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Abstract

We study Taylor series expansions of stationary characteristics of general-state-space
Markov chains. The elements of the Taylor series are explicitly calculated and a lower
bound for the radius of convergence of the Taylor series is established. The analysis
provided in this paper applies to the case where the stationary characteristic is given
through an unbounded sample performance function such as the second moment of the
stationary waiting time in a queueing system.
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1. Introduction

Stationary performance indices of simple Markovian systems, such as the queue length
probabilities for anM/M/1 queue, are analytic functions of the system’s parameters: the service
rate and the interarrival rate. This observation has initiated the study of analytical properties
of stochastic systems. The approach predominant in the literature is to study Taylor series
expansions of performance characteristics of stochastic networks with Poisson-λ-arrival stream
with respect to λ. First results can be found in [30] and [13] and extensions to (max,+) linear
stochastic networks are studied in [1]–[6]. Taylor series expansions of the stationary distribution
of finite-stateMarkov chains have been studied in [8]. Sample path approaches, which are based
on simulation, can be found in [13], [21], [22] and [29]. An analytical approach to computing
stationary characteristics of Markovian queueing systems based on Taylor series expansion is
the power series algorithm (PSA); see [28].

In this paper, we study Taylor series expansions of stationary characteristics of general-
state-space Markov chains. In particular, the approach applies to unbounded performance
characteristics. The flexibility and generality of the framework used in this paper comprises
the aforementioned approaches.

The results presented in this paper serve a twofold purpose. Firstly, elaborating on a
Jordan-type decomposition of transition kernels [15], the elements of the Taylor series are
expressed in terms of measure-valued derivatives and can be translated into unbiased (higher-
order) derivative estimators; see [14] for details. In particular, this allows us to approximate
an entire performance function through simulation. This links our results to sample-path based
approaches like perturbation analysis; see [17] and [9]. Secondly, we derive lower bounds for
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the radius of convergence of the Taylor series. Knowledge of the radius of convergence is of
importance for numerical procedures such as PSA.

The mathematical framework of this paper is that of measure-valued differentiation (MVD)
and normed ergodicity. MVD extends the concept of weak differentiability as introduced by
Pflug [27] so that performance measures from a predefined classD can be handled, and thereby
overcomes the restriction to bounded functions implicit in the concept of weak differentiation.
Normed ergodicity dates back to the early 1980s; see [18] for an early reference. Itwas originally
used in analysis of Blackwell optimality; see [18] and the revised version which was published
as [11]. Another early reference is [23] and a more recent publication on this topic is [7]. Since
then, it has been used in various forms under different names in many subsequent papers. In
[20] it was shown that, for a countable Markov chain which may have one or several classes
of essential states (a so-called multichained Markov chain), normed ergodicity is equivalent to
geometrical recurrence (for a similar result in Markov decision chains, see [12]). Inspired by
this result for a countable Markov chain, a similar result was proved for a Harris chain in [26].
In this paper we use the recent results of [7].

The paper is organized as follows. Section 2 states themain concepts and results needed from
the theory of MVD and ergodic theory. In Section 3, higher-order measure-valued derivatives
of the stationary distribution are discussed and Section 4 establishes our main result on Taylor
series expansions of the stationary distribution. We conclude the paper with an elaborate
example.

2. Tools from MVD and ergodic theory

2.1. MVD

Let (S,T ) be a Polish measurable space. Let M(S,T ) denote the set of finite (signed)
measures on (S,T ) and M1(S,T ) the set of probability measures on (S,T ).

Definition 1. The mapping P : S × T → [0, 1] is called a (homogeneous) transition kernel
on (S,T ) if

(a) P(s; ·) ∈ M(S,T ) for all s ∈ S; and

(b) P(·;B) is T -measurable for all B ∈ T .

If, in condition (a), M(S,T ) can be replaced by M1(S,T ), then P is called a Markov kernel
on (S,T ).

Denote the set of transition kernels on (S,T ) by K(S,T ) and the set of Markov kernels on
(S,T ) by K1(S,T ). The product of two transition kernels Q and P on (S,T ) is defined as
follows. For s ∈ S and B ∈ T , set

QP(s;B) = (P ◦ Q)(s;B) =
∫
S

Q(s; dz)P (z;B).

Moreover, write Pn(s;B) for the measure obtained by the n-fold product of P in the above
way.

Let L1(P ) ⊂ R
S denote the set of measurable mappings g : S → R, such that∫

S
P (s; du)|g(u)| is finite for all s ∈ S. For D ⊂ L1(P ), we say that a transition kernel

P ∈ K(S,T ) is D-preserving if∫
S

P (·; du)g(u) ∈ D For all g ∈ D .
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Thus, if P,Q ∈ K(S,T ) are D-preserving, so is their product, and the integral of any g ∈ D
with respect to a finite combination of P and Q is defined.

Consider a family of Markov kernels (Pθ : θ ∈ �) on (S,T ), with � ⊂ R, and let

L1(Pθ ;�) :=
⋂
θ∈�

L1(Pθ )

denote the set of measurable mappings g : S → R such that
∫
S
Pθ (s; du)|g(u)| is finite for all

θ ∈ � and s ∈ S.

Definition 2. Let D ⊂ L1(Pθ ;�). We say that Pθ ∈ K(S,T ) is n times differentiable at θ
with respect to D , or n times D-differentiable for short, if there exists a P (n)

θ ∈ K(S,T ) such
that, for any s ∈ S and any g ∈ D ,

dn

dθn

∫
S

Pθ (s; du)g(u) =
∫
S

P
(n)
θ (s; du)g(u) (1)

and P
(n)
θ is D-preserving. If the left-hand side of (1) equals zero for all g ∈ D , then we say

that P (n)
θ is not significant. For n = 1, we also write P ′

θ for the transition kernel defined in (1).
In case θ is a boundary point, the limit in (1) has to be understood as a one-sided limit.

We denote the set of bounded continuous mappings from S to R by Cb(S). If Cb(S) ⊂ D ,
then P

(n)
θ in (1) is uniquely defined. For this reason, we will assume throughout the paper that

Cb(S) ⊂ D if not stated otherwise.

Remark 1. Note that P (n)
θ and Pn

θ have a different meaning. To unify the notation, we set

P
(0)
θ = Pθ .

Remark 2. Consider the pointwise version of the above definition, that is, define n fold
D-differentiability as follows: for any s ∈ S, a (finite) signed measure P

(n)
θ (s; ·) exists such

that (1) holds for any g ∈ D . While this definition of P (n)
θ reflects the way in which P

(n)
θ is

actually calculated in applications, it raises the question of whether P (n)
θ is a kernel on (S,T )

(i.e. whether P (n)
θ (·;A) is measurable for any A ∈ T ). While this fails to be true in general,

we can identify two conditions both enforcing this independently.

1. LetD contain the indicator function of anyA ∈ T . If T is countable, then P (n)
θ is indeed

a kernel; see [14]. If D contains in addition Cb(S) as a subset, then it is called a set of
test functions in [14].

2. Suppose that Cb(S) ⊂ D . If

sup
s∈S

sup
g∈Cb(S)|g|≤1

∣∣∣∣
∫
S

P
(n)
θ (s; du)g(u)

∣∣∣∣ < ∞,

then P
(n)
θ is a kernel; see [15].

