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Abstract: A detailed comparison between Taylor model methods and other
tools for validated computations is provided. Basic elements of the Taylor
model (TM) methods are reviewed, beginning with the arithmetic for elemen-
tary operations and intrinsic functions. We discuss some of the fundamental
properties, including high approximation order and the ability to control the
dependency problem, and pointers to many of the more advanced TM tools are
provided. Aspects of the current implementation, and in particular the issue of
floating point error control, are discussed.

For the purpose of providing range enclosures, we compare with modern
versions of centered forms and mean value forms, as well as the direct com-
putation of remainder bounds by high-order interval automatic differentiation
and show the advantages of the TM methods.

We also compare with the so-called boundary arithmetic (BA) of Lanford,
Eckmann, Wittwer, Koch et al, which was developed to prove existence of fixed
points in several comparatively small systems, and the ultra-arithmetic (UA)
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developed by Kaucher, Miranker et al, which was developed for the treatment
of single variable ODEs and boundary value problems, as well as implicit equa-
tions. Both of these are not Taylor methods and do not provide high-order
enclosures, and they do not support intrinsics and advanced tools for range
bounding and ODE integration.

A summary of the comparison of the various methods including a table, as
well as an extensive list of references to relevant papers are given.

AMS Subject Classification: 65120, 65L06

Key Words: Taylor model methods, high approximation order, depen-
dency problem, centered forms, mean value forms, boundary arithmetic, ultra-
arithmetic

1. Introduction

The Taylor model (TM) methods were originally developed to solve a practical
problem from the field of nonlinear dynamics, namely providing range bounds
for normal form defect functions [17]. These functions are typically comprised
of (computer generated) code lists involving 10* to 10° terms and usually have
a large number of local extrema; to make matters worse, they exhibit a very
significant cancellation problem. The normal form defect functions themselves
are obtained from the high-order dependence of solutions of ODEs on initial
conditions. In various meetings and a large number of private discussions, the
authors posed this combined range bounding and integration problem to the in-
terval community as an interesting project. However, it was uniformly believed
that because of dependency problem in the normal form defect functions, the
dimensionality, and the need to determine high-order dependencies on initial
conditions in the ODE integration, the problem is intractable through any of
the tools known in the community. And indeed, the attempt to apply various
state of the art packages was not successful.

As a remedy to this problem, we developed the Taylor model approach as
an augmentation to earlier work on high-order multivariate automatic differ-
entiation and the differential algebraic methods to solve ODEs. Specifically,
final variables in a code list are expressed in terms of a high-order multivari-
ate floating point Taylor polynomial of initial variables, plus a remainder bound
accounting for the approximation error. Over suitably small domains, the poly-
nomial representation is naturally free of most of the dependency problem that
the underlying function may have had. At each node of the code list, the re-
mainder bound is calculated in parallel to the floating point coefficients. Since
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this only requires information about the current Taylor coefficients, its calcula-
tion itself is also free of much of the dependency problem of the original code
list. Details will become clear in the definition of the arithmetic and in the
various examples that will be provided.

For the purpose of motivation, consider the problem of studying the behav-
ior of the polynomial function

f(z) = —371.9362500 — 791.2465656 - & + 4044.944143 - 2
+978.1375167 - > — 16547.89280 - x* + 22140.72827 - z°
— 9326.549359 - 25 — 3518.536872 - 27 + 4782.532296 - 25
— 1281.479440 - 2% — 283.4435875 - 1% + 202.6270915 - 2!
—16.17913459 - 12 — 8.883039020 - '3 + 1.575580173 - 4
4 0.1245990848 - 25 — 0.03589148622 - ¢
—0.0001951095576 - 2'7 4 0.0002274682229 - z:® (1.1)

in a validated way over a sufficiently small range including the point x = 2.
Because of the large coefficients and the alternating signs, a treatment with
interval arithmetic, or more advanced tools like centered forms, will suffer from
significant overestimation because of the cancellation of terms. However, if
before evaluation of the function, the function is first re-expanded in powers of
(x — 2), it assumes the following form

f(x) = —. 1181179453 — 4.339394861 - (z — 2) — 23.05727974 - (z — 2)?
+14.04340823 - (z — 2)* + 316.6727626 - (x — 2)*
+ 583.1235424 - (z — 2)° — 157.0468495 - (z — 2)°
— 1261.784612 - (z — 2)7 — 858.7604751 - (z — 2)®
+271.5211596 - (z — 2)° + 454.2310790 - (z — 2)'°
4 107.4309653 - (z — 2) — 33.62710460 - (x — 2)'?
—18.29248130 - (z — 2)'% — 1.838912469 - (z — 2)™
+ 0.3548444855 - (x — 2) + 0.09668534124 - (v — 2)'°
4 0.007993746467 - (z — 2)'7 4 0.0002274682229 - (x — 2)'8

T —

o~ o~ o~ o~ o~ o~

For the sake of compactness, the coefficients are shown only to 10 digits. It is
apparent that now, an evaluation with a reasonably small interval including 2
will provide a much better result, since the contributions of the various higher
orders decrease in importance, and hence the dependency effect, which often
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leads to the dreadful increase of width of intervals during evaluation is reduced.
We forgo numerical details about dependency at this point, but refer to a later
discussion of the matter (see Figure 5), where the behavior of the function is
studied and analyzed in detail.

If it is desirable to limit the total amount of information, it is possible to
bound the terms beyond a certain order into an interval and henceforth deal
only with the lower order part and this interval. For example, if Pja(z — 2)
is the polynomial comprised of orders 0 through 12 of f and we are interested
in studying over the domain [1.9,2.1], then over this domain we can assert
f(x) € Pia(xr —2) +[-2-10712,2-107!2]. Even in this truncated form, we
can study much of the behavior of the function; for example, range bounding
will only incur an additional overestimation of about 107'2, and integration
can be done to that accuracy as well. So, we observe that the simple trick of
re-expanding around a suitable point greatly simplified the functional behavior
for the purpose of using validated methods.

Apparently the idea applies to any polynomial function, also in more than
one variables. It also easily generalizes to rational functions, since these can be
written as ordered pairs (P, Q) of polynomials that can be studied separately.
The ordered pairs can be added and multiplied in the obvious way.

The Taylor model methods introduced in [114], [115] and discussed below
capitalize on this obvious observation by representing any functional depen-
dency in terms of a (Taylor) polynomial of sufficiently high order, plus a small
interval bound capturing the parts of the function that deviate from the poly-
nomial. As such it is merely a validated extension of automatic differentiation
methods [63], [20], namely those of high order in many variables [11], [14], [61];
or in a more general context, the fact known to scientists of all backgrounds
that locally, smooth functions can be “well” represented by their Taylor expan-
sion. The only, but of course crucially important, augmentation lies in the fact
that we will rigorously quantify the meaning of “well”.

The remainder of the paper is structured as follows. First we present an
arithmetic that allows the computation of Taylor models for any computer rep-
resentable function expressed in terms of elementary binary operations and in-
trinsic functions. Subsequently, and more importantly, algorithms are reviewed
that allow to perform a variety of common analytical operations. These include
efficient range bounding for global optimization, integration of functions, ODEs,
DAEs, determining inverses, solutions of fixed point problems and of implicit
equations, and a variety of others. Subsequently, we will compare the behav-
ior of Taylor models (TM) with those a variety of other tools and approaches
for some of the typical applications. We will study the interval method (I),
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as well as the more advanced inclusion methods of the centered form (CF)
and the mean value form (MF). We also compare with various interval polyno-
mial methods, the foundations of which were already discussed by Moore [130].
Specifically, we study the method of interval automatic differentiation (IAD) to
compute a Taylor polynomial and a remainder bound, as well as the advanced
interval polynomial methods known as boundary arithmetic (BA) of Lanford,
Eckmann, Wittwer and Koch, as well as ultra-arithmetic (UA) by Kaucher and
Miranker et al. We conclude with a summary of the comparison of the various
methods.

2. Taylor Model Arithmetic

In the following we provide an overview about the various aspects of the Taylor
model approach. As we shall see in the development of the next sections, the
Taylor model method has the following fundamental properties:

1. The ability to provide enclosures of any function given by a finite computer
code list by a Taylor polynomial and a remainder bound with a sharpness
that scales with order (n + 1) of the width of the domain.

2. The ability to alleviate the dependency problem in the calculation.

3. The ability to scale favorable to higher dimensional problems
We begin with a review of the definitions of the basic operations.

Definition 1. (Taylor Model) Let f : D C RY — R be a function that
is (n + 1) times continuously partially differentiable on an open set containing
the domain D. Let zg be a point in D and P the n-th order Taylor polynomial
of f around xy. Let I be an interval such that

f(x) € P(x —xo)+ I for all z € D. (2.1)
Then we call the pair (P, ) an n-th order Taylor model of f around xg on D.

Apparently P+1 encloses f between two hypersurfaces on D. As a first step,
we develop methods to calculate Taylor models from those of smaller pieces.

Definition 2. (Addition and Multiplication of Taylor Models) Let T3 o =
(P12,112) be n-th order Taylor models around zy over the domain D. We
define

T1 +T2 = (Pl +P2,Il +I2)7
Ty - Ty = (Pr2, 12),
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where Pj.o is the part of the polynomial P; - P, up to order n and
Lo=B(P.)+ B(P) -Ia+B(P)-I1 + 11 - I,

where P, is the part of the polynomial P; - P, of orders (n+ 1) to 2n, and B(P)
denotes a bound of P on the domain D. We demand that B(P) is at least as
sharp as direct interval evaluation of P(x — xy) on D.

We note that in many cases, even tighter bounding of B(P) is possible.

Definition 3. (Intrinsic Functions of Taylor Models) Let T'= (P, I) be a
Taylor model of order n over the v-dimensional domain D = [a,b] around the
point zp. We define intrinsic functions for the Taylor models [114] by performing
various manipulations that will allow the computation of Taylor models for the
intrinsics from those of the arguments. In the following, let f(z) € P(z—xz¢)+1
be any function in the Taylor model, and let ¢y = f(z¢), and f be defined by
f(z) = f(z) — ¢;. Likewise we define P by P(z —x¢) = P(z — xo) — ¢y, so that
(P, ) is a Taylor model for f. For the various intrinsics, we proceed as follows.
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Exponential. We first write

exp(f(2) = exp (e + F(2) = expley) - exp (F(@)
—expler): {1+ Flo) + (P 4+

k
+(k i ] (F@)F+ exp (8- f(a:))} , (2.2)

where 0 < 6 < 1. Taking k& > n, the part
oy .
explep)- {14 ) + (@) + -+ (o))" |

is merely a polynomial of f, of which we can obtain the Taylor model via
Taylor model addition and multiplication. The remainder part of exp(f(x)),
the expression

exp(eq) - { g (o)™
1 _

b e e (0 f@))} . (23)

will be bounded by an interval. One first observes that since the Taylor poly-
nomial of f does not have a constant part, the (n + 1)-st through (k + 1)-st
powers of the Taylor model (P, I) of f will have vanishing polynomial part, and
thus so does the entire remainder part (2.3). The remainder bound interval for
the Lagrange remainder term

(k +1 myi (F@)* e (6 f(2))

exp(cy)

can be estimated because, for any z € D, P(x — 2¢) € B(P), and 0 < 6 < 1,
and so

z 5 k+1
(F(@)* exp (8- f(x) € (B(P) + 1)

xexp ([0,1] - (B(P)+1)). (2.4)

The evaluation of the “exp” term is mere standard interval arithmetic. In the

actual implementation, one may choose k = n for simplicity, but it is not a
priori clear which value of £ would yield the sharpest enclosures.
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Logarithm. Under the condition Vz € D, B(P(x — xo) + I) C (0,00), we
first write as follows

f(x f(x))? Fl(xr))k
log(f(x)) =logcy + fc(f) — %(f(c?c)) 4t (_1)k+1%%

e L (@) 1
O T (0 e )

Again, evaluating the first line is mere Taylor model addition and multiplication,
and the second line yields an interval contribution only, since the Taylor model
(P,I) of f, when raised to the (n 4 1)-st power, vanishes and produces no
polynomial part.

