa(¿),ya(¿ ),za(¿)).
The antenna platform measures its path while flying,
and the error in measuring that path is r̃a(¿ ) =
(x̃a(¿), ỹa(¿), z̃a(¿ )). A scatterer in the scene is located
at a point r0 = (x,y,z), near the scene origin. As
the antenna platform moves along its flight path, it
periodically transmits pulses of energy in the direction
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Fig. 1. Top view of x-y ground plane, monostatic SAR geometry.

of the scene center. Each transmitted pulse travels
from the transmitter to the scene of interest, where
it is reflected by any scatterers within the area of
illumination. This reflected energy disperses in all
directions, and some of this energy is observed back
at the antenna platform. The output of the receiver at a
given time ¿ is assumed to be band-limited frequency
domain samples of a pulse delayed by the round-trip
time to the target, written as

S(f,¿ ) = e¡j2¼f(2da0(¿)=c) (1)

where da0(¿) = kra(¿ )¡ r0(¿ )k is the distance from the
antenna platform to the scatterer. The receiver gates
its sampling in the time domain in such a way that
a scatterer at the scene center will have zero phase,
making the received signal

S(f,¿) = e¡j2¼f(2(da0(¿)¡da(¿))=c) (2)

where da(¿) = kra(¿ )+ r̃a(¿)k is the measured distance
from the antenna platform to the scene center. The
difference between the distances da0(¿ ) and da(¿) is
typically referred to as the differential range ¢R(¿ ).
We wish to obtain a linear approximation of this
quantity for use in the PFA. We then derive the
limitations imposed by discarding the higher order
terms.

III. TAYLOR EXPANSION OF DIFFERENTIAL RANGE

From (2), the differential range at time ¿ is

¢R(¿) = da0(¿ )¡ da(¿) (3)

where the distance between the antenna and a scatterer
in the scene is

da0 =
q
(xa¡ x)2 + (ya¡ y)2 + (za¡ z)2 (4)

and the measured distance to the scene origin is

da =
q
(xa+ x̃a)2 + (ya+ ỹa)2 + (za+ z̃a)2: (5)

For the remainder of this derivation, the time variable
¿ is suppressed. To obtain the Taylor expansion of
¢R, one may expand da0 with respect to the scatterer
location about the point (x,y,z) = (0,0,0), and may

expand da with respect to the measurement error
about the point (x̃a, ỹa, z̃a) = (0,0,0). The difference
between the constant terms of these expansions is
zero, implying ¢R(0) is zero. The first-order terms of
¢R with respect to the vector [x,y,z, x̃a, ỹa, z̃a]

T are
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ỹa=0
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(6)
which when evaluated gives

¢R(1) =
¡xa(x+ x̃a)¡ ya(y+ ỹa)¡ za(z+ z̃a)p

x2a + y2a + z2a
: (7)

By expressing the antenna location ra = (xa,ya,za) in
polar coordinates (ra,Áa,µa), (7) can be used to write
the far-field approximation

¢R ¼¡(x+ x̃a)cosÁa cosµa
¡ (y+ ỹa)sinÁa cosµa¡ (z+ z̃a)sinµa (8)

where xa = ra cosÁa cosµa, ya = ra sinÁa cosµa, and
za = ra sinµa. This estimate for ¢R is used to define
the PFA matched filter kernel

exp
·
¡ j 4¼f

c
(xcosÁa(¿)cosµa(¿ )+ y sinÁa(¿)cosµa(¿ )

+ z sinµa(¿))
¸

(9)

where the motion measurement errors have been set
to zero, and typically z is also set to zero in order to
form a ground plane image.
We next analyze the phase errors introduced

by using (9) to form images. To do so we need to
find the second-order terms of the Taylor expansion
of ¢R. The 6£ 6 Hessian matrix of ¢R is block
diagonal with respect to [x,y,z, x̃a, ỹa, z̃a]