Example 1. Let P,Q ∈ K1(S,T ) and set

Pθ = θP + (1 − θ)Q, θ ∈ [0, 1].
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Note that Pθ ∈ K1(S,T ) for θ ∈ [0, 1], and that P0 = Q and P1 = P . Specifically,
let D(P,Q) := L1(Pθ ;�) and assume that P and Q are D(P,Q)-preserving. For any
g ∈ D(P,Q) and any s ∈ S,

dn

dθn

∫
S

Pθ (s; du)g(u) = dn

dθn

(
θ

∫
S

P (s; du)g(u) + (1 − θ)

∫
S

Q(s; du)g(u)
)

=



∫
S

P (s; du)g(u) −
∫
S

Q(s; du)g(u) for n = 1,

0 otherwise.

Hence, P ′
θ = P − Q satisfies (1) for n = 1 and, since P and Q are D(P,Q)-preserving, it

follows that P ′
θ is D(P,Q)-preserving. Notice that the Markov kernel Pθ is infinitely often

D(P,Q)-differentiable and only its first-order D(P,Q) derivative is significant.

2.2. Normed ergodicity

Let X(θ) = {Xθ(n)} = {Xθ(s, n)} for θ ∈ � be the Markov chain with initial state s and
transition kernel Pθ , and set, for any B ∈ T ,

Pn
θ (s, B) := Pθ(s, n, B) = Pr(Xθ (s, n) ∈ B).

The joint state space of X(θ) for θ ∈ � is denoted by S. However, for any specific θ , the
chain X(θ)may not be irreducible on S but only on a subset of S. For the following ergodicity
analysis we will require that the state space is indeed irreducible and we denote by Sθ ⊂ S the
class of states such that X(θ) becomes irreducible as a Markov chain on Sθ . Furthermore, we
denote by Tθ the intersection of T and Sθ . Consequently, (Sθ ,Tθ ) is a measurable space for
any θ ∈ �.

Condition 1. There exists a function g : Sθ → R such that g(s) ≥ 0 for s ∈ Sθ and

E[g(Xθ(s,mθ ))] − g(s) ≤ −ε + c 1Vθ (s)

for some mθ ≥ 1, ε > 0 and c < ∞, where, for some d < ∞,

Vθ = {s ∈ Sθ : g(s) ≤ d}.
Note that the function g is the same for each θ .

Condition 2. There exist nθ ≥ 0, a probability measure φθ (·) on (Sθ ,Tθ ), and pθ ∈ (0, 1)
such that

inf
x∈Vθ

Pr(Xθ (x, nθ ) ∈ B) ≥ pθφθ (B)

for all B ∈ Tθ .

Assuming that Condition 1 holds for some θ ∈ � and letting

ξθ (s) := g(Xθ(s, 1)) − g(s), s ∈ Sθ ,

we can introduce the following condition.

Condition 3. The randomvariable ξθ (s) is uniformly integrable in s and in θ onaneighborhood
�0 of θ , and there exists a λ > 0 such that ξθ (s)eλξθ (s) is uniformly integrable (in s and in θ

on �0).
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Recall that uniform integrability of ξθ (s) in s and θ is defined as

lim
c→∞ sup

s,θ

∫
|t |>c

Pr(ξθ (s) ∈ dt) = 0,

and similarly the uniform integrability of ξθ (s)eλξθ (s) requires that

lim
c→∞ sup

s,θ

∫
|t |>c

Pr(ξθ (s)e
λξθ (s) ∈ dt) = 0.

For a function v : S → R, let Vv denote the normed space of real-valued functions f on S

with the finite v-norm

‖f ‖v = sup
s∈S

|f (s)|
|v(s)| .

The associated operator norm for a linear operator T : Vv −→ Vv is defined by

‖T ‖v = sup
‖f ‖v≤1

‖Tf ‖v.

For µ a (signed) measure, the associated norm is

‖µ‖v = sup
‖f ‖v≤1

|µf |

and, for a kernel P , the associated norm reads

‖P ‖v = sup
s∈S

sup
‖f ‖v≤1

| ∫ f (z)P (s; dz)|
|v(s)| .

It is straightforward to check that, for kernels P,Q,

‖PQ‖v ≤ ‖P ‖v‖Q‖v.
For our analysis, we choose v to be the following mapping:

v(s) := eλg(s), s ∈ S, (2)

for some positive λ, where g is defined in Condition 1.
Let πθ denote the stationary distribution under kernel Pθ . Denote by %θ the kernel that

maps any distribution to πθ , that is, µ%θ = πθ for µ ∈ M1(S,T ). In order to simplify the
notation, we will—with a slight abuse of notation—identify πθ with %θ .

The following result, which was established in [7] (see also [16]), shows that Conditions 1–3
imply that convergence of the Markov chain towards its stationary distribution happens at a
geometrical rate. Specifically, the following results were established in [16].

Result 1. (Heidergott et al. [16, Theorem 2].) Provided that Conditions 1–3 hold at θ , there
exist a finite cθ and a ρθ with 0 < ρθ < 1 such that, for λ small enough,

‖Pn
θ − %θ‖v ≤ cθ (ρθ )

n.

Result 2. (Heidergott et al. [16, Lemma 1].) If Conditions 1 and 3 hold at θ , then a neighbor-
hood �0 of θ exists such that

sup
θ̂∈�0

‖P
θ̂
‖v < ∞.
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Measure-valued derivatives are defined with respect to a predefined reference set D . The set
D that we will use for analyzing %θ is characterized through the function v(·) defined in (2),
and will be denoted by Dv . Specifically, let

Dv := {g:S → R | g is measurable and there is an r ∈ R

such that |g(s)| ≤ r · v(s) for s ∈ S}.

In other words, Dv is the set of measurable mappings g from S to R that are bounded by r · v
for some finite number r . In accordance with the discussion following Definition 2, we assume
that Cb(S) ⊂ Dv .

Other choices forD are of course possible. For example, a choice forD that is of importance
in applications is the set

Cv := {g ∈ Dv | g is continuous}. (3)

In particular, for v ≡ 1, we obtain the important case D = Cb(S); see [27]. In this paper, we
will focus on D = Dv and we will only briefly comment on the implications of another choice
for D in Remark 10.

We require that D is a vector or linear space over R, which is satisfied by Dv . In addition
to that, D = Dv has to be a subset of L1(Pθ : �), a sufficient condition for which is given in
the following corollary.

Corollary 1. Let Pθ ∈ K(S,T ). If ‖Pθ‖v < ∞, then Dv ⊂ L1(Pθ ,�) and Pθ is Dv-
preserving.

Proof. By the definition of the norm ‖ · ‖v , ‖Pθ‖v < ∞ implies that, for any g ∈ Dv ,

∣∣∣∣
∫

g(z)Pθ (s; dz)
∣∣∣∣ < cv(s), s ∈ S,

for some finite number c, which shows that

∫
g(z)Pθ (·; dz) ∈ Dv

and

Dv ⊂ L1(Pθ ,�),

which concludes the proof.

