
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Taylor Series Prediction: A Cache Replacement Policy Based on

Second-Order Trend Analysis

Qiang Yang, Haining Henry Zhang and Hui Zhang
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada V5A 1S6

(qyang, hzhangb)@cs.sfu.ca, h8zhang@math.uwaterloo.ca
Abstract
Caching is one of the most e�ective techniques for

improving the performance of Internet systems. The
heart of a caching system is its page replacement pol-
icy, which decides which page to replace in a cache by
a new one. Di�erent caching policies have dramati-
cally di�erent e�ects on the system performance. In
this paper, we extend the well-known GDSF caching
policies to include not only access trend information,
but also the dynamics of the access trend itself to the
trends on access trends. The new trend policy that we
propose, called Taylor Series Prediction (TSP) policy,
provides more accurate prediction on future accessing
trends when the access patterns vary greatly. We back
up our claims through a series of experiments using
web access traces.

1 Introduction

As the World Wide Web grows at a very rapid rate,
researchers have designed various e�ective caching al-
gorithms to contain network tra�c. The idea of web
caching is to maintain a highly e�cient but small set
of retrieved results in a system cache, such that much
of the tra�c can be shortcut if the user query can be
directly answered by one of the pages in the cache.
This can often result in signi�cant improvement in
system performance.
Lying in the heart of caching algorithms is the

so called \page replacement policy", which speci�es
conditions under which a new page will replace an
existing one. Many replacement policies have been
proposed over the years, including the LRU-K algo-
rithm [OOW93], which rejects the Least-Recently-
Used page in most recent K accesses, the GD-size
policy [CI97] which considers access costs and vary-
ing page sizes, and an enhancement of the GD-size
algorithm known as GDSF [ALCJ99, Che98] which

1

0-7695-0981-9/01 $10.
incorporates the frequency information. The basic
idea of most of these caching algorithms is to rank
pages based on their access trend in addition to fac-
tors such as size, frequency and cost, so that pages
that are \young", relative to its own last access, are
ranked higher, and pages that are \old" are ranked
lower.

Our key observation is that the trend or page ref-
erence rate of a web page can be considered in the
same way as the concept of \speed", which captures
how fast an object moves in classical mechanics. Al-
though this rate is an adequate measure for how likely
a page will be referenced next, it fails to capture the
trend in which the reference rate itself changes in the
near future. In the analogy with classical mechanics,
this reference-rate trend corresponds to the concept
of \acceleration."

In the Internet environment, the paging need usu-
ally ranges over an extended period of time, and the
fetching of a web page can be a long process. For
example, a group of users querying a travel web site
about potential travel plans will likely pose requests
over a period of several days. Once the request is
completed, then the reference rate will gradually die
out as the interest of users in this page will be re-
duced. When this happens, it is important for a web
server or a proxy server to notice the change in this
trend, so as to better prepare for the caching of pages
from new sites through methods such as pre-fetching.

We propose a new replacement policy by adding
an additional factor to compute the reference rate
trend. To do this, we introduce Taylor Series Predic-
tion (TSP) as a mathematical tool for incorporating
both the reference rate and the trend in reference
rate, and show that this analysis nicely summarizes
the LRU-K based policies and compares nicely with
the GD-size class of policies. We show experimen-
tally that the new TSP algorithm can perform better
00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
in many domains.
The organization of the paper is as follows. In

the next Section, we review the work in caching and
present our motivation. Then in Section 3 we intro-
duce the formal Taylor Series Analysis Model. Then,
in Section 4, we present our experimental results re-
lated to this new model, and conclude in Section 5.

2 Background

Caching is a mature technique that has been widely
applied in many computer science areas. Among
those areas, Operating Systems and Databases are
two most important ones. Currently, the World Wide
Web is becoming another popular application area of
caching. Below, we briey review caching in these
areas.
The widespread LRU (Least-Recently-Used) algo-

rithm is a good approximation to the optimal page
replacement algorithms by considering the age as well
as the reference frequency of a page. It is based on
the assumption that pages which have been heavily
used in the past will probably be used again in the
near future, and pages which have not been used re-
cently will probably remain unused for a long time.
Consequently, in the LRU algorithm, the page which
has not been used for the longest period of time is
replaced. This algorithm is chosen as the page re-
placement policy by almost all commercial systems.