Multiplicative inverse. Under the condition Va € D, 0 ¢ B(P(x —xo) +
I), we write as follows:

L1 f@) (@) k(@)
@ o {1 . + z + (1) & }
ke (f@)R 1
+ (1) C?Q (1+0'ﬂquﬁ*T (2.6)

and again observe that, when evaluated in Taylor model arithmetic, the second
line merely yields an interval contribution.

Square root. Under the condition Vz € D, B(P(x — z¢) + I) C (0,00),
we first re-write the square root in the following way

m:@-{ulm) L (f@)

T 9192

2 ¢ 22 e

ko1 (2k = 3N (f(x))*
k12F c];

(2k — DI (f(x))**! !
+ (=1 e (k+ DR (140 f(a)/ep)?

+o (1)

and evaluate in Taylor model arithmetic, obtaining a pure interval contribution
from the remainder term.

Multiplicative inverse of square root. Under the condition Vz €
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D, B(P(x —z0)+ I) C (0,00), we rewrite the expression

11 {1_1f@L%$!U@D2

f) Ve 2 ¢ 22 &
2% — DI (F(a))*
Fooe (1 k!zk) ( (c’;)) }
4 (—1)FH 1 @k+DI (fa)r! )
Ve DRI (140 ) )

and evaluate in Taylor model arithmetic, obtaining a pure interval contribution
from the remainder term.

Sine. We use the addition theorem and power series expansion of the sine
function and obtain

sin((f(2)) = sin(ey) + cosey) - (@) — o sin(ey) - (F())?

—greostes) (@)™ g (T

where
—Jo if mod(k,4) =1,2,
J =
Jo else,
g — cos(cy +6 - f(x)) if k is even,
07 sin(cy +6- f(z)) else,
and evaluate in Taylor model arithmetic; the last term generates merely an

interval contribution.

Cosine. Similarly, we have

cos(f(x)) = cos(cy) = sin(cs) - f(z) = %COS(CJ”) (f(z))?
" %Sm(Cf) (F@)++ i LU

where

{ —Jop if mod(k,4) =0,1,
J =
Jo else,

sin(cy + 0 - f(x)) if k is even,

Jo cos(cy+ 0 - f(x)) else.

Il
—
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Hyperbolic sine. In a similar vein, we have

sinh(f () = sinh(c) + cosh(cs) - F(x) + g sinh(e) - (F(x))

T e

+ g coshiey) - (F@)+ - +
where

g cosh(cy + 0 - f(z)) if k is even,
~ | sinh(cy + 0 f(z)) else.

Hyperbolic cosine. We write

cosh(f(x)) = cosh(cy) + sinh(cy) - f(z) + % cosh(cy) - (f(x))?

" %Sinh@f) A(f@) -+ T i 1)!(f(a:))’”1 -,

where _
g sinh(cy +0 - f(x)) if k is even,
| cosh(cy +0- f(x)) else.

Arcsine. Under the condition Vo € D, B(P(z —x9)+ 1) C (—1,1), using
an addition formula for the arcsine, we re-write

arcsin(f(x)) = arcsin(cy) + arcsin (f(:z:) 4 /1= c?c —cp-y/1— (f(:z:))2> .
Utilizing that
g(x) = f(x) /1 —c? —cp- V1= (f(x))?

does not have a constant part, we have

2 2 g2
S0 + (9@ + 2 )

arcsin(g(z)) = g(z) +

where
arcsin’(a) = 1/@, arcsin”(a) = a/(1 — a?)%2,
arcsin(3)(a) =1+ 2a2)/(1 _ a2)5/2’
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A recursive formula for the higher order derivatives of arcsin
1
arcsin®**2) (q) = ﬁ{@k + Daarcsin®*(a) 4 k% arcsin® (a)}
—a

is useful [134]. Then, evaluating in Taylor model arithmetic yields the desired
result, where again the terms involving 6 only produce interval contributions.

Arccosine. Use arccos(f(z)) = w/2 — arcsin(f(x)).
Arctangent. Using an addition formula for the arctangent, we have

f@)—cy >

arctan(f(x)) = arctan(cy) 4 arctan <W

Utilizing that ~
f@)—¢  f)
1) =T e @ - v e f@

does not have a constant part, we obtain

arctan(g(z)) = g(x) — %(g(l‘))3 + é(g(l‘))g’ - %(9(1‘))7
o (gl

- cos® ! (arctan(f - g(x)) - sin ((k: +1)- (arctan(@ ~g(x)) +

))

Antiderivation. We note that a Taylor model for the integral with respect
to variable ¢ of a function f can be obtained from the Taylor model (P,I)
of the function by merely integrating the part P,_; of order up to n — 1 of
the polynomial, and bounding the n-th order into the new remainder bound.
Specifically, we have

oS

and proceed as usual.

7P, 1) = (/Ox Py 1(z)dz;, (B(P —Pu_1)+1)- (b; — ai)> . (2.7)

Thus, given a Taylor model for a function f, the Taylor model intrinsic
functions produce a Taylor models for the composition of the respective intrinsic
with f. Furthermore, we have the following result.

Theorem 1. (Taylor Model Scaling Theorem) Let f, g € C"*1(D) and
(Pt n, 1) and (P, 1, 1) be n-th order Taylor models for f and g around xp, on
xp+[—h,h|" C D. Let the remainder bounds Iy, and I, satisty I}, = O(h™+1)
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and I, = O(h"*1). Then the Taylor models (Pig,1f1gp) and (Pr.g,It.g1)
for the sum and products of f and g obtained via addition and multiplication
of Taylor models satisfy

Itign =0, and I1.,p, = O(R™11). (2.8)

Furthermore, let s be any of the intrinsic functions defined above, then the
Taylor model (Py(yy, Is(y),n) for s(f) obtained by the above definition satisfies

Ipyn = O(h"h). (2.9)

We say the Taylor model arithmetic has the (n + 1)-st order scaling property.

Proof. The proof for the binary operations follows directly from the def-
inition of the remainder bounds for the binaries. Similarly, the proof for the
intrinsics follows because all intrinsics are composed of binary operations as well
as an additional interval, the width of which scales at least with the (n + 1)-st
power of a bound B of a function that scales at least linearly with h. O

Remark 1. (High Order Scaling Property) The high order scaling prop-
erty of Taylor model arithmetic states that a given function f can be approxi-
mated by another function P (a polynomial) with an error that scales with high
order as the domain decreases. This approximation statement follows standard
mathematical practice. However, in the interval community it is customary to
study another related but different meaning of scaling: namely the behavior of
the overestimation of a given method to determine the range of a function. In
the conventional interval community, this scaling property is important because
intervals, including range intervals, play a leading role. In the world of Taylor
model algorithms, the use of intervals themselves is much reduced, since as a
general rule, expressions are kept in Taylor model form as much as possible,
for example to retain the ability to suppress dependency. Thus in general, the
high order scaling property as stated in the previous theorem is the relevant
one. This, however, applies only in a limited sense to the question of range
bounding; more about this matter below and in [122].

Having defined the intrinsics of Taylor model arithmetic as above, we can
summarize the main property of Taylor model arithmetic in the following the-
orem:

Theorem 2. (FTTMA, Fundamental Theorem of Taylor Model Arith-
metic) Let the function f : RV — RY be described by a multivariate Taylor
model Py + Iy over the domain D C R". Let the function g : RY — R be given
by a code list comprised of finitely many elementary operations and intrinsic
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Figure 1: Overestimation ¢ (left) and empirical approximation orders

(right) for the function sin?(f) + cos?(f), with f = exp(z + 1), in the
domain [-277,277].

functions, and let g be defined over the range of the Taylor model Py, +1y. Let
P + I be the Taylor model obtained by executing the code list for g, beginning
with the Taylor model P; + Iy. Then P + I is a Taylor model for g o f.

Furthermore, if the Taylor model of f has the (n+ 1)-st order scaling prop-
erty, so does the resulting Taylor model for g.

Proof. The proof follows by induction over the code list of g from the ele-
mentary properties of the Taylor model arithmetic. O

As an elementary example for the use of Taylor model arithmetic, we show
some results of a computation of the function sin?(exp(z+1))+cos?(exp(z+1)),
executed with an implementation of Taylor model arithmetic as discussed in the
next section. Of course the function is identical to 1, but the validated methods
cannot capitalize on this information; so this function can serve as a good
example to assess the tightness of various enclosure schemes. The left picture
in Figure 1 shows the result of the enclosure of the function by intervals, mean
value form, centered form, and the result of the Taylor model range bounding
algorithm for the domains [-277,277] for j = 1, ..., 7; more comparisons about
these methods and Taylor models follow below. Also shown in the right picture
are empirically computed approximation orders as a function of j. Indeed it
can be seen that the width of the computed higher order remainder intervals
scale with order (n 4 1) for Taylor models of order n, until near the floor of
machine precision, at which point rounding effects dominate.
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1084

Figure 2: Relative overestimation ¢ (left) and empirical approxima-
tion order (right) for the function 1/x with LDB range bounder in
24 [-277,277].

As a side note we also observe that in the representation of a function
through its Taylor model, it is apparent that some functions that can be rep-
resented exactly by intervals cannot be represented exactly by Taylor models;
a situation that also occurs with other advanced inclusion tools like centered
forms. As an example of this effect, we consider the function f(z) = 1/z. Fig-
ure 2 shows the behavior of the TM method of various orders in comparison
to the interval method and the centered form and mean value form for the do-
mains 2+[—277,277] for j = 1, ..., 7. Intervals represent the result exactly, while
Taylor models produce overestimation. However, for higher orders, the overes-
timation produced by Taylor models is significantly less than that produced by
centered forms, although it of course never reaches the accuracy of the interval
representation. For completeness we note that the bounding of the polynomial
part is here done with the LDB method [122]. The order of approximation is
shown on the right of the figure. Many more examples showing the behavior of
Taylor model methods can be found below.

3. Implementation of Taylor Model Arithmetic

In the following, we describe in detail the current implementation of Taylor
model arithmetic in Version 8.1 of the code COSY INFINITY . Since in the
Taylor model approach, the coefficients are floating point (FP) numbers, care
must be taken that the inaccuracies of conventional FP arithmetic are prop-
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erly accounted for. Algorithmically the methods are rather straightforward;
however for practical use of the methods, the more important question is that
of the soundness of the actual implementation. Besides the tests performed
in the development of the program, various other tests have been performed.
Corliss and Yu performed extensive tests of the COSY interval tools by porting
of COSY interval results to Maple in binary format and comparison with Maple
computations with nearly 1000 digits of accuracy. Several thousand cases that
are to be considered particularly difficult, as well as around 10° random tests
spanning all orders of magnitude of allowed domains of the intrinsics were per-
formed [36]. Independently, Revol performed around 10% random tests of the
interval arithmetic by comparison with a guaranteed precision library for ele-
mentary operations and intrinsic functions [159]. In addition, Revol proved the
soundness of the algorithms in the floating point coefficient treatment of the
Taylor model implementation and checked the actual coding [160].

Definition 4. (Admissible FP Arithmetic) We assume computation is
performed in a floating point environment supporting the four elementary op-
erations @, ®, ©, ©. We call the arithmetic admissible if there are two positive
constants denoted

€w: underflow threshold,
em: relative accuracy of elementary operations,

such that:

1. If the FP numbers a, b are such that a % b exceeds ¢, in magnitude, then
the product a * b differs from the floating point multiplication result a ® b
by not more than |a ® b| ® &,,.

2. The sum a + b of FP numbers a and b differs from the floating point
addition result a @ b by not more than max(|a|, |b|) ® &p,.

Definition 5. (Admissible Interval Arithmetic) We assume that besides
an admissible FP environment, there is an interval arithmetic environment of
four elementary operations @, ®, ©, @, as well as a set S of intrinsic functions.
We call the interval arithmetic admissible if for any two intervals [a1,b;] and
[ag, ba] of floating point numbers and any O) € {®, ®, ©, @} and corresponding
real operation o € {+, X, —, /}, we have

alar, b1] O [az, b2] D {z o ylz € [a1,b1], y € [az, b2]}, (3.1)

and furthermore, for any interval intrinsic §) € S representing the real function
s, we have

®([a, b)) > {s(x)[x & [a,b]}. (3.2)
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For the specific purposes of Taylor model arithmetic, some additional con-
siderations are necessary. First we note that combinatorial arguments show [17]
that the number of nonzero coefficients in a polynomial of order n in v variables
cannot exceed (n+wv)!/(n!-v!). Furthermore, as also shown in [17], the number of
multiplications necessary to determine all coefficients up to order n of the prod-
uct polynomial of two such polynomials cannot exceed (n + 2v)!/ (n!- (20)!).