Remark 3. In accordance with Result 2, Condition 3 implies that ‖Pθ‖v < ∞ and, by
Corollary 1, this shows that Pθ is Dv-preserving. Consequently,

∫
g(z)Pm

θ (s, dz) is finite
for any m ≥ 0 and any g ∈ Dv and s ∈ S.

Definition 3. The transition kernel Pθ is said to be ‖ · ‖v-Lipschitz continuous at θ ∈ � if a
neighborhood �0 ⊂ � of θ exists such that, for some finite K ,

‖Pθ+) − Pθ‖v ≤ |)|K for all θ + ) ∈ �0.

The constant K is called the Lipschitz constant.
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Remark 4. Let Pθ be ‖ · ‖v-Lipschitz continuous at θ with Lipschitz constant K . This yields
for any g ∈ Dv and ) sufficiently small that∣∣∣∣

∫
g(z)Pθ+)(s; dz) −

∫
g(z)Pθ (s; dz)

∣∣∣∣ ≤ )Kv(s).

Notice thatKv(·) lies in Dv . Hence, by ‖ ·‖v-Lipschitz continuity, for any g ∈ Dv , aKg ∈ Dv

exists such that, for ) sufficiently small,∣∣∣∣
∫

Pθ+)(·; ds)g(s) −
∫

Pθ(·; ds)g(s)
∣∣∣∣ ≤ |)|Kg(·).

This property is called Dv-Lipschitz continuity of Pθ at θ in [16] and we have thus shown that
‖ · ‖v-Lipschitz continuity implies Dv-Lipschitz continuity.

Theorem 1. Let Pθ be a Dv-preserving transition kernel on (S,T ) such that Pθ is ‖ · ‖v-
Lipschitz continuous and D-differentiable at θ . If ‖Pθ‖v is finite, then Pn

θ is ‖ · ‖v-Lipschitz
continuous and D-differentiable at θ . Specifically, the following product rule holds:

(P n
θ )

′ =
n∑

j=1

P
n−j−1
θ P ′

θP
j−1
θ .

Proof. Notice that

Pθ+)Pθ+) − PθPθ = (Pθ+) − Pθ)Pθ

+ Pθ(Pθ+) − Pθ)

+ (Pθ+) − Pθ)(Pθ+) − Pθ). (4)

LettingK denote the ‖ ·‖v-Lipschitz constant of Pθ and taking ‖ ·‖v norms on both sides yields
that

‖Pθ+)Pθ+) − PθPθ‖v ≤ ‖Pθ+) − Pθ‖v‖Pθ‖v
+ ‖Pθ‖v‖Pθ+) − Pθ‖v
+ ‖Pθ+) − Pθ‖v‖Pθ+) − Pθ‖

≤ |)|K‖Pθ‖v + ‖Pθ‖v|)|K + |)|2K2.

Since we have assumed that ‖Pθ‖v is finite, the above inequalities establish the ‖ · ‖v-Lipschitz
continuity of P 2

θ at θ .
We now turn to the proof of Dv-differentiability. Notice that ‖ · ‖v-Lipschitz continuity of

Pθ at θ implies Dv-Lipschitz continuity of Pθ at θ (see Remark 4), which implies that

|(Pθ+) − Pθ)g| ≤ |)|Kg,

withKg ∈ Dv . Hence, dominated convergence together with Dv-differentiability of Pθ yields
that, for any g ∈ Dv ,

lim
)→0

1

)
(Pθ+) − Pθ)Pθg = P ′

θPθg

and

lim
)→0

1

)
Pθ(Pθ+) − Pθ)g = PθP

′
θg
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for the first two terms on the right-hand side of (4). We now turn to the last term in (4).
By ‖ · ‖v-Lipschitz continuity,

‖(Pθ+) − Pθ)(Pθ+) − Pθ)‖v ≤ |)|2K.

Dividing both sides by |)|, we obtain that

lim
)→0

1

|)| ‖(Pθ+) − Pθ)(Pθ+) − Pθ)‖v = 0.

This proves the statement for n = 2. The proof now follows by induction.

Remark 5. An alternative version of the product rule in Theorem 1 was established in [14].
The main difference between this product rule and the one in [14] is that Theorem 1 is based
on norm assumptions whereas the product rule in [14] elaborates on the condition that D is a
set of test functions (and thus contains all indicator mappings of sets A ∈ T ).

3. MVD of the stationary distribution

Let

Kθ(n) =
∞∑

m=0

P
(n)
θ Pm

θ .

ThekernelP (n)
θ canbewritten as the re-scaleddifferencebetween twoMarkovkernels (see [15]),

which implies that P (n)
θ %θ = 0. The operator Kθ(n) can thus be written as

Kθ(n) = P
(n)
θ Dθ ,

where

Dθ =
∞∑

m=0

(Pm
θ − %θ)

denotes the deviation operator associated with Pθ .

Remark 6. Let Conditions 1–3 hold at θ . Result 1 implies that

‖Dθ‖v =
∥∥∥∥

∞∑
m=0

(Pm
θ − %θ)

∥∥∥∥
v

≤ cθ
1

1 − ρθ

and, by Corollary 1, the transition kernel Dθ is Dv-preserving. Specifically,
∫
g(z)Dθ(s, dz)

is finite for any g ∈ Dv and s ∈ S.

We introduce the following condition.

Condition 4. For θ ∈ �,
lim
)→0

‖Pθ+) − Pθ‖v = 0. (5)

In other words, Condition 4 implies that Pθ is continuous at θ with respect to the norm ‖ ·‖v .
In case θ is a boundary point, we consider a one-sided limit in (5). Notice that ‖ · ‖v-Lipschitz
continuity of Pθ at θ is sufficient for Condition 4 to hold.
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Example 2. We revisit the situation in Example 1 and assume that ‖P ‖v < ∞ and ‖Q‖v < ∞.
It is easily checked that, for any θ + ) ∈ [0, 1],

‖Pθ+) − Pθ‖v = |)|‖P − Q‖v < ∞,

which shows that Pθ is ‖ · ‖v-Lipschitz at θ for any θ ∈ [0, 1], and Condition 4 is thus satisfied
on the entire interval [0, 1].
Lemma 1. Let Conditions 1–3 be satisfied at θ .

(i) There exists a neighborhood �0 of θ such that, for all θ + ) ∈ �0,

%θ+) − %θ = %θ+)(Pθ+) − Pθ)Dθ . (6)

(ii) If, in addition, Condition 4 is satisfied at θ , then

%θ+) = %θ

∞∑
m=0

((Pθ+) − Pθ)Dθ)
m

and
sup
θ̂∈�0

‖%
θ̂
‖v < ∞. (7)

Proof. For θ we have by Result 1 that

‖Pn
θ − %θ‖v ≤ cθρ

n
θ . (8)

By Result 2, ‖Pθ‖v < ∞ and we find with the triangle norm inequality that

‖%θ‖v ≤ ‖Pθ − %θ‖v + ‖Pθ‖v < ∞. (9)

Let I denote the identity kernel. It is easily seen that, for any k,

(I − Pθ)

(k−1∑
l=0

P l
θ

)
= (I − P k

θ ).