The LRU-K algorithm is motivated by knowing
that the popular LRU algorithm is not always ap-
propriate for the database environment (for more de-
tails, see [Rei76] [Sto81] [SS86] and [CD85]). The key
observation is that LRU keeps only the time of last
reference to each page when making page replace-
ment decision. Thus, the LRU algorithm cannot well
distinguish between frequently referenced pages and
infrequently referenced pages due to the limited in-
formation it is based on. The basic idea of LRU-K
is to consider the time of the last K references to
a page and to use such information to make page-
replacement decision. To quote the original descrip-
tion in [OOW93] :

The page to be dropped (i.e., selected as a
replacement victim) is the one whose Back-
ward K-distance, is the maximum of all
pages in bu�er.

The increasing usage of the World Wide Web has
led to a great deal of tra�c on the Internet, which
in turn results in the degradation of network perfor-
mance. Therefore, it is desirable that the tra�c is
2

0-7695-0981-9/01 $10
reduced or smoothed by caching the popular web ob-
jects. With this goal, web caching has become an
active research area and gained a lot of attention
[AWY99, Mar96, Gla94].
Caching can be done at various levels in the net-

work. It can lie on the side of a web server, a caching
proxy, or a client. Caching proxies are a special kind
of servers that are responsible for locating a cached
copy of an object that is required. Web servers and
caching proxies are higher level caches, while client
caches are at lower levels. Web caching is di�erent
from traditional caching in several ways. An impor-
tant di�erence is that the size of web objects is not
uniform, and the transfer time costs are not unique
either. For the purpose of maximizing the hit ratio or
byte-hit ratio, it is better for a caching replacement
policy to take factors such as size and network cost
into account.
One of the most successful algorithms is the GD-

size algorithm introduced by Cao and Irani [CI97].
When a new object arrives, GD-size increases the
ranking of a new object i by the cost of the removed
object. Let Si be the size of the new object i, Ci be
the cost of object i, and Ki, the key value, be the
rank of object i. Furthermore, let L be an ination
factor for a newly admitted object, where L is up-
dated as the key value of the most recently removed
object. Then, if i is in the cache, then the key value
of object i is updated:

Ki = L+ Ci=Si (1)

Otherwise, if i is new and not yet in the cache, then

L = min
j

Kj (2)

where j are objects in the cache. Then the object l
with Kl = L is ejected, and object i is inserted in the
cache with Ki set according to Equation 1.
As an enhancement of the GD-size algorithm, Ar-

litt et. al [ALCJ99] introduced the frequency factor
Fi which counts the number of references so far. With
this new factor, the key value can be computed as

Ki = L+ Fi �Ci=Si (3)

Both algorithms perform very well across a number
of domains.

3 Taylor Series Prediction

3.1 Problem Statement

Both the GD-size and GDSF formulas are similar to
the LRU algorithm by keeping track of the most re-
.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
cently accessed pages. Higher priority is given to ob-
jects that are accessed the latest. In contrast, we
wish to design a policy based on a \look forward" es-
timate. Consider the time di�erence �(T) = Tp�Tc,
where Tp is the predicted time of next access, and
Tc is the current time. In essence, objects that have
large �(T) should be punished, and objects that have
small �(T) should be rewarded. Therefore, we have
an opportunity to enhance the GDSF formula (Equa-
tion 3) even further, by including the �(T) factor in
the ranking:

Ki =
Fi �Ci

Si ��(T)
(4)

One of the most important factors in this new for-
mula is �(T), which can in fact be made accurate by
including not just the �rst order estimation but the
second. In the �rst order estimation, only the cur-
rent time and the last access time Tc�1 are used to
calculate �(T):

�(T) =
Tc � Tc�1

1

This di�erence estimation corresponds to the concept
of speed, where the di�erence in time is divided by
a unit distance. To obtain a better estimation of the
time, we wish to use the concept of \acceleration",
which gives rise to Taylor Series Prediction.

3.2 Taylor Series

The Taylor series is named after the English mathe-
matician Brook Taylor(1685-1731). Its de�nition was
given like this [Ste95]: If f has a power series rep-
resentation(expansion) at point a and the radius of
convergence of the power series is R > 0, that is, if

f(x) =
1X

n=0

cn(x� a)n jx� aj < R (5)

then its coe�cients are given by the formula

cn =
f (n)(a)

n!