Definition 6. (Taylor Model Arithmetic Constants) Let n and v be the
order and dimension of the Taylor model computation. Then we fix constants
denoted

g¢: cutoff threshold,
e: contribution bound,

such that:
1. &2 > ey
2.2>e>142-¢5-(n+20)!/(n!- (20)!)

We remark that in a conventional double precision floating point environ-
ment, typical values for the constants of the admissible FP arithmetic may be
eu = 10737 and ¢,, = 1071, The Taylor arithmetic cutoff threshold e, can be
chosen over a wide possible range, but since it is later used to control the num-
ber of coefficients actively retained in the Taylor model arithmetic, a value not
too far below &,,, such as . = 1072Y, is a good choice. Furthermore, for essen-
tially all practically conceivable casesof n and v, the choice e = 2 is satisfactory,
and this is the number used in our implementation.

Under the assumption of the above properties of the floating point arith-
metic, interval arithmetic, and the Taylor model arithmetic constants, we now
describe the algorithms for Taylor model arithmetic, which will lead to the
definition of admissible FP Taylor model arithmetic.

Storage. In the COSY implementation, a Taylor model T' of order n and
dimension v is represented by a collection of nonzero floating point coefficients
a;, as well as two coding integers n; 1 and n; 2 that contain unique information
allowing to identify the term to which the coefficient a; belongs. The coeffi-
cients are stored in an ordered list, sorted in increasing order first by size of
n; 1, and second, for each value of n; 1, by size of n; 2. For the purposes of our
discussion, the details about the meaning of the coding integers n; 1 and n;2
is immaterial; we merely note in passing that the efficiency of our implementa-
tion depends critically on them, and details can be found in [11]. There is also
other information stored in the Taylor model, in particular the information of
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the expansion point and the domain, as well as various intermediate bounds
that are useful for the necessary computation of range bounds; however, this
information is not critical for the further discussion. For simplicity of the sub-
sequent arguments, all coefficients are always stored normalized to the interval
[—1,1] with expansion point 0.

Only coefficients a; exceeding the cutoff threshold e. in magnitude, i.e.
satisfying |a;| > €., are retained. In many practical cases, this entails significant
savings in space and execution time; more on how the non-retained terms are
treated is described below. Since by requirement, €2 > &, the multiplication of
two retained coefficients can never lead to underflow. Besides the coefficients
and coding integers, each TM also contains an interval I composed of two
floating point numbers representing rigorous enclosures of the remainder bound.

Error collection. In the elementary operations of Taylor models, the
errors due to floating point arithmetic are accumulated in a floating point “tal-
lying variable” ¢ which in the end is used to increase the remainder bound
interval I by an interval of the form e ® €, ® [—t,t]. The factor e assures a safe
upper bound of all floating point errors of adding up the (positive) contribu-
tions to t. Accounting for the error through a single floating point variable ¢
with the factor e- e, “factored out” notably increases computational efficiency.
In addition, there is a “sweeping variable” s that will be used to absorb terms
that fall below the cutoff threshold €, and are thus not explicitly retained.

Scalar multiplication. The multiplication of a Taylor model T" with co-
efficients a;, coding integers (n; 1, n;2) and remainder bound interval I with a
floating point real number c is performed in the following manner. The tallying
variable ¢ and the sweeping variable s are initialized to zero. Going through
the list of terms in the Taylor polynomial, each floating point coefficient a;
is multiplied by the floating point number ¢ to yield the floating point result
by = a; ® c. The tallying variable ¢ is incremented by |bg|, accounting for the
roundoff error in the calculation of bg. If |bg| > ., the term will be included
in the resulting polynomial, and k will be incremented. If |by| < €., the sweep-
ing variable s is incremented by |by|. After all terms have been treated, the
total remainder bound of the result of the scalar multiplication is set to be
[, @ I D e®ey, ®[—t, t]e®[—s,s], which is performed in outward rounded
interval arithmetic.

Addition. Addition of two Taylor models T and 7@ with coefficients
az(l) and a§2), coding integers (ngll) , n£12)) and (n§21) , n§22)), and remainder bounds
1y, I, respectively, is performed similar to the merging of two ordered lists.
The pointers 7, j of the two lists and pointer of the merged list & are initialized
to 1. Then iteratively, the terms (n£11)7n£12)) and (n§21)7n§22)) are compared. In
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case (ng}l), n2(12)) # (ng?, n§22)), the term that should come first according to the

ordering is merely copied, and its pointer as well as k£ are incremented. In

case (nl(ll) , n2(12) ) = (ng? , n§22)), we proceed as follows. We determine the floating

point coefficient by = agl) @ a§-2). To account for the error, we increment ¢
by max(\agl)\, |a§2)|). If |bg| > e, the term will be included in the resulting
polynomial, and k will be incremented. If |by| < &, the sweeping variable s is
incremented by |bx|. Finally 4, j are incremented by one. After both the lists of
TM and T® are completely transversed, the remainder bound is determined
via interval arithmetic as I} ® [s @ e®e,, ®[—t, t|Be®[—s, s], which is performed
in outward rounded interval arithmetic.

Multiplication. The multiplication of two Taylor models T} and T3

) 2)

of order n with coefficients a; ’ and a;” and coding integers (ng’ll), n2(12) ) and

( 2 @

n;i, nj’Q), respectively, is performed as follows. The contributions I to the
remainder bound due to orders greater than n are computed using interval
arithmetic as outlined in [114]. Next, the terms of the polynomial T® are

sorted into pieces Tg ) of exact order m respectively. Then, each term in 7(})
with order k is multiplied with all those terms of T3 of order (n — k) or less.

For each one of the contributions, using the coding integers (ngll) ) n2(12) ) and

(n§21),n§22)), we determine the location [ of the product using the method de-

scribed in [11]. We determine the floating point product p = agl) ® a§-2) of the
coefficients. To account for the error, we increment ¢ by |p|. We add the term p
to the coefficient b;. To account for the error, we increment ¢ by max(|p|,|b;|).

After all monomial multiplications have been executed, all resulting total
coefficients b; of the product polynomial will be studied for sweeping. If |b;| > e,
the term will be included in the resulting polynomial, and [ will be incremented.
If |b| < e, the sweeping variable s is incremented by |b;|, but | will not be
incremented, i.e. the term is not retained. In the end, the remainder bound
I is incremented by e ® &, ® [—t,t] ® e ® [—s, s|] which is executed in outward
rounded interval arithmetic

Intrinsic Functions. All intrinsic functions can be expressed as linear
combinations of monomials of Taylor models, plus an interval remainder bound
I;, [114]. The coefficients are obtained via interval arithmetic, including el-
ementary interval operations and interval intrinsic functions. The necessary
scalar multiplications, additions, and multiplications are executed based on the
previous algorithms, and in the end the interval remainder bound I; is added
to the thus far accumulated remainder bound.

Remark 2. (Floating Point Versus Interval Coefficients) One may wonder
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why we are choosing to represent Taylor models via floating point coefficients
and then having to separately address floating point errors instead of merely
storing the coefficients as intervals. The main reason for this is performance.
Apparently the storage required is only approximately half of what would be
required with intervals, and so for the same amount of storage, the accuracy of
the representation can be increased; in the one dimensional case, this amounts to
twice the order as would be possible with interval coefficients! Also, the amount
of floating point arithmetic necessary to perform validated computations is
reduced by about a factor of two compared to an interval implementation.

The various algorithms just discussed form the basis of a computer imple-
mentation of Taylor model arithmetic:

Definition 7. (Admissible FP Taylor Model Arithmetic) We call a Taylor
model arithmetic admissible if it is based on an admissible FP and interval
arithmetic and it adheres to the algorithms for storage, scalar multiplication,
addition, multiplication, and intrinsic functions described above.

Remark 3. (FP Taylor Model Arithmetic in COSY INFINITY) The code
COSY INFINITY contains an admissible Taylor model arithmetic in arbitrary
order and in arbitrarily many variables. The code consists of around 50,000
lines of FORTRAN’ 77 source that also cross-compiles to standard C. It can
be used in the environment of the COSY language, as well as in F77 and C.
It is also available as classes in F90 and C++. The code is highly optimized
for performance in that any overhead for addressing of polynomial coefficients
amounts to less than 30 percent of the floating point arithmetic necessary for the
coefficient arithmetic [11]. It also has full sparsity support in that coefficients
below the cutoff threshold do not contribute to execution time and storage.

Remark 4. (Verification and Validation of the COSY FP Taylor Model
Arithmetic) The FP TM arithmetic implemented in COSY is currently being
verified and validated by two outside groups [36], [159] with a suite of chal-
lenging test problems. Independently, the validity of the algorithms forming
the core of the COSY Taylor model FP algorithm have been verified by Revol
[160].

4. Taylor Model Algorithms
The above algorithms for Taylor model arithmetic assure that also in a computer

environment subject to floating point errors, any computations using Taylor
models lead to rigorous enclosures, and we obtain the following result.
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Theorem 3. (Taylor Model Enclosure Theorem) Let the function f :
RY — RY be contained within Py+1y over the domain D C R". Let the function
g : R® — R be given by a code list comprised of finitely many elementary
operations and intrinsic functions, and let g be defined over the range of an
enclosure of Py, +1I;. Let P+ I be the result obtained by executing the code
list for g in admissible FP Taylor model arithmetic, beginning with the Taylor
model Py + I;. Then P + I is an enclosure for g o f over D.

Proof. The proof follows by induction over the code list of g from the ele-
mentary properties of the Taylor model arithmetic. O

Apparently the presence of the floating point errors entails that P is not
precisely the Taylor polynomial. In a similar fashion, also the scaling properties
of the remainder bound in a rigorous sense is lost. However, these properties
of Taylor models are retained in an approximate fashion.

Remark 5. (Influence of Floating Point Arithmetic) In the presence of
floating point errors, the polynomial P will be a floating point approximation of
the Taylor polynomial of g o f if P; was an approximate Taylor polynomial for
f. Furthermore, any (n+ 1)-st order scaling property for the remainder interval
will prevail approximately until near the floor of machine precision.

As an immediate consequence, we obtain the following:

Algorithm 1. (Range Bounding with Taylor Models)

Input: a finite code list involving elementary operations and intrinsics de-
scribing the function f over the multivariate domain box D.

Output: an enclosure of f in a Taylor model Pr+ 1, and an interval bound
B(f) for the range of f over D.

1. Set up a Taylor model 77 enclosing the identity function. This is com-
prised of the linear multivariate polynomial P(z) = x plus the remainder
bound [0, 0].

2. Evaluate the code list for f in Taylor model arithmetic. As a result,
obtain Pf + If.

3. Bound the range B(Py) of the polynomial Py, obtain a range bound B( f)
for f as B(f) = B(Pf) =+ If.

Apparently the sharpness of the range bounding depends on the method to
obtain the bound of the polynomial B(Py). It turns out that in many practi-
cal cases, even mere evaluation with intervals yields suitable results that are
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significantly sharper than what can be obtained with centered and mean value
forms. Furthermore, there are various ways to obtain sharper enclosures for
B(Py) that in many cases asymptotically lead to a scaling of the overall error
with order (n + 1) [122].

Another nearly immediate algorithm is the following.

Algorithm 2. (Quadrature with Taylor Models)

Input: a finite code list involving elementary operations and intrinsics de-
scribing the function f over the multivariate domain box D.

Output: an enclosure of [}, f the sharpness of which scales with order (n+1)
with D.

1. Set up a Taylor model T} enclosing the identity function. This is com-
prised of the linear multivariate polynomial P(z) = x plus the remainder
bound [0, 0].

2. Evaluate the code list for f in Taylor model arithmetic. As a result,
obtain P + I.

3. Integrate the polynomial by manipulation of coefficients to obtain a prim-
itive P! for P, and insert the endpoints of D into P to obtain the integral

Jp P.