If θ + ) ∈ �, then

%θ+)(I − Pθ)

(k−1∑
l=0

P l
θ

)
= %θ+)(I − P k

θ )

= %θ+) − %θP
k
θ ; (10)

the inequalities (9) yield that the expressions in 10 are well defined. Since Pθ is unichained,
we have that %θ+)%θ = %θ and we obtain from 10 that

%θ+) − %θ = %θ+) − %θ+)P
k
θ + %θ+)(P

k
θ − %θ)

= %θ+)(I − Pθ)

(k−1∑
l=0

P l
θ

)
+ %θ+)(P

k
θ − %θ)

= %θ+)(I − Pθ)

(k−1∑
l=0

P l
θ − %θ

)
+ %θ+)(P

k
θ − %θ).
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We have already established the geometric ergodicity of Pθ (see (8)), and taking the limit as k
tends to ∞ we find that

%θ+) − %θ = %θ+)(I − Pθ)

( ∞∑
l=0

P l
θ − %θ

)
,

which proves (i).
By Remark 6, ‖Dθ‖v < ∞, and Condition 4 gives

lim
)→θ

‖(Pθ+) − Pθ)Dθ‖v = 0.

Choose δ > 0 such that ‖(Pθ+) − Pθ)Dθ‖v = ε < 1 for |)| < δ then, for g ∈ D ,

g

‖g‖v ∈ D1, with D1 = {g ∈ Dv : ‖g‖v ≤ 1},

and
‖(Pθ+) − Pθ)Dθg‖v ≤ ‖(Pθ+) − Pθ)Dθ‖v‖g‖v ≤ ε‖g‖v.

Since
(Pθ+) − Pθ)Dθg

‖(Pθ+) − Pθ)Dθg‖v ∈ D1,

we have

‖((Pθ+) − Pθ)Dθ)
2g‖v ≤ ‖(Pθ+) − Pθ)Dθ‖v‖(Pθ+) − Pθ)Dθg‖v

≤ ε2‖g‖v.
Similarly,

‖((Pθ+) − Pθ)Dθ)
kg‖v ≤ εk‖g‖v.

Hence, the Neumann series
∞∑

m=0

((Pθ+) − Pθ)Dθ)
mg

is convergent and the series can be bounded through

∥∥∥∥
∞∑

m=0

((Pθ+) − Pθ)Dθ)
mg

∥∥∥∥
v

≤ 1

1 − ε
‖g‖v. (11)

Elaborating on the equality (6) we find that

%θ = %θ+)(I − (Pθ+) − Pθ)Dθ)

and it follows from our choice of δ that, when |)| < δ,

%θ+) = %θ

∞∑
m=0

((Pθ+) − Pθ)Dθ)
m. (12)
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The proof now follows directly from the above expansion for%θ+) together with (11). Indeed,
for g ∈ Dv and θ + ) with |)| < δ,

‖%θ+)g‖v ≤ ‖%θ‖v
∥∥∥∥

∞∑
m=0

((Pθ+) − Pθ)Dθ)
mg

∥∥∥∥
v

≤ ‖%θ‖v 1

1 − ε
‖g‖v

and

sup
θ̂∈�

‖%
θ̂
g‖v ≤ ‖%θ‖v 1

1 − ε
,

for � ⊂ (θ − δ, θ + δ), which proves the claim.

Remark 7. Inspecting the proof of Lemma 1, we can notice that, if Conditions 1–4 hold at θ ,
then

%
θ̂

= %θ

∞∑
m=0

((P
θ̂

− Pθ)Dθ)
m (13)

for θ̂ in a neighborhood of θ ; cf. (12) above. This relation is well known in Markov decision
chains where it is called a Newton-type representation; see Proposition 3.3(i) in [19].

Remark 8. Under the conditions put forward in Lemma 1, applying Corollary 1 yields that
%θ is Dv-preserving. Consequently, for any s ∈ S,

∫
g(z)%θ(s, dz) is finite for any g ∈ Dv ,

and so is
∫
g(z)πθ (dz).

As the following lemma shows, Conditions 1–3 together with ‖ · ‖v-continuity of Pθ are
sufficient for uniform boundedness of ‖Pn

θ − %θ‖ν .
Lemma 2. Let Conditions 1–3 together with Condition 4 hold at θ . Then there exist a finite
c < ∞, a ρ with 0 < ρ < 1 and a neighborhood �0 of θ such that, for λ small enough,

sup
θ̂∈�0

‖Pn

θ̂
− %

θ̂
‖v ≤ cρn. (14)

Proof. Let θ + ) ∈ �. Using norm inequalities we find that

‖Pn
θ+) − %θ+)‖v ≤ ‖Pn

θ+) − Pn
θ ‖v + ‖Pn

θ − %θ‖v + ‖%θ − %θ+)‖v.

We bound the three terms on the right-hand side of this inequality. From Result 2, we may
choose � such that, when 1 ≤ K < ∞,

sup
θ̂∈�

‖P
θ̂
‖v ≤ K.

It is easily verified that the following telescope sum holds:

Pn
θ+) − Pn

θ =
n∑

k=1

P k−1
θ+)(Pθ+) − Pθ)P

n−k
θ .
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This gives the norm inequality

‖Pn
θ+) − Pn

θ ‖v ≤ ‖Pθ+) − Pθ‖v
n−1∑
k=0

‖P k
θ+)‖v‖Pn−1−k

θ ‖v

≤ ‖Pθ+) − Pθ‖v
n−1∑
k=0

‖Pθ+)‖kv‖Pθ‖n−1−k
v

≤ ‖Pθ+) − Pθ‖vnKn.

Choose an ε < 1. Result 1 implies that

‖Pn
θ − %θ‖v ≤ cθρ

n
θ .

Choose an n such that cθρn
θ < ε/3. From Lemma 1 we find that there exists a δ > 0 such that,

for |)| < δ,

‖%θ − %θ+)‖v ≤ ε

3
and

‖Pθ+) − Pθ‖v ≤ ε

3nKn
.

Then, for
�0 := {θ̂ : |θ̂ − θ | < δ},

we find from the above inequalities that

ρ1 := sup
θ̂∈�0

‖Pn

θ̂
− %

θ̂
‖v < 1.

Notice that Pm

θ̂
%

θ̂
= %

θ̂
Pm

θ̂
= %

θ̂
implies that

Pm

θ̂
− %

θ̂
= (P

θ̂
− %

θ̂
)m. (15)

Again using norm inequalities we obtain for m ≥ 1 that

‖Pm

θ̂
− %

θ̂
‖v = ‖(P

θ̂
− %

θ̂
)m‖v

= ‖(P
θ̂

− %
θ̂
)n�m/n�+m−n�m/n�‖v

≤ (‖(P
θ̂

− %
θ̂
)n‖v)�m/n�‖(P

θ̂
− %

θ̂
)m−n�m/n�‖v

= (‖Pn

θ̂
− %

θ̂
‖v)�m/n�‖Pm−n�m/n�

θ̂
− %

θ̂
‖v

≤ ρ
�m/n�
1 max

k=0,...,n−1
‖P k

θ̂
− %

θ̂
‖v, (16)

the first and third equalities following from (15) and �·� being the integer-part function. The
inequality (14) with

c := sup
θ̂∈�0

max
k=0,...,n−1

‖P k

θ̂
− %

θ̂
‖v

and ρ := ρ
1/n
1 follows (16).