T, with the
3£ 3 off-diagonal blocks equal to zero, thus implying
that

¢R(2) = d(2)a0 ¡ d(2)a (10)

where
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and
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(12)

IV. SCENE SIZE LIMITS FOR A MONOSTATIC
GEOMETRY

The PFA kernel in (9) is found by neglecting
higher order phase terms. The effect of this
approximation, typically referred to as the error
due to range curvature [1—3], may be characterized
by analyzing the second-order terms defined by
(10)—(12), which are assumed to be the dominant
sources of phase approximation errors [8]. By
examining the first neglected terms of the Taylor
expansion of ¢R, we remain consistent with the
accepted methodology established in [1—3]. Given the
similar forms of d(2)a0 and d

(2)
a , one may focus attention

on the effects of d(2)a0 and draw analagous conclusions
with respect to d(2)a .
We must first recall the time dependence of xa,

ya, and za. It was assumed in Section II that the
antenna platform travels strictly in the +y-direction,
such that the xa and za coordinates remain constant
across the aperture, while ya = va¿ varies linearly
with time. Furthermore, we now assume that ra is
sufficiently large at the aperture center such that ra
may be assumed to be constant with respect to time.
By applying these assumptions to (11), it can be seen
that d(2)a0 is comprised of terms which are constant,
linear, and quadratic with respect to slow time ¿ .
The constant and linear terms will introduce spatially
dependent distortions in the final image, such that

scatterers actually located at (x,y,z) will appear at
some (x0,y0,z0), but do not cause any blurring or loss
of resolution. Terms of d(2)a0 that are quadratically
dependent on time (which are those containing y2a )
will cause a spatially dependent defocus, or blurring,
of scatterers. The approximation limits for the far-field
assumption are typically determined by bounding the
amount of defocus experienced by scatterers on the
ground plane (z = 0). With z = 0, only the x2y2a=(2r

3
a )

term (with ya = va¿) depends quadratically on ¿ .
Equation (2) shows that the phase of a received

pulse as defined by the differential range is

©=¡2¼f 2¢R
c

(13)

and thus the defocusing phase error due to range
curvature is

©c =¡
4¼f
c

1
2
x2y2a
r3a
: (14)

One typically prefers to limit this phase error to no
more than §¼=2 at the maximum extents of the scene
x=§rmax and the maximum extents of the synthetic
aperture ya =§La=2, where La is the length of the
synthetic aperture. Limiting the magnitude of the
quadratic phase error to be less than ¼=2 typically
makes the phase errors introduced by the far-field
approximation insignificant relative to the errors
caused by interpolation errors and residual platform
motion measurement errors. Substituting in the
length of the synthetic aperture, and the wavelength
¸ in place of c=f, the inequality j©cj< ¼=2 may be
expressed as

¼

2
>
¼

2¸
r2maxL

2
a

r3a
: (15)

For the special case of broadside imaging, the
cross-range resolution of a SAR is approximately [2]

¢y =
ra¸

2La
: (16)

The inequality of (15) may therefore be rewritten as

¼

2
>
¼r2max¸

8¢2yra
(17)

which may then be rearranged to give

rmax < 2¢y

r
ra
¸

(18)

thus limiting the maximum radius of an image formed
by the PFA.
An identical restriction may be derived for the

approximation limits on (x̃a, ỹa, z̃a). However, as these
motion measurement errors are unknown, we have no
a priori means by which to limit them. Furthermore,
the phase errors introduced by these unknown motion
measurement errors will cause irreparable defocus to
an image long before the far-field approximation (8)
breaks down.
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V. CONCLUSIONS

We have described the monostatic SAR data
collection geometry and defined the differential range
of a scatterer. We then derived the second-order
Taylor expansion of the differential range. From this,
we highlighted the first-order linear approximation,
known as the far-field assumption, which is used to
define the matched filtering kernel of the PFA. Finally,
we analyzed the phase error introduced by using this
linear approximation, and thus determined limits on
the maximum size of scene that may be imaged using
the PFA.
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