4. Obtain an enclosure for [, f as [, f C [, P+ |D|- 1.

Various applications of the method are described in detail in [25]. It is
possible with relative ease to determine integrals in eight variables with Taylor
models of order 10, yielding a global sharpness that scales with order 10.

There are several other Taylor model algorithms that we briefly summarize
here; for full details, see the respective literature that is cited in each algorithm.

Algorithm 3. (Solving Implicit Equations with Taylor Models)

Input: an n-th order multivariate Taylor model.

Output: a domain box over which this Taylor model in invertible, as well
as an n-th order Taylor model enclosure for the inverse.

Described in detail in [21], [70], [69]. An example of the performance is
given below in Figure 13.

Algorithm 4. (Solving ODEs with Taylor Models)
Described in detail in [114], [24], [123].

Algorithm 5. (Solving implicit ODEs and DAEs with Taylor Models)
Described in detail in [69], as well as [72], [74].
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Algorithm 6. (Complex Arithmetic with Taylor Models)

To this end, merely represent the analytic function f by a pair of Taylor
models in two variables (x,y). Since each of the components of an analytic
function is itself infinitely often differentiable as a function of the real variables
x and y, the Taylor model method can be applied to them individually [147].
This yields enclosures in sets with a sharpness that scales with order (n + 1),
and alleviates the dependency problem.

In the following sections, comparisons with centered forms (CF) and mean
value forms (MF) for range bounding are performed, and comparisons with
interval automatic differentiation (IAD), boundary arithmetic (BA) and ultra-
arithmetic (UA) are given.

5. Centered and Mean Value Forms

It has recently been suggested that it would be useful to have a detailed compar-
ison between Taylor models and the centered form (CF) and mean value form
(MF) [129], [101], [158], [99], [2], [1], [133] for range bounding. Since the latter
two usually provide sharper enclosures than intervals and earlier comparisons
of Taylor models were mostly with intervals, it was suspected that for mere
range bounding, the performance of Taylor models would be rather similar to
CF and MF, which are known to have the quadratic approximation property. In
this section we attempt a comparison based on what we believe to be a limited
collection of meaningful examples. We compare with Taylor model methods of
various orders, and subsequent bounding schemes based on either naive interval
evaluation of the Taylor polynomial, or based on the linear dominated bounder
LDB [122]. To increase the demand on the LDB method, in all examples shown
no domain subdivisions as utilized in the various Bernstein-based schemes [135],
[136] are allowed. Apparently allowing subdivision before applying LDB would
increase the applicability of LDB to larger domains. We observe that overall,
Taylor models suppress dependency much better than centered forms and mean
value forms, resulting in frequently much sharper inclusions. Furthermore, in
many cases the LDB method leads to higher order enclosures of estimated
ranges.

All computations are performed using COSY for the Taylor models, while
intervals, centered forms, and slopes were evaluated using the implementation in
the INTLAB toolbox for Matlab, [168]. Specifically, we used INTLAB Version
3.1 under Matlab Version 6. We believe we have used the code in the proper
way, although documentation is somewhat terse; as the author puts it, “To be
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frankly, there is not much other documentation about INTLAB. In every rou-
tine, of course, the functionality is documented. Otherwise, we think INTLAB
code is much self-explaining”. However, we are less sure about whether our use
is near optimal; some of the multivariate centered form computations for the
normal form problem discussed below took 45 minutes of CPU time, while the
Taylor model evaluation of the same function even of order seven could be done
in about 20 seconds on the same machine.

We assess the behavior of various algorithms to bound functions with a
measure ¢ of relative overestimation [144],

estimated range)-(exact range
= (5.1)
7= (exact range) ’ '

We provide logarithmic plots of ¢ as a function of domain width for centered
forms (CF), mean value forms (MF), and Taylor models of various orders.
Usually, the domain we study has the form D = g+ [—277,277]. We also study
the behavior of the linear dominated bounder LDB [122], an enhancement to
the Taylor model bounding that often provides for sharper inclusions.

We will also determine empirical approximation orders (EAQO) by computing
the magnitude of the local slopes of ¢ in a logarithmic plot and adding 1,
ie. EAO = 1+ |d(log(q)) /d(log(|D]))|. With this definition, the interval
evaluation will commonly have EAO of 1, while centered forms and mean value
forms will have order 2. However, in case the function under consideration has
vanishing slope at the point of interest, ¢ will be reduced by 1 (or possibly
more) since the exact range width in the denominator then scales with the
second (or a higher) power of the domain width. We usually list the EAO
only until the floor of machine precision is reached. We frequently also list the
average empirical approximation order (AEAQ) for various methods, which is
obtained by averaging the EAO data for the given method over all choices of
the domain width.

For notational simplicity, in the following pictures, results obtained using
interval evaluation will be denoted by the symbol [J, reminiscent of an interval
box, while those obtained by the mean value form and centered form will be
denoted by the symbols V and A, reminiscent of a gradient and a difference
quotient, respectively. Taylor models will be identified by numbers correspond-
ing to their orders.

We begin our discussion with the study of a simple three dimensional ex-
ample function with modest dependency but overall rather innocent behavior
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studied in [114]. The function has the form

4 tan(3y)

6
3z +x 77(;78)

6 3y + 13)2

Yy ) +( y+13)
3z

5z tanh(0.9z)

N

and the function is defined for 0 < z < 8, y > 0, and z # 0. We study the
behavior on the domain interval boxes (2,1,1)+ [-277,277]3 and show the
results in Figure 3. As a function of j, we show log;((g) for interval evaluation,
centered and mean value form, as well as TM range bounding by mere interval
evaluation of the Taylor polynomial, and TM range bounding through LDB of
orders 3, 6, and 9. We also plot the EAO for both of these cases, and compute
the AEAO.

It can be seen that all Taylor model methods achieve enclosures that are
significantly sharper than CF and MF, showing the ability of the Taylor model
method to suppress whatever dependency there is in the function. Without
LDB, the approximation order of CF, MF and all TM methods is 2. CF uni-
formly provides slightly sharper enclosures as MF, as is frequently observed.
The first order Taylor model method behaves similar to CF, and is in fact
slightly superior. The higher order Taylor models, while still showing order
2 scaling, provide enclosures that is about 1 order of magnitude sharper than
those of CF.

With LDB, the approximation order of the Taylor model of order n increases
to (n+1), until the floor of machine precision is reached. At the most favorable
point, the sharpness of the 9-th order Taylor model method is about 11 orders
of magnitude higher than that of CF.

In order to study the behavior of the suppression of dependency in more
detail, let us study in the same domain the following function

fi(w,y,2) = — 120 — 22 — 72(1 + 2y)

— sinh (0.5 +

—20z(22 —5) + — 20y sin(3z), (5.2)

10

f2($7y7 Z) = fl(xvyvz) + Z(fl(xvyvz) - f1($7y7 Z)) ) (53)

J=1

which is obtained by repeatedly adding and subtracting the function, such that
for the actual function values we have fo(z,y,2) = fi(z,y, 2), but the code list
for fy exhibits a more pronounced cancellation problem. The results are shown
in Figure 4.
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Overall the behavior of the methods is similar to before; however, we observe
that now, the non-LDB Taylor model methods of orders 6 and 9 uniformly
provide a sharpness of enclosure that is around 2 orders of magnitude better
than those of CF. The third order Taylor model reaches this level only at j = 4.
This difference in sharpness is 10 times greater than in the previous example.
Apparently the TM method is affected very little by the fact that the function
is added and subtracted from itself 10 times. In fact, direct comparison of the
TM curves shows that the actual overestimation is very nearly the same as in
the previous example, while it increases by a factor of 10 for CF, MF, and first
order Taylor models.

As another example, we study a simple one-dimensional function which is
known to have a very significant dependency problem, the so-called Gritton
function from Gritton second problem in chemical engineering. This function
was already encountered in equation (1.1). For all subsequent computations,
we represent the function in Horner form, which reads

fa(x) = —371.9362500 + x - (—791.2465656 + x - (4044.944143
+ x - (978.1375167 + x - (—16547.89280 + z - (22140.72827
+ - (—9326.549359 + x - (—3518.536872 + = - (4782.532296
+ x - (—1281.479440 + x - (—283.4435875 + x - (202.6270915
+ - (—16.17913459 + x - (—8.883039020 + = - (1.575580173
+ x - (1245990848 + z - (—0.03589148622 + x - (—0.0001951095576
+ax-(

+(0.0002274682229))))))))))))))))))- (5:4)

We again evaluate using TM, CF, and MF, and intervals. We choose two
different expansion points, namely zg = 2, and also the point o = 1.4 where
the function fs is known to have very strong cancellation. Figure 5 and Figure
6 show the results for domains of the form zg + [-277,277].

It is seen that the TM method of order 1 behaves very similar to CF, while
higher order TMs suppress the dependency very efficiently. Different from the
previous example, the TM of order 3 initially does not reach the same level of
accuracy as those of orders 6 and 9, where the latter show a sharpness that
is about 4 orders of magnitude higher than that of CF. As the right hand
side shows, the LDB method begins to improve the sharpness from j7 = 3 for
the ninth order method, which then outperforms CF by about 12 orders of
magnitude.

At the expansion point g = 1.4, which is characterized by a very significant
dependency problem, sixth and ninth order TM without LDB outperforms CF
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by about 4 orders of magnitude, while using LDB now only brings and im-
provement from j = 5, and for j = 6, CF is outperformed by 12 orders of
magnitude.

As another challenging example we study a normal form defect function, an
example of the class of functions that originally led to the development of the
Taylor model methods. Details of the background of the functions and their
relevance to the study of dynamical systems can be found in [17]. The function
has the form

3 2
fa(z1, . 26) = Z (\/y%i—l +y3 — \/J’%i—l + 33%) )

=1
where §= B (132 (ﬁg(f))), (5.5)

and ]31, P, and ]33 are six-dimensional vectors of polynomials in six variables
of degrees ranging from around 5 to around 10. For our purposes, the relevant
properties of the function is that it has function values very near to zero, while
each of the polynomials ]31, P, and P can exhibit large coefficients. Since the
polynomials themselves have several thousand terms, there is thus a very pro-
nounced dependency problem. Furthermore, the dependency problem increases
more and and more for larger values of the arguments, and so the functions offer
a convenient way to study the behavior of bounding tools at various levels of
dependency. In the examples of our calculation, the polynomials ]31, P, and ]33
are of degree 5, and they are available at [22]; in this case, the degree of the
function fy(z1,..,x¢) is 250.

We again compare the performance of Taylor models with CF, MF, and
intervals. For technical reasons connected to the evaluation of the polynomials
in COSY, the order of computation had to be chosen at least as high as that of
the polynomials f_’;, and we picked orders 5, 6 and 7. In Figure 7, we show the
results for the domains D = 0.1 - (1 + [-277,2779])5. The non-LDB evaluation
with Taylor models yields a sharpness that is uniformly around 3 orders of
magnitude higher as that of CF. The LDB enhanced method starts similar to
the original method, and from j = 3 begins to improve the accuracy. For j =7,
the TM method of order 7 outperforms CF by around 14 orders of magnitude,
while the TM of order 5 outperforms CF by around 8 orders of magnitude. As
the plots of EAO shows, the non-LDB TMs asymptotically achieve 2-nd order,
while the LDB TM of order n achieves orders (n + 1) as expected.

The subsequent Figure 8 shows the results for domains D = 0.2 - (1 +
[~277,277])%; the results are overall worse, but the general behavior of the
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methods is roughly similar, except that LDB now only begins to provide an
improvement from j = 5.
As another example, we study a function recently investigated [135], [136]

(2

v 2
f5(2) = Z (v - <Z cos(xi)) + (1 — cos(x;)) — sin(azi)) .
i=1

=1

While appearing complicated, the function has the property that already for
moderately small domains, interval evaluation can frequently yield the exact
range enclosure, since the occurring trigonometric functions can be bounded
exactly and there is no dependency. On the other hand, CF, MF, and TM
do not have the ability to treat the trigonometric functions exactly, and will
in these cases necessarily perform worse than interval evaluation. We study
the function f5 for dimension v = 10 for the domains x; € 1.75 + [-277,277].
While the interval method performs well as expected, CF, MF and non-LDB
TM behave very similar, with the TM methods only showing a very marginal
advantage; this is attributed to the fact that the function has only a very
limited dependency problem, which prevents TM from providing any significant
advantage. The LDB TM, on the other hand, shows an increase in sharpness
from j = 1, leading to order (n 4 1) convergence. We should also note that
the execution time of the LDB bounding in the ten dimensional case lay in the
range of a small fraction of a second; in contrast to the (n+1)-st order bounder
for Taylor models proposed by Nataraj and Kotecha [135], [136], which for the
v = 6 problem is reported to require about one hour of execution time on a
similar computer.