The following theorem establishes a recurrence relation for the Dv-derivatives of Kθ(n).



1058 B. HEIDERGOTTANDA. HORDIJK

Theorem 2. Assume that Conditions 1–3 are satisfied at θ . If Pθ is ‖ · ‖v-Lipschitz continuous
at θ , then %θ is ‖ · ‖v-Lipschitz continuous at θ . If, in addition, Pθ is Dv-differentiable at θ ,
then %θ is Dv-differentiable at θ with

%′
θ = %θKθ(1).

Proof. We elaborate on Lemma 1(i):

%θ+) − %θ = %θ+)(Pθ+) − Pθ)Dθ

implies that
‖%θ+) − %θ‖v ≤ ‖%θ+)‖v‖(Pθ+) − Pθ)Dθ‖v.

Let Pθ be ‖ · ‖v-Lipschitz continuous at θ with constantK . The conditions of the theorem then
imply that ‖Dθ‖v < ∞; see Remark 6. We have

‖%θ+) − %θ‖v ≤ ‖%θ+)‖v|)|K‖Dθ‖v
and, because sup

θ̂∈� ‖%
θ̂
‖v < ∞ (see Lemma 1), the ‖·‖v-Lipschitz continuity of%θ follows.

We now turn to the Dv-differentiability of %θ . Again by Lemma 1,

%θ+) − %θ = %θ+)(Pθ+) − Pθ)Dθ

= (%θ+) − %θ)(Pθ+) − Pθ)Dθ + %θ(Pθ+) − Pθ)Dθ .

By the ‖ · ‖v-Lipschitz continuity of %θ and Pθ , we have

‖(%θ+) − %θ)(Pθ+) − Pθ)Dθ‖v ≤ |)|2K
for some finite number K . Hence, for any g ∈ Dv ,

lim
θ→θ

1

)
(%θ+) − %θ)(Pθ+) − Pθ)Dθg = 0.

By the Dv-Lipschitz continuity of Pθ (which is implied by the ‖ · ‖v-Lipschitz continuity of
Pθ ; see Remark 4), we obtain for any g ∈ Dv that

1

|)| |(Pθ+) − Pθ)Dθg| ≤ Kg,

with Kg ∈ Dv . The Dv-differentiability of Pθ implies that, for any g ∈ Dv , the limit

lim
)→0

1

)
(Pθ+) − Pθ)Dθg = P ′

θDθg

exists and is again in Dv . Since %θKg is finite (from (7) in Lemma 1(ii) together with
Corollary 1), the dominated convergence theorem applies and we obtain that

lim
)→0

1

)
%θ(Pθ+) − Pθ)Dθg = %θP

′
θDθg.

We have thus shown that
%′

θ = %θP
′
θDθ = %θKθ(1),

which concludes the proof of the induction hypothesis.
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Remark 9. In [16], differentiability of %θ with respect to an arbitrary set D was established
under a different set of conditions. Studying the relation between the settings in [16] and those
chosen for the present analysis is a topic of further research.

The following theorem will establish sufficient conditions for Dv-differentiability ofKθ(n).
To simplify the presentation, we summarize the set of conditions needed for the theorem by a
single condition, Condition Cn, where n ≥ 0.

Condition Cn. (i) The kernel Pθ is n + 1 times Dv-differentiable at θ .

(ii) For some r ≥ 0, the neighborhood�0 = (θ − r, θ + r) of θ is such that, when 0 ≤ m ≤ n,
‖P (m)

θ ‖v < ∞ and P
(m)
θ is ‖ · ‖v-Lipschitz continuous at θ .

Example 3. We revisit the situation in Example 1 and assume that ‖P ‖v < ∞ and ‖Q‖v < ∞.
In accordance with Example 1, Pθ is infinitely often Dv-differentiable at any θ ∈ [0, 1] (with
only the first-order Dv-derivative significant) and

‖P ′
θ‖v ≤ ‖P ‖v + ‖Q‖v < ∞.

Moreover, by Example 2, Pθ is ‖·‖v-Lipschitz continuous at any θ ∈ [0, 1] and Dv-preserving.
Because any (higher-order) Dv-derivative of Pθ is independent of θ , they are ‖·‖v-Lipschitz
continuous at any θ ∈ [0, 1]. Hence, Condition Cn is satisfied for any n on the entire interval
[0, 1].
Theorem 3. If Conditions 1–3 and Cn for some n ≥ 1 are satisfied at θ then Kθ(n) is Dv-
differentiable with

Kθ(n)
′ = Kθ(n)Kθ(1) + Kθ(n + 1).

Proof. Let Qθ = P
(n)
θ . Then

Kθ(n) = lim
M→∞

M∑
m=0

QθP
m
θ .

By Theorem 1,

( M∑
m=0

QθP
m
θ

)′
=

M∑
m=0

Q′
θP

m
θ +

M∑
m=0

m∑
j=0

QθP
m−j−1
θ P ′

θP
j
θ

and, taking the limit as M tends to infinity,

lim
M→∞

( M∑
m=0

QθP
m
θ

)′
=

∞∑
m=0

Q′
θP

m
θ +

∞∑
m=0

m∑
j=0

QθP
m−j−1
θ P ′

θP
j
θ .

Rearranging terms gives

lim
M→∞

( M∑
m=0

QθP
m
θ

)′
= Kθ(n + 1) + Kθ(n)Kθ(1). (17)

It remains to be shown that

lim
M→∞

( M∑
m=0

QθP
m
θ g

)′
= Kθ(n)

′g, g ∈ Dv.
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To see this, note that, for any M > 0,

Kθ(n)
′ =

( M∑
m=0

QθP
m
θ

)′
+

( ∑
m>M

QθP
m
θ

)′
(18)

and the proof of the claim thus follows from

lim
M→∞

( ∑
m>M

QθP
m
θ

)′
= 0. (19)

By Condition Cn, we may choose �0 small enough such that

sup
θ̂∈�0

‖Q
θ̂
‖v = K1 < ∞, (20)

which is a consequence of the ‖ ·‖v-Lipschitz continuity ofQθ = P
(n)
θ . Indeed, since ‖Qθ‖v is

finite, ‖·‖v-Lipschitz continuity ofQθ at θ with constantK on, say,�0, implies for θ+) ∈ �0
that

‖Qθ+)‖v = ‖Qθ+) − Qθ + Qθ‖v ≤ ‖Qθ‖v|)|K < ∞
and (20) holds for K1 = K‖Qθ‖v , where we assume without loss of generality that |)| ≤ 1.