Therefore, f must be in the following form:

f(x) =
1X

n=0

f (n)(a)

n!
(x� a)n

= f(a) +
f 0(a)

1!
(x� a) +

f 00(a)

2!
(x� a)2

+
f 000(a)

3!
(x� a)3 + � � � (6)

3

0-7695-0981-9/01 $10
The series in equation 6 is called the Taylor series
of the function f at a and function f is called analytic
at a, if R > 0.
From the above de�nition, it is clear that f(x) is

the limit of a sequence of partial sums. In the case of
Taylor series, the partial sums are

fn(x) =
nX

j=0

f (j)(a)

j!
(x� a)j

= f(a) +
f 0(a)

1!
(x� a) +

f 00(a)

2!
(x� a)2

+ � � �+
f (n)(a)

n!
(x� a)n (7)

fn is called nth-degree Taylor polynomial of f at
a.
Now consider the reference time function T (n),

where n is a count on the number of access. For
each page i, its associated reference time function is
de�ned as Ti(n) where we drop the index i when it
is clear about the object being referred to. Ti(n) is
simply the time in which the object i was accessed
the nth time.
Given a time series T (1); T (2); � � � ; T (n), where

T (n) is the time of the nth reference of a page P , we
use Taylor Series to predict the time of the (n+ 1)th
reference to this page, T (n + 1). Here we use the
second-degree Taylor polynomial to approximately
predict T (n + 1). Since T (n) is a discrete function,
the Taylor series expression is:

T (n + 1) � T (n) +
T 0(n)

1!
+
T 00(n)

2!
(8)

where

T 0(n) =
T (n)� T (n� k)

k

T 00(n) =
T 0(n) � T 0(n� k)

k

=
T (n)� 2T (n� k) + T (n� 2k)

k2

Now let us set k = 1, and let T (n) be Tc, the cur-
rent time (that is, we predict the (n+1)th referrence
when the page is accessed the nth time). Let Tc�1 be
the time an object is accessed the last time, and Tc�2
be the time when the object is accessed two times
before. Then the predicted time is

Tp � Tc + (Tc � Tc�1)=1!

+((Tc � Tc�1)� (Tc�1 � Tc�2))=2!

= (5Tc � 4Tc�1 + Tc�2)=2 (9)
.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Dataset Requests Distinct URLs Total Hours
EPA 43202 4381 24
NASA 1140284 4400 417
CSSFU 17330 4453 12
GZ 4334 250 6

Table 1: Experimental data properties

This is the formula we use in calculating Tp in the
TSP-estimation formula Equation 4.
The complexity of this formula is linear in the size

of the cache, since when a new object arrives, priori-
ties have to be recalculated for all objects.

4 Experiments

We have conducted a series of experimental compar-
isons with the four web server logs we are able to
obtain. These server access log data are listed in Ta-
ble 1. In the experiments, the EPA (United States
Environmental Protection Agency) data contains a
day's worth of all HTTP requests to the EPA WWW
server located at Research Triangle Park, NC. The
NASA data is from NASA Kennedy Space Center
WWW server in Florida (due to memory limitation,
we picked out requests for the �rst 417 hours to do
our experiments). The CSSFU data is the web server
data from the School of Computing Science at Simon
Fraser University for a time span from Sept. 27, 1999
0:00am to 12pm. GZ data is from a public ISP web
server in Guangzhou City, PRC.
Before simulations, we removed uncacheable URLs

from the access logs. A URL is considered un-
cacheable when it contains dynamically generated
content such as CGI queries. We also �ltered out re-
quests with unsuccessful HTTP response code. The
overall statistics of the cleaned logs are shown in Ta-
ble 1.
The performance metrics we used are hit ratio(HR)

and byte hit ratio(BHR). Hit ratio is de�ned as the
number of requests responsed directly from cache as
a percent of the total number of requests. Byte Hit
ratio is the number of bytes responsed directly from
cache as a percent of the total number of bytes of
all requests. The results illustrating both hit ratios
and byte hit ratios are shown in Figures 1 to 4. In
these �gures, X-axis is the cache size as a percent of
the total data size. The algorithms under comparison
are GDSF, GDSize, TSP, LRU, and LFUDA where
LFUDA is the Least-Frequently-Used with Dynamic
Aging method [ALCJ99].
4

0-7695-0981-9/01 $10.0
Figure 1: EPA hit ratio and byte hit ratio comparison

Figure 2: NASA hit ratio and byte hit ratio compar-
ison
0 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Figure 3: CSSFU hit ratio and byte hit ratio com-
parison