As a last example in this section, we show results for a function that can
easily be studied by hand for the various methods under consideration, yet can
already illustrate many of the major points in question. We use an approxima-
tion of the function cos(z) by its power series of order 60; so

30 .2
i=0 ’

For the domain [0, 4], this power series represents the cos function to an ac-
curacy of better than 10715, which is sufficient for work in conventional double
precision. Although of course this is one of the worst ways to obtain validated
bounds for the cos function, this function is useful for comparisons of bounding
methods, because it has the following useful features:

1. Properties of the function are well known.
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Figure 7: ¢, EAO and AEAOQO for the 6D normal form deviation function
f4(%) in the domain 0.1 - (1 + [-277,277])%, without LDB (left), with

LDB (right).
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Figure 10: The behavior of fg (x) over the domain zg + [-273,273] at
the expansion points xg = /4, 7/4 + 7, 7/4 + 27, 7/4 + 3w, without
LDB (left), with LDB (right).

2. Dependency increases with x from very small to very large.

3. Periodicity allows the study of the same functional behavior with various
amounts of dependency.

4. Study at points with both non-stationary and stationary points is possible.

In Figure 10, we study the behavior over the domain xg + [-273,273] of
fixed width at the expansion points z¢o = 7/4 +0,7/4 + 7, 7/4 + 27, w/4 + 3.
While without LDB, the increase of sharpness of TM versus CF reaches around
3-4 orders of magnitude, with LDB this increases up to 13 orders of magnitude.

After providing various examples comparing the behavior of TM to other
bounding methods, we now come back to the statement of three fundamen-
tal properties about Taylor models that were mentioned in the beginning of
the section: the high-order scaling property, the alleviation of the dependency
problem, and the alleviation of the dimensional curse. The above examples
illustrate the behavior of the TM method with respect to these properties; we
summarize:

Remark 6. (High Order Scaling Property) TM methods of order n pro-
vide enclosures of the function, whose width scales with the (n + 1)-st order of
the domain width. In algorithms requiring extended calculations, this (n+1)-st
order scaling property can be maintained until the end. In algorithms requir-
ing range bounding, as in global optimization, advanced polynomial bounding
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schemes such as the LDB bounder can frequently provide range enclosure of
(n + 1)-st order sharpness.

Remark 7. (Alleviation of the Dependency Problem) Because the bulk of
the functional dependency is always represented by the polynomial part where
dependency in computation does not occur except due to the small errors due
to the floating point representation of the coefficients, TMs can suppress the
dependency problem very well. The advantage of the TM methods increase with
the complexity of the functional dependency. All examples show this property,
regardless of whether the final range bounding is done with LDB or not.

Remark 8. (Alleviation of the Dimensional Curse) In multivariate set-
tings, the use of Taylor models can often be particularly advantageous compared
to enclosure with less accurate methods. Suppose we are given a multivariate
function f with similar complexity in all dimensions that needs to be repre-
sented over an extended domain D with a certain sharpness. Suppose in each
dimension roughly k centered form evaluations are necessary to achieve the
same sharpness as a single Taylor model. As the above examples show, such
values of k can be large. The information necessary to represent the function is
roughly N¢ = kv compared to Ny = (n + v)!/n!/v! (see [17]). For a specific
conservative example case of k = 10 and n = 5, this leads to a size of the Taylor
model of Npps = (v +1)-...- (v+5)/5! ~ v /5!, while No = 10°. Already for
moderate values of v, we have Ny << N¢.

6. Remainder Bounds from Interval AD

The use of automatic differentiation (AD) methods [152], [63], [20], [62], [27]
for the computation of accurate derivatives from code lists has a history nearly
as long as that of interval analysis itself [129]. The topic also appears again in
[130], and also other enclosures by polynomials with interval coefficients along
the lines of the BA and UA methods below are discussed. In the interval frame-
work, the method can be used to provide enclosures for derivatives by merely
executing AD code with interval coefficients, where the initial interval has to
enclose the domain of interest for the derivatives. In our context, this interval
automatic differentiation (IAD) method allows to compute remainder bounds
of functions by using Taylor’s remainder formula, and rigorously bounding the
high-order partial derivatives that appear in the remainder term.

The floating point polynomial coefficients may be obtained in one of two
ways. Hither one may execute IAD using a narrow starting interval enclosing
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the expansion point, picking the center points of the resulting interval coeffi-
cients, and lumping the errors into the IAD remainder bound; or alternatively
one may execute Taylor model arithmetic over a narrow domain and add the
resulting TM remainder bound due to the floating point arithmetic into the
IAD remainder.

A practical inconvenience of this approach is that one has to perform two
independent executions of the code list, one with narrow intervals to obtain the
Taylor coefficients, and another one with wide intervals to obtain the remainder
bound. However, the major limitation of the method is that, different from the
Taylor model approach which can often alleviate the dependency problem of a
given function, this approach cannot alleviate dependency, but frequently even
has the tendency to enhance the dependency problem.

The reason for this behavior lies in the fact that the actual code list for
the derivative computation, which is evaluated with wide intervals making it
susceptible to dependency, contains all parts of the code of the function, plus the
additional code necessary to propagate derivatives. The length of the resulting
code list, and hence the potential for overestimation, apparently increases with
both order and dimensionality, and so the IAD method is thus expected to suffer
more and more just in the terrain, where the Taylor model method becomes
better and better. Besides, of course we also expect that the performance of
TAD suffers more if the code list itself becomes longer, just as any other interval
evaluation. On the other hand, in the case of the Taylor model computation,
the new contributions to the remainder bounds are always computed from the
Taylor expansion of the current intermediate variables in the code list, which
is not subject to dependency.

To illustrate the dependence of the effects on dimensionality, order, and
complexity, we study various example functions and compare the IAD remain-
der bounds and the TM remainder bounds. For completeness, it is also impor-
tant to note that the by virtue of the algorithms for TM arithmetic, the TM re-
mainder bounds include the floating point errors from the coefficient arithmetic.
On the other hand, the IAD remainder bounds are computed independent of
the floating point coefficients, and thus do not include those contributions. For
a very precise comparison and the situations, where remainder bounds become
very small, it would be necessary to somehow try to account for these effects,
but for study at hand, we forego this question.

We begin the study with the following example functions based on the
Gritton polynomial GG, which was already used for the function f3 in equation
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Figure 11: Ratio of the remainder interval width,
width(l;ap)/width(I7ps), for the Gritton function. Left: Dimen-
sionality dependence of f;. Right: Complexity dependence of fg.

(1.1).
Jo(@) =GR+ Y ),
fo@) =GRe+a+Y" (x-w).

In f7, more and more dimensions are added, while in fg, artificially more and
more complexity is created. Figure 11 shows the ratio of the width of the IAD
remainder bound and the TM remainder bound as a function of dimension.
The situation is shown for order 2, 4, 6 and 8. It can be seen that indeed,
an increase in dimension enhances the overestimation of the IAD remainder
bound. Similarly, increasing the complexity by enlarging m in fg leads to an
increase of the overestimation for the remainder bounds obtained via IAD.

In order to study a realistic and demanding example, we also investigate
the normal form defect function f; in equation (5.5). We again look at the
remainder bounds calculated by TAD and TMs of order 5, 6 and 7. The left
picture in Figure 12 shows the actual magnitude of the remainder bounds cal-
culated by both methods for the domain (0.2 +[—27,2 ])6 for various values
of j. We see that due to the complexity of the function, both methods have
large overestimation for j = 1. Around j = 3, the remainder bounds calculated
with TM fall below 1, while at this point, those calculated by TAD are still
near 1030, It is important to note that in the TM calculations, the remainder
bounds also absorb the errors of the polynomial coefficient arithmetic, which
ultimately puts a lower limit on their size. On the other hand, in the case of the
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Figure 12: Remainder intervals of the normal form function f;. Left:
Width. Right: width(I74p)/width(Iras). I7ar includes the bounds for
the floating point error of the polynomial coefficient part, which is not
included in IIAD-

IAD computation, these terms are not included because the polynomial part
is computed separately and not even known in our computation. So for small
domains and sharp enclosures, the IAD results are expected to be overly opti-
mistic. The right picture shows the ratio between the IAD remainder bound
and those obtained by TMs for orders 5 and 7. The ratio ranges from 102
to about 10%, and as expected, for higher orders, TMs show a more favorable
behavior.

Altogether it is apparent that while IAD can be used to obtain remainder
bounds with the high order scaling property, the dependency of the examples
makes the TM remainders overall much more favorable. For computations of
limited length and limited dependency, this may be of minor significance, but
its effects will become more and more dramatic for more complicated functional
dependencies. Furthermore, there are no dedicated algorithms for using Taylor
polynomials and IAD for global optimization, dependency suppression, or lim-
itations of the dimensional curse; there are also no algorithms for higher order
functional inversion. IAD in one variable has, however, been used successfully
for bounding the time stepping error in validated ODE integrators.

7. The Boundary Arithmetic of Lanford
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Eckmann, Wittwer, Koch et al

In this section we provide an overview of the methods of arithmetic on so-
called boundaries (BA) developed by Lanford, Eckmann, Wittwer and Koch
et al (see for example [106], [46], [47], [49], [50], [48], [92]) for the purpose of
proving several interesting theorems about fixed points of various functions.
In particular, the authors prove the Feigenbaum conjecture, as well as other
universality of area-preserving maps. Of these references, [47] and [49] are the
most detailed, and they both contain complete lists of the codes used to perform
the operations.

The method is based on performing addition, scalar multiplication, and
multiplication on sets of polynomials with interval coefficients and remain-
der bounds, the so-called boundaries. It applies fixed point theorem methods,
usually the contracting mapping principle, to solve questions of existence and
uniqueness of solutions of certain functional equations. To this end, the original
mathematical problems are carefully rephrased via coordinate transformations
and other manipulations by hand, and broken down into individual steps until
in the end they reach fixed point form f = A(f). The operators A in these
problems are usually rather simple with only around ten arithmetic operations
and up to two variables. In our opinion, this work has great appeal, because
it represents the first use of interval Taylor methods for theorem proving, and
because of the significance of the theorems that could be proved in this way. In
order to analyze some of the details, we begin with a definition of the structure
in question, which is taken from [47], p. 48f. With minor modifications, the
definition also appears in [49], p. 76f, and in more recent work [92].

Definition 8. (Boundary) Let D be the two dimensional unit disk on C?,
ie. D={z,y € C? |z| <1, |y| <1}, and let A be the set of analytic functions
on D with real Taylor coefficients with finite [y norm
| |1 defined via |3, .- fijxty L= >_i; | fij]. For a given positive integer n, let
v; ; for i+ j < n be intervals, let vy, v, € RT. The quantity v = {v; j, i+j < n,
vg, U}, called the boundary, determines a subset A(v) of functions, called the
ball associated with v, via

Aw) ={f €Al 3fij €vij,0<i+j<n, fg fr € Asuch that
fley)= Y figa'y + fo(e,y) + falw,y) with [fonl; < vgp, and
0<i+j<n

S G )
V(x,y) € D, ll_r)r(l) T I8 finite.
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Thus, A(v) is the set of functions of A that can be written as

f:P+fh+fga

where P is a polynomial with coefficients p; ; € v; ;, and f, is a higher order
function with norm bounded by v, and f; is a general function with norm
bounded by v,.

Compared to Taylor models, the polynomial coefficients are intervals. Fur-
thermore, there are two types of remainder terms vy, and v, of which vy, has the
higher order scaling property typical of Taylor models, while vy, often referred
to as the “general term”, does not have the higher order scaling property. In
later work (see for example [92]), v, is sometimes generalized to be of linear
approximation order.