We consider the difference quotient for any θ + ) ∈ �0, the neighborhood as defined in
Lemma 2. Since, for m ≥ 1 and each θ̂ ∈ �0,

∑
m>M

Q
θ̂
Pm

θ̂
=

∑
m>M

Q
θ̂
(Pm

θ̂
− %

θ̂
) =

∑
m>M

Q
θ̂
(P

θ̂
− %

θ̂
)m,

we have that

)(M) :=
∑
m>M

Qθ+)P
m
θ+) −

∑
m>M

QθP
m
θ

=
∑
m>M

Qθ+)(Pθ+) − %θ+))
m −

∑
m>M

Qθ(Pθ − %θ)
m

=
∑
m>M

Qθ+)(Pθ+) − %θ+))
m −

∑
m>M

Qθ+)(Pθ − %θ)
m

+
∑
m>M

Qθ+)(Pθ − %θ)
m −

∑
m>M

Qθ(Pθ − %θ)
m.

We derive bounds for the difference of the first and the second terms and for the difference of
the third and fourth terms in the right-hand side of this equality. Using (20), we find that

∥∥∥∥
∑
m>M

Qθ+)(Pθ+) − %θ+))
m −

∑
m>M

Qθ+)(Pθ − %θ)
m

∥∥∥∥
v

≤ K1

∥∥∥∥
∑
m>M

(Pθ+) − %θ+))
m −

∑
m>M

(Pθ − %θ)
m

∥∥∥∥
v

.
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By Theorem 2, %θ+) is ‖ · ‖v-Lipschitz continuous at θ with constant K2, say. Together
with the ‖ · ‖v-Lipschitz continuity of Pθ+) with constant, say, K3, we obtain from the above
inequality that

∥∥∥∥
∑
m>M

(Pθ+) − %θ+))
m −

∑
m>M

(Pθ − %θ)
m

∥∥∥∥
v

=
∥∥∥∥

∑
m>M

((Pθ+) − Pθ) − (%θ+) − %θ))

m−1∑
k=0

(Pθ+) − %θ+))
k(Pθ − %θ)

m−1−k

∥∥∥∥
v

≤ ‖(Pθ+) − Pθ) − (%θ+) − %θ)‖v
∑
m>M

cmρm

≤ |)|(K2 + K3)K1(M),

where the first inequality follows from Lemma 2 and where

K1(M) =
∑
m>M

cmρm.

Note that limM→∞ K1(M) = 0. Hence,
∥∥∥∥

∑
m>M

Qθ+)(Pθ+) − %θ+))
m −

∑
m>M

Qθ+)(Pθ − %θ)
m

∥∥∥∥
v

≤ |)|K1(K2 + K3)K1(M).

Similarly, with the ‖ · ‖v-Lipschitz continuity of Qθ+), say

‖Qθ+) − Qθ‖v ≤ |)|K4,

we have that∥∥∥∥
∑
m>M

Qθ+)(Pθ − %θ)
m −

∑
m>M

Qθ(Pθ − %θ)
m

∥∥∥∥
v

≤ |)|K4(K2 + K3)
∑
m>M

cρm.

We conclude that
)(M) ≤ |)|K(M),

with

K(M) := (K4 + K1)(K2 + K3)

(
c
ρM+1

1 − ρ
+ K1(M)

)
,

and
lim

M→∞K(M) = 0,

which establishes (19). Taking limits in (18),

Kθ(n)
′ = lim

M→∞

( ∑
m≤M

QθP
m
θ

)′

= Kθ(n + 1) + Kθ(n)Kθ(1),

where the last equality follows from (17).
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We come to the main result of this section, namely that %θ is n times Dv-differentiable
under appropriate conditions and %

(n)
θ can be obtained in a closed-form expression.

Theorem 4. Assume that Conditions 1–3 and Cn for some n ≥ 1 are satisfied at θ . Then %θ

is n times Dv-differentiable with

%
(n)
θ =

∑
1≤m≤n
1≤lk≤n

l1+···+lm=n

n!
l1! · · · lm!%θ

m∏
k=1

Kθ(lk),

or, equivalently,

%
(n)
θ =

∑
1≤m≤n
1≤lk≤n

l1+···+lm=n

n!
l1! · · · lm!%θ

m∏
k=1

(P
(lk)
θ Dθ ).

Proof. Notice that Kθ(m) is a transition kernel for m ≤ n.
We give a proof by induction. For n = 1, the proof follows from Theorem 2.
For n = 2, we combine Theorems 2 and 1 as follows:

%
(2)
θ = (%θKθ(1))

′

= %′
θKθ (1) + %θKθ(1)

′

= %θKθ(1)Kθ (1) + %θKθ(1)
′,

and, invoking Theorem 3, this is equal to

%θKθ(1)Kθ (1) + %θKθ(1)Kθ (1) + %θKθ(2) = 2%θKθ(1)Kθ (1) + %θKθ(2).

To continue the induction, suppose that the statement of the theorem is true for n. Taking
the (n + 1)th derivative of %θ yields

%
(n+1)
θ =

∑
1≤m≤n
1≤lk≤n

l1+···+lm=n

n!
l1! · · · lm!

(
%θ

m∏
k=1

Kθ(lk)

)′
.

For given l = (l1, l2, . . . , lm), Theorem 1 gives

(
%θ

m∏
k=1

Kθ(lk)

)′
= %′

θ

m∏
k=1

Kθ(lk) + %θ

( m∏
k=1

Kθ(lk)

)′
.

By Theorem 1 together with Theorem 2,

%′
θ

m∏
k=1

Kθ(lk) = %θKθ(1)
m∏

k=1

Kθ(lk)

and ( m∏
k=1

Kθ(lk)

)′
=

m∑
j=1

j−1∏
k=1

Kθ(lk)(Kθ (lj ))
′

m∏
k=j+1

Kθ(lk),
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where we set
∏β

α = 1 if α > β. Inserting the explicit formula for Kθ(lj )
′ gives

( m∏
k=1

Kθ(lk)

)′
=

m∑
j=1

j−1∏
k=1

Kθ(lk)(Kθ (lj )Kθ (1) + Kθ(lj + 1))
m∏

k=j+1

Kθ(lk).

Hence,

(
%θ

m∏
k=1

Kθ(lk)

)′
= %θKθ(1)

m∏
k=1

Kθ(lk)

+ %θ

m∑
j=1

j−1∏
k=1

Kθ(lk)Kθ (lj )Kθ (1)
m∏

k=j+1

Kθ(lk)

+ %θ

m∑
j=1

j−1∏
k=1

Kθ(lk)Kθ (lj + 1)
m∏

k=j+1

Kθ(lk).

Observe that a vector (l1, l2, . . . , lm) is translated by

%θKθ(1)
m∏

k=1

Kθ(lk)

into (1, l1, l2, . . . , lm), by

%θ

m∑
j=1

j−1∏
k=1

Kθ(lk)Kθ (lj )Kθ (1)
m∏

k=j+1

Kθ(lk)

into the vectors (l1, . . . , lj , 1, lj+1, lm) for 1 ≤ j ≤ m, and by

%θ

m∑
j=1

j−1∏
k=1

Kθ(lk)Kθ (lj + 1)
m∏

k=j+1

Kθ(lk)

into the vectors (l1, . . . , lj−1, lj + 1, lj+1, lm) for 1 ≤ j ≤ m. Because

n∑
k=1

lk = n,

it follows that the elements of the new vectors add up to n + 1. Moreover, by the above
procedure, any vector l̃ with 1 ≤ l̃k ≤ n + 1 and

∑
k l̃k = n + 1 is obtained. Finally, we take

into account that the number of ways to achieve a certain vector l̃ increases with the growing n.
This concludes the proof of the theorem.