Figure 4: GZ hit ratio and byte hit ratio comparison

5

0-7695-0981-9/01 $10
Data Set Mean Di�erence % Std Dev
EPA 1.87 0.97

CSSFU 2.36 1.49
GZ 7.01 7.31

NASA 4.49 1.11

Table 2: Hit ratio di�erences of (TSP - GDSF) over
four data sets

Data Set Mean Di�erence % Std Dev
EPA -0.37 0.65

CSSFU -1.65 2.25
GZ 0.80 1.81

NASA 3.81 5.30

Table 3: Byte hit ratio di�erences of (TSP - GDSF)
over four data sets

Overall, the di�erences in hit ratios and byte hit
ratios between TSP and GDSF are summarized in
Tables 2 and 3. Mean di�erence is computed as the
average of HR or BHR di�erence between TSP and
GDSF across varied cache sizes. As can be seen, over-
all, TSP performed very well, outperforming all in
NASA and GZ data sets. However, in byte-hit ra-
tios, TSP is still not performing as well as GDSF in
EPA and CSSFU data. This can be explained by the
fact that by including the �(T) factor in the GDSF
formula as we have done in Equation 4, we are re-
ducing the importance of the size factor. Therefore
TSP pays less attention to size di�erences than GDSF
does. We are working on new policies to remove this
de�ciency.

We have also compared TSP using �rst-order pre-
diction and second order prediction. First order pre-
diction uses only the �rst derivative in the Taylor
series formula. This comparison helps justify why we
use TSP with second order prediction for the caching
policy. Figure 5 shows the di�erence of hit ratio and
byte hit ratio for the EPA data between �rst and
second order TSP predictions. As can be seen, the
di�erence is rather large. The same can be observed
from NASA data (see Figures 6).
.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Figure 5: EPA hit ratio comparison between �rst and
second order predictions

5 Conclusions and Future

Work

In this paper we have introduced a new caching tech-
nique that improves the well-known LRU, GDSF and
GDSize algorithms. Our basic observation is that by
taking into account the reference rate trend analy-
sis, the caching policy can be made more accurate in
predicting future hitting patterns. The experiments
support our claim. We conclude that in application
domains where there is often a clear trend pattern in
the usage of data pages, such as in the World Wide
Web environment, our TSP based caching policy will
show improvements.
In the future, it is possible for us to take into ac-

count other statistical features such as the data trans-
mission rates as evidenced in applications on the In-
ternet.

Acknowledgments

The authors would like to thank our funding partners:
NSERC, BC ASI, Rogers Cablesystems Ltd., Cana-
dian Cable Labs Fund, IRIS/PRECARN and Simon

6

0-7695-0981-9/01 $10.
Figure 6: NASA hit ratio comparison between �rst
and second order predictions

Fraser University.

References

[ALCJ99] M. Arlitt, R. Friedrich L. Cherkasova,
J. Dilley, and T. Jin. Evaluating con-
tent management techniques for web proxy
caches. In HP Technical report, Palo Alto,
Apr. 1999.

[AWY99] C. Aggarwal, J. L. Wolf, and P. S. Yu.
Caching on the WorldWide Web. In IEEE
Transactions on Knowledge and Data En-
gineering, volume 11, pages 94{107, 1999.

[CD85] H. T. Chou and D. J. DeWitt. An evalu-
ation of bu�er management strategies for
relational database systems. In Proceed-
ings of the Eleventh International Confer-
ence on Very Large Databases, pages 127{
141, August 1985.

[Che98] L. Cherkasova. Improving www proxies
performance with greedy dual size fre-
quency caching policy. In Technical Re-
port, HP Laboratories, Nov. 1998.
00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
[CI97] P. Cao and S. Irani. Cost-aware www
proxy caching algorithms. In USENIX
Symposium on Internet Technologies and
Systems, Monterey, CA, Dec. 1997.

[Gla94] S. Glassman. A caching relay for theWorld
Wide Web. In The First International
World Wide Web Conferencing, Geneva,
1994.

[Mar96] E. Markatos. Main memory caching of web
cocuments. In Computer networks and
ISDN Systems, volume 28, pages 893{905,
1996.

[OOW93] E. J. O'Neil, P. E. O'Neil, and G. Weikum.
The LRU-K page replacement algorithm
for database disk bu�ering. In Proceed-
ings of the 1993 ACM SIGMOD Inter-
national Conference on Management of
Data, pages 297{306, May 1993.

[Rei76] A. Reiter. A study of bu�er management
policies for data management systems. In
Technique Summary Report, number 1619,
Mathematics Research Center, University
of Wisconsin, Madison, March 1976.

[SS86] G. M. Sacco and M. Schkolnick. Bu�er
management in relational database sys-
tems. In ACM Transactions on Database
Systems, volume 11, pages 473{498, De-
cember 1986.

[Ste95] J. Stewart. Calculus: Early transcenden-
tals (3rd edition). Brooks/Cole Publishing
Company, Paci�c Grove, CA, USA, 1995.

[Sto81] M. Stonebraker. Operating system sup-
port for database management. In Com-
munications of the ACM, volume 24, pages
412{418, July 1981.
7

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 7