Various arithmetic and operations are introduced for the boundaries. First,
there are addition @, scalar multiplication ®, and multiplication ® [47], and
later also division for polynomials with unity constant part (see [48], p. 154)
and what seems to be a general division tool, although documentation is terse
[49], p. 95. The algorithms of these is similar to those of Taylor models, except
that there are the two separate remainder terms v;, and v,. Furthermore, there
is a composition operation ©. Intrinsics do not exist except for the square root
[49], p. 96. There are also versions of “exp” and “log” that are only applicable
to the special case of polynomials with constant parts exactly equal to 0 and
1, respectively [49], p. 96f, which are apparently more straightforward than
those shown in (2.2), (2.5) for the general case. It is possible in principle to
construct enclosures for intrinsics via their power series representation and their
composition; but more about this approach below. Complete code lists of the
supported operations exits in [47] and [49], and a complete list of supported
operations is in [50], p. 463f.

The reason for the clear separation into two remainder terms v, and vy, is
that some of the operations in the BA method populate the non-higher order
vg remainder term, even if the argument(s) originally has(have) no such non-
higher order term. One example is the composition operation ®, the rules for
which are derived in detail in [47], p. 52ff; see also [48] p. 154. It is used
frequently in breaking the general problem into smaller pieces - see for example
[50], p. 457.

The reason for the phenomenon of loss of the high order is easily understood:
suppose we have two functions fi, fo € A of the form f; € P; + fj,;, where P
are interval polynomials, and fj, ; are the higher order terms with bounds vy, ;;
so we assume they have no general term. Then we have

(fio f2)(z,y) = Pi(Pa(z,y) + fu2(z,y) + fo1(Pe(z,y) + fr2(z,v)).
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The action of Py on P» + fj, 2 is merely executed via additions and multipli-
cations. However, examining the composition f5 1(Pe(z,y) + fr2(x,y)) as the
arguments decrease, we find

Tna(Pa(sz,5y) + frn2(sw,5y)) — fr,1(F2(0,0)) as s — 0.

However, unless P»(0,0) = 0, not much is known about this limit; it is of course
bounded by vy 1. So the limit as s — 0 does not in general vanish. Hence a
remainder term is generated that does not have the high order scaling property,
which leads to a v, for the composition. For details in their own notation, see
for example [47], p. 52 and p. 105f, as well as [49], p. 91.

There are other operations that do not have the high-order scaling prop-
erty, in particular the Dilate-Translate operation, and the direct use of in-
trinsics through their elementary power series. But perhaps most importantly,
the inclusion of functions by virtue of the fixed point argument, which is the
backbone of all proofs, also does not provide for higher order enclosures, but
populates the general remainder bound v,. A more detailed analysis for this
will be provided below.

The fact that the methods are not of high order is usually not of concern
for the problems addressed by Lanford, Eckmann, Wittwer and Koch, mostly
because the functions f are very simple, and the presence of v, has only very
limited possibility of affecting performance. Furthermore, sharpness is of al-
most no significance since the questions are connected to existence of solutions,
and not very much on their bounding. Furthermore, the v, that results from
the enclosure of the fixed point theorem is often of not much consequence, since
usually the proof is completed once enclosure is shown, and no further work
is necessary. This is in sharp contrast to some of the uses of fixed point argu-
ments in the Taylor model framework, for example in the time step for ODE
integration [24], [123], or for the solution of implicit equations necessary for
DAE solvers [72], [71], [74], where there are usually hundreds if not thousands
of such operations following each other, and great care must be taken to retain
optimal sharpness.

Let us study in more detail the central tool to provide the existence proofs
in the work of the authors is the following algorithm (see for example [47], p.
3, [49], p. 51, [92], p. 22), which in slight variations can be found in most of
their papers.

Algorithm 7. (Existence proof by Lanford, Eckmann, Wittwer, Koch)

1. Write the mathematical problem as an at most two dimensional fixed
point problem A(f) = f over the domain [—1,1] by using operations
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supported by the arithmetic, including addition, scalar multiplication,
multiplication, division, composition.

2. Provide an approximate polynomial solution by iteration. Begin with
some Py, say Py = 0, and iterate until a sufficiently good approximate
solution P, is found (in practice typically around 20 to 30 times).

3. By hand and trial and error, inflate individual coefficient intervals of P,
and/or the two remainder bounds v, and v, until it is possible to show
that the gradient function v f has norm bounded by a ¢ less than one on
the inflated set. By the contracting mapping principle, this asserts that
a fixed point is included in the boundary {v;,vq,vp}.

First let us study the determination of the approximate fixed point by
iteration, which is discussed for example in [47], p. 22, [92], p. 23. First we
observe that iterating P, further usually leads to different coefficients in P, 1.
Thus, the Taylor polynomial P* of the fixed point does in general not agree
with P,,, unless by coincidence the polynomial iteration converges in finitely
many steps. However, this entails that the boundary containing the fixed point
must at least contain both P,, around which the boundary is placed, and the
fixed point P*. Estimates for this distance directly from the contraction factor
and the difference P, — P, follow from standard arguments in Banach fixed
point theory, and are applied in various places in the work of the authors; see
for example [92]. Since usually these polynomials will already disagree in lower
order, the boundary around F,, containing the fixed point will necessarily have
vg # 0, or wide intervals for the lower order coefficients, which amounts to the
same.

We remark that it is possible to also provide an alternative approach for
the theorem proving work along the lines of employing Schauder’s fixed point
theorem instead of the Banach contracting mapping principle; this is also the
approach followed by Kaucher and Miranker in the work on ultra-arithmetic
discussed below. To this end, one would have to construct a subfamily of func-
tions in the boundary that is compact and convex, similar to what is done for
the fixed point arguments we use in each time step of the Taylor model validated
integrator [24], [114]. Compactness and convexity can usually be achieved along
the lines of standard arguments in functional analysis by considering classes of
suitable Lipschitz functions and employing the Ascoli-Arzela theorem (see for
example [24]). Whether, or not this approach is indeed applicable needs to be
studied on a case-by-case basis. This approach is also followed in the approach
by Kaucher and Miranker discussed in the following section.
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To give an example for the performance of the method for the solution of a
fixed point problem, we study the operator O(f) = (g — f* — 1)/2, which has
a fixed point f = /g — 1 and can thus be used to find an enclosure for the
root function. We study the behavior for the cases g1 =2+ z and go = 3 + .
For simplicity we employ the Schauder version of the fixed point theorem; the
restriction to a suitable class of Lipschitz functions can be done by establishing
a crude a priori bound on the norm of the fixed point operator for the domain
in which we want to apply it.

In its original form, this task lies outside of what can be done with the strict
definition of the arithmetic, which assumes that all arguments lie in [—1,1].
However, it is obvious that with a suitable scaling, the problem can be re-
phrased in the proper form - a technique often employed by the authors in the
stage of mathematical and analytic manipulation preceding the actual proof
attempt. Beginning iteration with P, = 0, we iterate the polynomial part
for n = 20 iterations, and then try to obtain an enclosure of the solution by
selecting a remainder bound I such that A(P, 4+ I) C P, + I over the domain
in question. For the purpose of comparison, we also show the results for the
TM inclusion, obtained by the inversion scheme from [21], [70], which in n
steps produces a polynomial that satisfies A(P) = P exactly to order n. The
results for g; and g» are shown in the upper pictures of Figure 13 for various
domain widths of [-277,277]. It can be seen that the TM method provides
a high order enclosure that is only limited by the precision of the arithmetic.
On the other hand, apparently the asymptotic sharpness of the BA approach
reaches a certain minimum and does not fall below it as j increases, as expected
from the existence of a v, term in the boundary enclosing the fixed point.

Apparently the sharpness of the asymptotic sharpness of the BA method
can be improved by executing a larger number of pre-iterations in the test
polynomial P,. The lower pictures in Figure 13 show the results of the sharpness
that can be achieved for 10, 20, 40, and 80 pre-iterations.

Again, for the purpose of the problems studied by the authors, the fact that
the enclosures obtained in the fixed point search are not overly sharp is hardly
a fundamental detriment. The typical problems are of very small scale, usually
involving only a few handfuls of elementary operations; and most importantly,
the fixed point operation has to be carried out only once, and the error made
in the enclosure will thus not propagate to subsequent operations.

On the other hand, more sophisticated techniques are necessary for situ-
ations of complicated fixed point problems, or cases where they have to be
solved repeatedly. The situation is particularly striking for the solution of im-
plicit ODEs and DAEs as recently developed by Hoefkens and Berz. In this
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Figure 13: The width of remainder intervals of fixed point problems
O(f)=(g— f?—1)/2 for g =2+ x (Left) and g = 3 + z (Right). The
top pictures show the comparison between BA method and TM. The
bottom pictures show the BA performance depending on the number
of pre-iterations.

framework, every step of the ODE solver requires some local solution of a set of
implicit equations [72], [74], and of course any local error made will propagate
through the subsequent solution. So unless utmost care is taken, the errors
made in the solution of implicit equations will detrimentally affect subsequent
steps. To address these difficulties, the method in [21] provides a solution of
both implicit equations and the (related) fixed point problems that has the
higher order scaling property. The method consists of three steps. The first
is the assertion of the existence of an inverse, which in higher dimensions is a
difficult questions for large domains, because of the cancellation problem in the
linear algebra. This is solved in a method with much reduced dependency in
[70]. For comparison, the method developed for such purposes by Eckmann,
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Koch and Wittwer [47], p. 58 suffers from a severe dependency problem and
resulting pessimism in higher dimensions, because it is simply based on at-
tempting to invert a matrix with wide interval coefficients. Again, for the lower
dimensions and simple functional dependencies studied in the BA problems,
this may likely not be a limitation. The second step is the determination of
a polynomial that satisfies the implicit equation or fixed point problem up to
order n except for floating point errors (which is developed already in [10], [13],
[12], [17]). The final step is to provide a remainder bound self-enclosure of the
solution.

Although the method has never been used in this way and was apparently
not intended for this purpose, let us now address the question to what extent
the BA approach can be used for range bounding of non-polynomial functions in
global optimization. In particular, as mentioned above, using the composition
operation of the arithmetic, it is possible to treat all intrinsic functions merely
by representing them by their Taylor series of the respective order, and adding
a remainder term for the BA domain [—1, 1]. After scaling, this allows to treat
intrinsics over any domain. Methods for intrinsics as derived above for TMs do
not exist; but it is obvious how to at least improve the approach by preparatory
steps of rephrasing the problem, for example using the double angle rule for the
trigonometric functions for range reduction at the cost of greater computational
expense as suggested in recent work [92].

To study the characteristics of the performance of this method, we imple-
mented a suite of intrinsics based on this prescription. As a first check, we
come back to the function sin?(f) + cos?(f) for f(x) = exp(x + 0.5) and for
f(x) = exp(x + 1), a function that has already been considered in Figure 1.
We compare the bounding by naive intervals, BA methods, and Taylor models
in the domain with various sizes [-277.277] for j = 1,2,...,7. We begin with
a representation of the identity function as a BA or TM element. Figure 14
lists the width of the range evaluated by naive intervals and the remainder in-
tervals evaluated by BA methods and Taylor models. The polynomial part of
Taylor models agrees with 1. However, the polynomial part of the BA methods
deviates from 1 as shown in the Table 1 and Table 2.

Next we try to assess the capability of the BA method by applying it to
the small three dimensional function fi(x,y,z) defined in (5.2). We study
whether the evaluation of the function is possible for 0 < z < 2,0 < y < 2, and
—2<z<0or0 < z < 2. For the choice of the reference point, we scan all points
in the region in increments of 0.1, resulting in 20 scanning points for each z and
y, and 40 scanning points for z, for a total of 20 x 20 x 40 = 16,000 grid points.
We set the domain for the function evaluation around each scanning point with
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Figure 14: The width of intervals and remainder intervals by the BA
method and TM for sin?(f) + cos?(f) with f = exp(z + 0.5) (left) and
f =exp(z+1) (right).

half width 107¢, and both the naive interval evaluation and the Taylor model
evaluation with 5-th order and 9-th order perform the computation without
any difficulty. On the other hand, the BA evaluation can never succeed for
the computation at any of the scanning point, and even reducing to a narrower
domain with half width 10~® cannot help the situation anywhere for the studied
orders of 5, 9 and 11.
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Exponent ‘ Coefficient of Polynomial
™ BA 3-rd order BA 5-th order
0 1. | 0.9406417675328824 1.009226797576015
1 0.8557824711577218 | -.1714972387102398E-01
2 4.891630583584551 -.3001830876976634
3 12.51227485245093 -1.125746172927255
4 -2.393997670129284
5 -3.309842436880216

Table 1: Approximating polynomials for the function sin?(f) + cos?(f)
with f(z) = exp(x + 0.5) obtained with Taylor models as well as the
BA approach based on intrinsics from composition to orders 3 and 5.