Remark 10. For the analysis in this section, we have worked withDv as the set of performance
mappings. In applications we might also be interested in carrying out the analysis for subsets
of Dv , such as Cv , as defined in (3).



1064 B. HEIDERGOTTANDA. HORDIJK

Let D̂ be a subset of Dv . In order to apply the analysis in this section to D̂ , the following
issues have to be addressed:

• Pθ ,Dθ and %θ are D̂-preserving,

• ‖ · ‖v-Lipschitz continuity implies D̂-Lipschitz continuity.

For example, if D̂ = Cv , then it has to be checked on an individual basis if Pθ is
Cv-preserving. However, for the remaining issues, sufficient conditions can be established.
To see this, let Conditions 1–3 hold and assume that Pθ is ‖ · ‖v-continuous. By Lemma 1,
‖%θ‖v is finite and, since %θg is a constant mapping, %θ is Cv-preserving. Moreover, if Pθ is
Cv-preserving, then Pn

θ is Cv-preserving, and it follows that Pm
θ −%θ is Cv-preserving. Since∑N

m=0(P
m
θ −%θ)g(s) converges uniformly toDθg(s) for any s ∈ S asN tends to ∞, it readily

follows that Dθ is Cv-preserving.
As for Cv-Lipschitz continuity, if v is continuous, then, following the line of argument put

forward in Remark 4, it follows that ‖ · ‖v-Lipschitz continuity indeed implies Cv-Lipschitz
continuity.

4. Taylor series expansions

When %θ is to be developed into a Taylor series, we have to control the growth rate of the
elements of the series, that is, of {%(n)

θ }. By Theorem 4, the key ingredient for obtaining an
upper bound for the elements of the Taylor series is to bound the operator Kθ(m), 0 ≤ m ≤ n,
in the expression for %(n)

θ . Elaborating on the ‖ · ‖v norm, such a bound can be obtained from

‖Kθ(n)‖v =
∥∥∥∥

∞∑
m=0

P
(n)
θ (Pm

θ − %θ)

∥∥∥∥
v

≤ ‖P (n)
θ Dθ‖v

≤ ‖P (n)
θ ‖v‖Dθ‖v.

Theorem 4 yields that

‖%(n)
θ ‖v ≤

∑
1≤m≤n
1≤lk≤n

l1+···+lm=n

n!
l1! · · · lm! ‖%θ‖v

m∏
k=1

‖P (lk)
θ Dθ‖v

= ‖%θ‖vHθ (n),

where

Hθ(n) :=
∑

1≤m≤n
1≤lk≤n

l1+···+lm=n

n!
l1! · · · lm!

m∏
k=1

‖P (lk)
θ Dθ‖v.

We summarize the above analysis in the following theorem.
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Theorem 5. Let Conditions 1–3 and Cn+1 for some n be satisfied at θ . Then, for any g ∈ Dv ,

∫
g d%θ+) =

n∑
m=0

)m

m!
∫

g d%(m)
θ + rn+1,)

for any ) with |)| < r , where r is given in Condition Cn+1 and

rn+1,) ≤ |)|n+1

(n + 1)! ‖%θ‖v sup
|)|≤r

Hθ+)(n + 1).

Suppose that the conditions of Theorem 5 hold. In particular, assume that Condition Cn

holds for any n. Let rθ be given through

1

rθ
= lim sup

n

(
1

n! ‖%θ‖vHθ (n)

)1/n

= lim sup
n

(
1

n!Hθ(n)

)1/n

. (21)

Then, for any g ∈ Dν ,
∫
g d%θ can be developed into a Taylor series at θ whose radius of

convergence is at least rθ and we obtain the following result.

Corollary 2. Assume that Condition 1–3 hold at θ . If Condition Cn is satisfied at θ for all
n ≥ 1, then

%θ+) =
∞∑
n=0

)n

n! %
(n)
θ

for |)| ≤ rθ , with rθ as given in (21).

Example 4. We revisit the situation of Example 3 and we assume that Conditions 1–3 hold
at θ . Under the conditions in Example 3, Theorem 4 applies and we obtain that

%
(n)
θ = n!%θ(Kθ(1))

n.

Because only the first-order derivative is significant, we have

Hθ(n) = n! (‖(Q − P)D‖v)n,
where

D =
∞∑

m=0

(Pm − %P )

is the deviation operator associated with P and %P the operator that maps any distribution to
the unique invariant distribution to P . The radius of convergence of the Taylor series at θ is
therefore given by

1

rθ
= lim sup

n

(
1

n! ‖%θ‖vHθ (n)

)1/n

= ‖(Q − P)D‖v.
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Hence, by Corollary 2, the Taylor series for %θ reads

%θ+) =
∞∑
n=0

)n%θ(Kθ(1))
n

=
∞∑
n=0

)n%θ((Q − P)Dθ)
n (22)

for any θ ∈ [0, 1] and |)| < rθ . The representation (22) was shown to hold for finite-state
Markov chains in [8]. In Section 5 we will compute rθ for an example from queueing theory.

In the previous example, we calculated the radius of convergence of the Taylor series for
a Markov chain that had only one significant derivative. The general situation is as follows.
Notice that

Hθ(n) ≤
∑

1≤m≤n
1≤lk≤n

l1+···+lm=n

n!
l1! · · · lm!

m∏
k=1

‖P (lk)
θ ‖v‖Dθ‖v.

If the chain satisfies Conditions 1–3 at θ , then ‖Dθ‖ is bounded by the expression given in
Remark 6. Assume that the first s(Pθ ) Dv-derivatives of Pθ are significant and set s(Pθ ) = ∞
if all higher-order Dv-derivatives are significant. Let

ηθ = sup
n≤s(Pθ )

‖P (n)
θ ‖v.

Then

‖Hθ(n)‖v ≤
(
cθ

ηθ

1 − ρθ

)n ∑
1≤m≤n

1≤lk≤min(n,s(Pθ ))
l1+···+lm=n

n!
l1! · · · lm! .

Notice that ∑
1≤m≤n

1≤lk≤min(n,s(Pθ ))
l1+···+lm=n

n!
l1! · · · lm! ≤

∑
l∈{0,...,n}n
l1+···+ln=n

n!
l1! · · · lm! ≤ nn.

Hence,

‖%(n)
θ ‖v ≤ ‖%θ‖v

(
cθηθ

1 − ρθ

)n

nn,

and an upper bound for the radius of convergence is obtained from the Cauchy–Hadamard
theorem to be

1

rθ
= cθηθ

1 − ρθ
lim sup

n

(
nn

n!
)1/n

,

which gives

rθ = 1 − ρθ

cθηθ e
.

Unfortunately, even for simple systems the values for cθ , ρθ and ηθ cannot be computed.
Numerical procedures for computing cθ , ρθ and ηθ (approximately) are topics of further
research.

Remark 11. Substituting the Taylor expansion of P
θ̂

− Pθ into (13) and collecting the terms
of θ̂ k for given k provides an other derivation of the Taylor series of %

θ̂
.
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5. Example

Let P denote the Markov kernel of the queue-length process in an M/M/1 queue with arrival
rate η1 and service rate µ, where we assume that η1 < µ. Furthermore, let Q denote the
Markov kernel of the queue-length process in a G/M/1 queue with service rate µ and whose
interarrival times consist of two stages: the first stage is exponentially distributed with rate η1
and the second stage is independent of the first stage exponentially distributed with rate η2. For
θ ∈ [0, 1], set

Pθ = (1 − θ)P + θQ.

Then Pθ is the Markov kernel of the embedded queue-length process in a G/M/1 queue with
service rate µ. Interarrival times follow a Cox distribution with rates ηj for j = 1, 2 and
parameter θ , that is, the interarrival times consist with probability 1−θ of a single exponentially
distributed stage with rate η1, and a second stage with rate η2 follows with probability θ . Let
Xθ(n) = (Xθ (1, n),Xθ (2, n)) be the state of the embedded jump process, with Xθ(1, n) ∈ N

the total number of customers in the system and Xθ(2, n) ∈ {1, 2} the stage of the interarrival
time. Let

Pθ((k, i); (k′, i′)) = Pr(Xθ (m + 1) = (k′, i′) | Xθ(m) = (k, i))

for (k, i), (k′, i′) ∈ N × {1, 2}. Set
Dν = {g : N × {1, 2} → R | for some r|g(k, i)| ≤ reλk for all (k, i) ∈ N × {1, 2}}

for λ sufficiently small.
It is shown in [16] that Pθ satisfies Conditions 1–3 at any θ ∈ [0, 1]. Moreover, it is

easily checked that ‖P ‖v and ‖Q‖v are finite and, by Corollary 1, P and Q are therefore
Dv-preserving. In accordance with Example 3, Condition Cn holds for any n at any θ ∈ [0, 1].
In the remainder of this section, we compute a lower bound for the radius of convergence of
the Taylor series of %θ developed at θ = 0.

The deviation matrix for the M/M/1 queue, denoted by D, was derived in [24], [25] and
[10]. For the embedded process it is

D(i, j) := ρmax{j−i,0} − (i + j + 1)(1 − ρ)ρj

µ(1 − ρ)
,

where
ρ := η1

µ
(23)

denotes the traffic intensity of the M/M/1 queue.
Let D(i, 1; j) = D(i, j) for any i, j ≥ 0. Note that, in principle, we also have to define

D(i, 2; j), but since these values are not required for our analysis we do not dwell on this issue
here. In accordance with Example 4, the radius of convergence is determined through

‖(Q − P)D‖v,
where, from Section 5.2.1 of [16], we may take v(i, k) := ρi

1 for ρ1 > 1 and ρ1 − 1 < δ for
some δ > 0. In particular,

(Dv)(i) =
∑
j≥0

ρmax{j−i,0} − (i + j + 1)(1 − ρ)ρj

µ(1 − ρ)
ρ
j
1 .
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Note thatP is not defined on states (k, 2). Wemay defineP on these states asQ, thenQ−P = 0
on these states. Hence,

((Q − P)Dv)(i, 2) = 0.

For state (i, 1), we find the following transition probabilities

P(i, 1; i + 1, 1) = Q(i, 1; i, 2) = η1

η1 + µ1i>0

for i ≥ 0; see Section 5.2.1 of [16] where a complete specification of P and Q is given. By
calculation,

((Q − P)Dv)(i, 1) = (Q(i, 1; i + 1, 1) − P(i, 1; i + 1, 1))(Dv)(i + 1)

+ (Q(i, 1; i − 1, 1) − P(i, 1; i − 1, 1))(Dv)(i − 1)

+ (Q(i, 1; i, 2) − P(i, 1; i, 2))(Dv)(i).

In particular,

Q(i, 1; i + 1, 1) = 0 = P(i, 1; i, 2)
and

Q(i, 1; i − 1, 1) = P(i, 1; i − 1, 1),

which gives

((Q − P)Dv)(i, 1) = Q(i, 1; i, 2)(Dv)(i) − P(i, 1; i + 1, 1)(Dv)(i + 1)

= η1

η1 + µ1i>0
((Dv)(i) − (Dv)(i + 1))

= η1

η1 + µ1i>0

(∑
j≥0

ρmax{j−i,0} − (i + j + 1)(1 − ρ)ρj

µ(1 − ρ)
ρ
j
1

−
∑
j≥0

ρmax{j−i−1,0} − (i + j + 2)(1 − ρ)ρj

µ(1 − ρ)
ρ
j
1

)

= η1

η1 + µ1i>0

1

µ(1 − ρ)

(∑
j≥0

ρmax{j−i,0}ρj
1 −

∑
j≥0

ρmax{j−i−1,0}ρj
1

)

+ η1

η1 + µ1i>0

1

µ

(∑
j≥0

−(i + j + 1)ρjρ
j
1 −

∑
j≥0

−(i + j + 2)ρjρ
j
1

)
.

The summations in the above equality are

∑
j≥0

(ρmax{j−i,0} − ρmax{j−i−1,0})ρj
1 =

∑
j≥i+1

(ρj−i − ρj−i−1)ρ
j
1

= (ρ − 1)ρi+1
1

∑
j≥i+1

ρj−i−1ρ
j−i−1
1

= −(1 − ρ)ρi+1
1

1

1 − ρρ1
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and
∑
j≥0

−(i + j + 1)ρjρ
j
1 −

∑
j≥0

−(i + j + 2)ρjρ
j
1 =

∑
j≥0

(−1)ρjρ
j
1

= − 1

1 − ρρ1
.

Hence, we obtain for the overall expression

((Q − P)Dv)(i, 1) = η1

η1 + µ1i>0

1

µ

(
ρi+1
1

(
− 1

1 − ρρ1

)
− 1

1 − ρρ1

)
.

Recall that the norm of a matrix A is defined as

‖A‖v := sup
i

∑
j

|A(i, j)|v(j)
v(i)

.

Using this and (23), we find that

‖(Q − P)D‖v = sup
i

η1

η1 + µ1i>0

1

µ

(
ρ1

1 − ρρ1
+ 1

ρi
1(1 − ρρ1)

)

= 1

µ

(
1 + ρ1

1 − ρρ1

)

= ρ

η1

(
1 + ρ1

1 − ρρ1

)

Since the radius of convergence r0 is independent of ρ1, we have that

r0 ≥ lim sup
ρ1↓1

(
ρ

η1

(
1 + ρ1

1 − ρρ1

))−1

= η1

2

(
1 − ρ

ρ

)
.

Note that if we take a different time scale, then η1 will change but ρ is invariant. Hence, we
may choose a time scale for which r0 > 1, and consequently the Taylor series converges on the
complete interval [0, 1]. The Taylor series then gives the analytic expansion of the stationary
distribution%θ on [0, 1]. Recalling that%P denotes the unique invariant distribution on P , we
have thus shown that

%θ =
∞∑
n=0

θn%P ((Q − P)D)n

=
∞∑
n=0

θn%P

(
(Q − P)

∞∑
m=0

(Pm − %P )

)n

,

for any θ ∈ [0, 1].
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