Exponent ‘ Coefficient of Polynomial
™ BA 3-rd order BA 5-th order
0 1. | 6.774729461972259 | 0.5467625825910201
1 40.38408779149519 | -2.809445053719823
2 125.6186556927297 | -2.732473802461288
3 240.9844535893918 | 29.68274767382299
4 163.8836731026558
5 483.4944251018200

Table 2: Approximating polynomials for the function sin?(f) + cos?(f)
with f(z) = exp(xz + 1) obtained with Taylor models as well as the BA
approach based on intrinsics from composition to orders 3 and 5.

Thus, the function was simplified until a point was reached where it could be
evaluated with the intrinsic-enhanced BA method. Changing the above three
dimensional function to the following two dimensional and three dimensional
ones, we successfully found expressions for our purpose:

_ tan(3y)

IR

which is defined for z > 0, y > 0, and
tan(3(y — z))

y +1og(0.5 + x + 22)

—exp(0.5 + 2) - sinh(0.5 + 5y(2 + = — 2)),

fl—?(aja y) - Slnh(05 + 6y)>

fl—?)(ma Y, Z) =

which is defined for 0.5 + z + 2z > 0 and y + log(0.5 + x + 2z) # 0.
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Figure 15: Width of remainder error intervals determined by the BA
method and TMs and range enclosures by naive intervals for the 2d
function f1_o(z,y) (Left) and the 3d function fi_s(x,y,z) (Right).
The expansion points are (1,0.4), (1,0.5), (1,1) for the 2d case, and
(0.9,-0.2,0.2), (0.9,0,0.2), (0.9,—0.5,0.3) for the 3d case, from top to
bottom.



288 K. Makino, M. Berz

f1 fi—a | f1-3
Interval 100% | 100% | 100%
TM Order 5 100% | 100% | 100%
TM Order 11 | 100% | 100% | 100%
BA Order 5 0% 34% 22%
BA Order 11 | 0% 64% | 34%

Table 3: Percentages of function evalutations that could be carried out
successfully by various methods. Domain half widths were 1076 for
Interval, TM and BA of order 5 and 10~® for TM and BA of order 11.

For the two dimensional function f1_o(x,y), we scanned for 0 < x < 2,
0 < y < 2 in increments of 0.1. Both the naive interval evaluation and the
Taylor model evaluation are possible around all the 20 x 20 = 400 scanned
points. However, the BA evaluation is only possible for x > 0.4 and y < 1.5,
altogether at 17 x 15 = 255 points. In the area, where the BA evaluation is
possible, it shows rather large over-estimation when y = 0.5. Also, y = 1.5
leads to substantial growth of the over-estimation. We pick the following three
points, (zg,y0) = (1,0.4), (1,0.5) and (1,1), to compare the size of the range
enclosures computed by the naive interval method, and the remainder interval
computed by the BA evaluation with 6-th and 9-th order and the Taylor model
computation with 6-th and 9-th order in the domain (xg,y0) + [~277,277]2, as
shown in the left of Figure 15.

For the three dimensional function fi_3(z,y, z), we scanned with increment
0.1 for =2 < z,y,z < 2, except for the region where the function cannot be
defined; the total number of points where the arithmetic could be carried out
is 38,233 points. Again, both the naive interval evaluation and the Taylor
model evaluation are possible around all the valid points scanned. On the
other hand, the BA evaluation with domain half width 1078 and 11-th order is
only possible at 12,988 points. As an example, we show the resulting enclosures
for the points (xg,yo,20) = (0.9,—0.2,0.2), (0.9,0,0.2), and (0.9, —0.5,0.3) in
the right pictures of Figure 15; the other parameters are similar to those of
the two dimensional case. It can be seen that in this example, the remainder
intervals of the BA method are about as large as the range enclosures evaluated
by naive intervals. The behavior of the BA method using the composition-based
intrinsics is summarized in Table 3.

Altogether, the BA algorithms allow, probably for the first time, to prove
existence of solutions of fixed point problems in functions spaces. They have
been applied very successfully for numerous problems that are very significant
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in the wider mathematical community, beginning with the work on Feigenbaum
and other universality, and branching out into several other directions. The size
of these problems, however, is comparatively small, and the inclusions of func-
tions and the resulting inclusions of the solutions of the fixed point problems do
usually not have the high order enclosure property that TMs have. The lack of
the high order enclosure property also has two other consequences. First, the
method is not a Taylor method, since the interval coefficients do not necessarily
enclose the Taylor expansion of the function. Second, the efficiency of suppres-
sion of the dependency problem, which is achieved so well with Taylor models,
is reduced, since it is possible to have two representations of the same function
by two different interval coefficients, so that cancellation in the coefficients will
usually not happen fully.

In its current state, the BA methods are by no means able to solve the
original problem that the TM methods were developed for, of determining the
dependence of the solution of a nonlinear ODE on initial conditions, and then
subjecting this resulting flow to a normal form transformation and subsequent
global optimization of the defect function. Specifically, there is no theory of
intrinsic functions providing higher order enclosures. There are no applications
to validated global optimization, or to the suppression of the dependency prob-
lem or beneficial treatment of higher dimensions. There is no application to
quadrature. There is no theory of integration of ODEs, let alone suppression
of the wrapping effect problem. There is no treatment of high-order multi-
variate inversion of functional dependencies, and advanced applications, like
the solutions of DAEs that have recently become possible with Taylor model
methods are not possible within the framework. The codes of the original work
until around 1990 for problems in two variables and apparently order 19, in a
straightforward coefficient addressing scheme are published in their entirety in
[47], [49]; they do not seem to be available except for scanning the text and per-
forming character recognition, which should rather easily reproduce the original
compilable FORTRAN source. Updated implementations of the methods also
exist; see for example [92].

8. The Ultra-Arithmetic of Kaucher, Miranker et al

An arithmetic involving addition, subtraction, multiplication, division and in-
tegration on various spaces of interval polynomials were developed under the
name ultra-arithmetic by Kaucher and Miranker et al It was applied to the
solution of one dimensional fixed point problems for the solution of implicit
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equations, and in particular ODEs and boundary value problems. For good
introductions to the matter, see [87], [78], [80] and [84]; the book [87] also
contains an extensive treatment of the fixed point theorems forming the math-
ematical backbone of the existence and uniqueness proofs that can be employed.
Other relevant papers are [55], [29], [124], [54], [82], [81], [80], [125]; see also
[86], [85]. In our opinion, the work is particularly noteworthy for the real-
ization of the seamless connection of explicit or implicit differential equations
or boundary value problems, and algebraic equations, by virtue of recognizing
the anti-derivative as an elementary operation. This approach is much in the
spirit of the study of differential algebras, i.e. algebras equipped with a deriva-
tion operation obeying the conventional sum and product rules. The study of
these structures has been developed to an advanced level [161], [162], [96], [97]
within the wider framework of symbolic computation and is also employed in
the (non-validated) polynomial tools developed by the authors for the field of
beam physics; for a summary see [17].

The methods of ultra-arithmetic are based on the projection into spaces
spanned by various suitable basis functions; for validation purposes, the coef-
ficients are chosen as intervals. The various spaces and the projections into
them are referred to as “roundings”, in obvious analogy to the similar projec-
tion of a real number into its decimal digits. The rounding schemes discussed
include monomial powers, Chebyshev polynomials [83], [55], Bernstein polyno-
mials [55], [124], [125], Legendre polynomials [55], Lagrange and Newton inter-
polation polynomials [55], spline rounding [87], and a variety of other types, as
well as “mixed” representations [87]; a comprehensive summary is provided on
p. 38 of [87]. An actual implementation is described only for the transparent
case of polynomial bases and dimension 1; see Section 7.1.4 in [87]. In this case,
addition and subtraction merely corresponds to the addition and subtraction
of intervals with polynomial coefficients. Multiplication is carried out by first
generating a polynomial of order 2n, and then “rounding” each term of orders
n+1 to 2n into the lower orders, i.e. approximating it trough a polynomial fol-
lowing the prescription of the approximation method used. Because of linearity
of the approximation, in practice this can be achieved via a pre-computed table
listing the respective low-order coefficients for each of the high-order terms; for
an example, see p. 43 in [87]. For higher dimensions, the table representation
would have to be replaced with another method, because of the exceedingly
large number of polynomials of orders (n + 1) and 2n. The integration opera-
tion is performed conceptually similar to the multiplication by first generating
a polynomial of order (n + 1) representing the integral of the polynomial in
question. We will later refer to various examples performed in Taylor rounding;
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for an example executed in Chebyshev rounding, see for example p. 85 in [87].

However, in practice a fundamental limitation appears here, since the pro-
jection into basis functions usually does not commute with multiplication and
other elementary operations. A special case is the Taylor representation, be-
cause for two functions f; and f5, the Taylor representation for the product
f1 - f2 can be obtained merely from the Taylor expansions of the factors (by
multiplying the polynomials and discarding the orders n + 1 to 2n). But for
other “roundings”, usually the correct representation of the product fi - fo can
not be inferred from the representations of the factors fi and fo. For example,
the Chebyshev polynomial of a product f; - fo of two functions f; and fo can
in general not be obtained from the Chebyshev representations of the factors
f1 and fs, and the prescription on how to perform multiplication above appar-
ently does not attempt to do so in practice. As a consequence, the methods
can not be used to compute Chebyshev or other non-Taylor representations of
extended functions, and the approximation will be sub-optimal. Thus, the well
known advantage of non-Taylor approximations cannot generally be explicitly
maintained within the implementation of the arithmetic. Another potential
limitation for the Chebyshev and other non-Taylor rounding schemes is that
they may lead to an increase in the magnitude of the coefficients, since low
order approximations of high-order monomials like ™ usually involve larger
low order terms cancelling each other. Over extended calculations, this will
likely increase the computational error in the coefficient arithmetic, as well as
the difficulty of finding enclosures in fixed point arguments like those discussed
below.

Division is described on p. 214ff in [87] for the one dimensional case, and
consists of a sequence of steps. The first is the determination of the interval
Taylor series coefficients of the multiplicative inverse by interval arithmetic.
The computation is carried out in interval arithmetic and leads to interval
coefficients for the approximate inverse. The second step consists of an iterative
refinement of the solution by a Newton-like method, which may reduce the
width of the interval coefficients and assures that the right projection is carried
out. The third step attempts to validate the obtained approximation v of the
inverse of g by a self-inclusion of a Newton-like operator similar to the one used
for the refinement. It is interesting to note that the validation of the inverse
of the object ¢ will likely fail if ||1 — 0¢|| > 1, and it may also fail for other
cases. In particular, in higher dimensions and higher orders, which naturally
involve more extended interval arithmetic, this is more likely to happen. This
is in contrast to the computation of the inverse of the Taylor model, which does
not require the success of a self-enclosure method for validation.
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Miranker et al [55], [124], [125] provide an alternative, albeit expensive,
mechanism to preserve the quality of the approximation in light of the non-
commutation of elementary operations and “rounding” discussed above. The
authors address the general question of obtaining the tightest possible enclosure
of the product of interval polynomials [pi, p2] and [g1, ¢2], where py 2 and ¢; 2 are
conventional polynomials. In a conceptually analogous way the multiplication
of intervals with polynomial coefficients can also be studied. The method is not
based on any particular rounding, but on the observation that if

P={p-q:p€p1,p2)q € @1, 9]},

then P C [r1,r9] for polynomials rjand ry if

r1(z) < min(p(x)q1(x), p1(w)g2(x), p2(z)q1(x), p2(x)g2(x) } and
r2(z) > max(p1(z)q1 (), p1(z)ga(x), p2(2)q1(x), p2(7) g2 () }.

The search for optimally tight 1 and r9 is simplified by transforming the poly-
nomials p1 2 and g1 2 into Bernstein form, since then a priori bounds for the
products can be readily obtained from the well-known fact that a polynomial
in Bernstein form is bounded by the maxima and minima of its coefficients.
This can be interpreted as a linear programming problem, i.e. a linear opti-
mization problem with linear constraints [55], [124], [125]. It is apparent that
while this approach is optimal and in fact to a certain extent relieves the user
from a choice of rounding, it is also very involved computationally, especially if
attempted in a multi-dimensional setting, because of the necessary linear pro-
graming tools using simplex or related methods that are required to obtain the
polynomial coefficients.

In a conceptually similar way to multiplication, it is also possible to develop
schemes for division, see [55], [124], [125]. Specifically, let 0 < b < p;(z), and
let P~ = {p=' : p € [p1,p2]}. An apparent upper bound for the quotient
is b~!, and, as the authors point out, this is also sometimes the only one.
To obtain a better bound requires finding an optimally small g2 such that
1 < pi(x) - g2(z). The resulting search for the coefficients of go is similar to the
case of multiplication discussed above, and in Bernstein representation again
leads to linear programming problem.

It is interesting to note that in the context of “rounding” into subspaces,
neither the Taylor model (TM) arithmetic nor the boundary arithmetic (BA)
correspond to the obvious Taylor “rounding” in ultra-arithmetic. Rather, be-
sides the necessary Taylor monomials in the basis, there is one additional term
describing the higher order TM remainder bound, and two additional terms
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describing the higher order and “general” BA remainder bounds; the round-
ing operation following the conventional elementary operations populates these
terms in a characteristic way. Because of the different arithmetic rules, these
terms cannot merely be combined with the coefficient of the constant part (see
for example p. 121 of [87]), or (at least in the multivariate setting) with any
other monomial of the Taylor basis. In fact, lumping TM and BA remainder
terms into the constant part, as done in the ultra-arithmetic, has the disad-
vantage that this interval enters coefficients of all orders over the course of
further computations, and thus over extended operations leads to an unneces-
sary widening of the interval coefficients.

There is no treatment of common intrinsic functions. It is mentioned in var-
ious situations (e.g. [83]) that they can be obtained as the result of integration
of the well-known characteristic ODEs that are comprised of only elementary
operations. While this is conceptually true, it may be practically of limited
use. For wide interval arguments of the intrinsics, the resulting fixed point
algorithms for the ODEs may likely fail to find inclusions; similar problems
may occur for arguments of the intrinsics that are themselves objects of the
ultra-arithmetic. There is also no discussion at all of possible uses for UA for
the question of global optimization.

As mentioned above, the key algorithm employed in the UA is an iterative
scheme for the validation of approximate solutions of fixed point problems,
which we take from [87], p. 194-195:

Algorithm 8. (Approximation and Validation of Fixed Point Problem in
UA by Kaucher and Miranker)

1. Write the problem at hand as a one dimensional fixed point problem
A(f) = f by using operations supported by the arithmetic, including
addition, subtraction, multiplication, division, and integration.

2. Provide an approximate polynomial solution by iteration. Begin with
some Py, say Py = 0, and iterate P11 = A(P,) until a sufficiently good
approximate solution P, is found; as a stopping criterion, use ||P,4+1 —
Pl <[Pl - 1075

3. Switch to validated computation, and from now on consider polynomials
as having interval coefficients.

4. Continue iteration with P, by setting P,+1 = A(P,), until P,y; C P,.

5. If a self-enclosure has been found, continue iteration to improve the quality
of the solution.
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Apparently the algorithm has great similarity to the one used in the context
of boundary arithmetic (BA) by Lanford, Eckmann, Wittwer and Koch (7),
with the exception that the stopping criterion in the approximation step is not a
fixed number of iterations, but rather is based on relative accuracy. However, as
in the BA algorithm, and different from the TM approach for implicit functions
and fixed point problems [21], [70], in general the polynomial approximation
P, found in Step 2 will not be an exact fixed point, and hence the Taylor
polynomial P* of the fixed point does in general not agree with P,. However,
this entails that the enclosure containing the fixed point must at least contain
both P,, around which the boundary is placed, and the fixed point P*. Thus,
the resulting enclosure will necessarily have non-tight interval coefficients for
terms of low order. Overall, the example given in Figure 13 also is characteristic
of the behavior of the BA fixed point method.

From our reading and the examples provided in [87], the inclusion require-
ment in the validation step means inclusion of matching interval coefficients.
The approach could be generalized to mean just a set theoretical inclusion of the
family of functions enclosed by each of the P,,, which would however require a
bounding scheme for polynomials, the overestimation of which can potentially
increase the difficulty of validation. Perhaps, because of this difficulty, this
approach does not seem to have been followed in the examples in the literature.

In any case, the termination criterion as specified is likely going to fail to
provide termination even in many cases, where the operator is known to be
contracting in a conventional sense. For example, this will be the case if one
begins iteration with a polynomial that satisfies the fixed point problem exactly
up to the order of interest n. In this case, because of inclusion monotonicity,
the size of the coefficient intervals will necessarily grow in each step, regardless
of the contractivity of the operator; thus self-inclusion will not be possible to
achieve. The situation is expected to be similar if the polynomials P, and P,
are sufficiently close to each other, which for the purpose of finding a sharp
enclosure is of course desirable. Another problem lies in the large number of
coefficient enclosures that have to be achieved, which especially in a multidi-
mensional setting may decrease the odds of success, on the other hand, in the
TM approach, only one remainder bound will have to be checked for enclosure.

In the light of these observations, it is not clear to what extent the stopping
criterion and related algorithms have been extensively tested on a large num-
ber of practical examples. The literature does not provide much information
about such tests; and indeed, for most examples being given (for example the
validations on p. 117 of [87] and on p. 139 of the same book), various manual
reformulations of the algebraic structure of the problem are performed until a
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set of interval coefficients providing a self-enclosure can be determined directly.
The question of what choice of interval coefficients may provide a self enclosure
automatically does not seem to be conclusively studied; however, especially
for precise algorithms, or generalizations to multivariate cases (which are not
studied), where the number of coefficients can easily lie in the thousands, this
question is of prime importance for the practical usefulness of the method.
The situation becomes particularly difficult in case, where several validation
steps have to be performed successively, for example, because the domain has
to be broken into smaller pieces as necessary when solving ODEs over extended
domains. In this case, the results of the previous steps which will serve as
initial or boundary conditions of the new steps will necessarily be themselves
intervals, and whatever strategy is chosen, these intervals have to be enclosed.
In the one-dimensional systems studied in the UA framework, this is expected
to be doable in a reasonable fashion, but in a multi-dimensional setting, it leads
to a manifestation of the wrapping effect problem common to validated ODE
solvers [129], [174], [53], [111], [58], [109], [112], [108], [37], [110], [145], [8], [38],
[114], [24], [137], [103], [140], [141], [139], [138], [73], [123]. Within the UA
method, no strategies are developed to alleviate or deal with this problem.

9. Conclusion

The main aspects of the Taylor model (TM) method have been reviewed, includ-
ing details on the treatment of intrinsics, their implementation in a computer
environment, and references to the main algorithms for their use. The method
is then compared to a variety of other state of the art tools. When compared
with the centered forms (CF) and mean value form (MF) for purposes of range
bounding, it is found that first order TMs behave similar to CF which in turn
behaves generally better than MF, although the first order TMs seem to have
a tendency to outperform CF by a slight margin. However, higher order TMs
are found to suppress the dependency problem significantly better than either
CF and MF. When used for range bounding by mere interval evaluation of the
polynomial part of the Taylor polynomial, the approximation order of the range
enclosures agrees with that of CF and MF, but the resulting sharpness is usually
significantly higher for higher order TMs; and the effect is more pronounced
the more dependency the function under consideration exhibits.

It is shown that the remainder bound of the TM of order n scales with
order (n + 1), and this behavior is also observed in practical computations.
When TMs are combined with advanced bounders for the polynomial part such
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as the linear dominated bounder LDB [122] or other tools [135], [136], the
range bounding of TMs leads to an order (n 4+ 1) method. However, the main
purpose of the TM methods in our opinion lies not in range bounding, which
is tantamount to projecting back to an interval. Rather, it lies in the ability to
provide validated approximations of complicated functional dependencies with
an accuracy that scales with a high order of the domain width, and in various
advanced algorithms that obtain such high-order dependencies for solutions of
ODEs, fixed points, implicit equations, and other tasks.

The interval automatic differentiation (IAD) method can also be used to
obtain bounds for the remainder of a Taylor expansion. However, different from
the TM approach, this method suffers from a dependency problem that is usu-
ally significantly worse than that of the original function. As a consequence,
the practical performance is often significantly affected, and in general for suffi-
ciently complicated functions, the sharpness of the resulting remainder bounds
cannot come close to those that can be obtained via TMs.

The Boundary Arithmetic (BA) of Lanford, Eckmann, Wittwer and Koch
provides enclosures of a functional dependencies by an interval polynomial,
as well as a high-order and a “general” (i.e. low order) remainder bound.
The operations of addition, subtraction, multiplication, and composition are
developed. There are no advanced tools for the treatment of intrinsics. The
methods have been used for automated theorem proving of comparatively small
problems via Banach’s fixed point theorem. The “general” remainder bound is
populated by the composition operation, as well as the frequently used fixed
point methods.

Applications to global optimization have not been done or envisioned; fur-
thermore, the absence of intrinsics all but prevents such use, and the use of
the composition operation leads only to low-order enclosures and cannot com-
pensate for the lack of dedicated intrinsics. Different from the TM methods,
the solution of fixed point problems or the related implicit equations is not
performed to high orders. There is no application to the solution of ODEs.

The Ultra-Arithmetic (UA) of Kaucher, Miranker et al provides enclosures
of functional dependencies by linear combinations of basis functions with in-
terval coefficients; the most prominent use is also in interval polynomials. The
operations of addition, subtraction, multiplication, division (with certain limi-
tations) and integration are developed. An extensive discussion of fixed point
methods leads to applications in explicit and implicit one dimensional ODEs.
The practical extension to higher dimensions is limited by the lack of any treat-
ment for the wrapping problem, which will necessarily occur in the multistep
settings necessary to tackle realistic problems.
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Intrinsics are not developed, although it is stated that these could be ob-
tained from the ODE tools. The practical usefulness of this approach, how-
ever, is expected to be limited. For wide interval arguments of the intrinsics,
the resulting fixed point algorithms for the ODEs may likely fail to find in-
clusions; similar problems may occur for arguments of the intrinsics that are
themselves objects of the ultra-arithmetic, which is necessary for the use in a
general setting. Applications to global optimization have not been carried out
or envisioned, and the absence of advanced intrinsics also prevents such use.

Both the BA and UA methods rest on the use of fixed point arguments to
solve the questions of interest, which in the BA case lie mostly in the domain
of computational theorem proving, and in the UA case mostly relate to generic
studies of implicit equations and ODEs. Different from the TM methods, the
polynomial truncations of the fixed point solutions are not obtained exactly, and
thus the solution is not obtained with high order accuracy. It is noteworthy that
there is a far-reaching lack of referencing; for example, the Kaucher-Miranker
book on the UA method [87] contains less than 20 references, many just to
the authors themselves; the information and references in Moore’s 1979 book
[130] are not referred, to. A similar situation exists in the works about the BA
methods; in particular, there is almost no cross referencing between these two
methods themselves that were developed in close temporal proximity.

The pertinent properties of the various methods are summarized in Table 4.
We study the following properties, and list in parentheses the identifier of the
respective row in the table; the order of approximation by enclosure functions as
in Theorem 1 (Order); the order obtained for range enclosures (Range Order);
whether or not the method in itself provides suppression of the dependency
problem for typical computer functions (Dep Supp); the dimension to which
the theoretical arguments have been developed (Dim Theory); the dimension
of the implementation (Dim Impl); whether or not common intrinsic functions
are supported (Intrinsics); whether tools for global optimization were developed
(Glob Opt); if a theory for fixed point problems is developed, to what order
fixed points are enclosed (FP Order); and if a theory exists for ODE solving,
to what order in initial conditions wrapping is suppressed (ODE Wrap).
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