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ABSTRACT Place recognition can be achieved by identifying whether a pair of images (a labeled reference

image and a query image) depict the same place, regardless of appearance changes due to different viewpoints

or lighting conditions. It is an important component of systems for camera localization and for loop closure

detection and a widely studied problem for indoor or urban environments. Recently, the use of robots in

agriculture and automatic gardening has created new challenges due to the highly repetitive appearance with

prevalent green color and repetitive texture of garden-like scenes. The lack of available data recorded in

gardens or plant fields makes difficult to improve localization algorithms for such environments. In this

paper, we propose a new data set of garden images for testing algorithms for visual place recognition.

It contains images with ground truth camera pose recorded in real gardens at different times, with varying

light conditions. We also provide ground truth for all possible pairs of images, indicating whether they

depict the same place or not. We also performed a thorough benchmark of several holistic (whole-image)

descriptors, and provide the results on the proposed data set. We observed that existing descriptors have

difficulties with scenes with repetitive textures and large changes of camera viewpoint.

INDEX TERMS Benchmark, computer vision, data set, holistic image descriptor, visual place recognition.

I. INTRODUCTION

Visual place recognition consists of recognizing a previ-

ously seen place by evaluating visual cues only from images

acquired by a camera system [1], [2]. Given a query image,

the most similar reference image that depicts the same scene

is retrieved from a database of known place images. Subse-

quently, pose information related to the reference image can

be used to accurately determine the position in the map where

the query image was taken from.

The problem of visual place recognition can be thus for-

mulated as distinguishing between pairs of similar and dis-

similar images. It gained great interest among researchers

in computer vision and became very relevant for various

applications, including autonomous driving [3] and robot

navigation [1], [4]–[8]. Systems for camera localization in

a known environment and for loop closure detection while

mapping an unknown area are also supported by visual place
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recognition algorithms. When a pair of images (reference and

query) are recognized as depicting the same place, the rela-

tive pose between them is calculated. The reference image

is expected to have a known pose in the world reference

system. With this and the relative pose between the two

images, the query image can be localized. Performing visual

place recognition on a constrained set of visually rich and

distinctive images is challenging when appearance changes

are present [8] due to variations of illumination, weather

conditions, camera viewpoint or when facedwith textures and

repetitive patterns [9].

Visual place recognition in different environments implies

different challenges. Urban scenes are subject to illumination

changes and partial occlusions, due to vehicles or pedestrians.

In open-field scenes, challenges related to illumination or

seasonal changes are present. Both urban and countryside

scenes are large outdoor environments. High spatial preci-

sion for recognition or localization is not required, whereas

indoor place recognition cannot allow much spatial drift,

as the environment is much smaller. Furthermore, indoor
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place recognition algorithms have to be robust to view-

point changes to accurately recognize a room from different

perspectives.

Visual place recognition in garden environments is a par-

ticularly challenging problem. Agricultural and gardening

robotics are gaining increasing interest and are raising a num-

ber of challenges for computer vision algorithms [10]–[13].

For instance, algorithms are required to be robust to highly

repetitive textures and viewpoint changes. In contrast to com-

mon indoor scenes, gardens have internal visual similarities,

that is, one bush may look very similar to other bushes.

Therefore, to successfully represent and recognize a place in a

garden, a descriptor is required to ignore irrelevant parts of the

image (i.e. the common background), while effectively cap-

turing and describing important parts and their relationship

within the scene (e.g. howmany bushes and where they are in

the scene). Despite the abundance of data sets for place and

scene recognition in urban and indoor environments, which

we discuss in Section II, to the best of our knowledge there

are no public data sets recorded in garden-like environments

that contain the mentioned challenges.

We propose a new data set for place recognition in garden

environments and benchmark the performance of existing

algorithms and holistic descriptors for place recognition and

image recognition. The data set contains about 60k images,

with ground truth provided for all pairs of images depict-

ing the same place or not. All the images are also pro-

vided with ground truth camera pose in the garden reference

system.

The paper is structured as follows. We discuss previ-

ous work and existing benchmark data sets in Section II.

In Section III, we describe the proposed data set, includ-

ing details on the hardware setup used for data recording,

as well as on the definition of the ground truth. In Section IV,

we explain the evaluation procedure, while in Section V

we present and discuss the results obtained by using exist-

ing image descriptors. Finally, we draw conclusions in

Section VI.

II. RELATED WORK

Various aspects and challenges of visual place recog-

nition were studied in the recent years and several

benchmark data sets were publicly released. Many

of them contain urban scenes, such as KITTI [6],

Dubrovnik16k and San Francisco [14], Landmark10k [15],

Cambridge Landmarks [16], Tokyo Time Machine [17],

Pittsburgh30k [9] and Oxford RobotCar [18]. Furthermore,

Aachen [19] and Alderley [5] data sets include big changes

of illumination, as they contain images recorded during day

and night. The CMUVisual Localization data set [20] is com-

posed of sub-urban environment scenes that show significant

seasonal changes, that is it contains scenes depicting vege-

tation recorded at different times of the year. The Nordland

data set [7] includes open-field scenes, and a great variance

in weather and season characteristics, whereas the 7-scenes

data set [21] contains images of indoor scenes.

Existing approaches to visual place recognition can be

grouped in two categories: methods based on local fea-

ture descriptors and others that employ holistic scene

descriptors [2]. The first group contains approaches that use

and match local features (e.g. SIFT or ORB), such as the

one proposed in [22] which performs place recognition for

Simultaneous Localization and Mapping (SLAM), or in [23]

for camera localization based on image retrieval. These meth-

ods achieved satisfactory results in indoor environments, but

more recent approaches, mainly based on deep Convolutional

Neural Networks (CNNs), outperformed them. The methods

proposed in [4], [24] employ Bag of Visual Words represen-

tations based on the computation of histograms of the occur-

rence of keypoint descriptors, to perform place recognition

and achieve efficient loop closure in SLAM algorithms. The

main limitation of the Bag of Words representation is that it

does not take into account spatial information, which might

be relevant for scene recognition.

The second group contains methods based on global

image descriptors, such as SeqSLAM [5], which performs

place recognition by matching image sequences, instead

of single images, and addressing strong illumination (day

vs night) and weather (clear vs rain) variations in urban

scenes. In [7], the authors expand SeqSLAM by address-

ing open-field images embracing a bigger environment, and

with substantial seasonal changes. CNNs are able to learn

global representations of images and are nowadays the lead-

ing approach in most visual recognition problems, i.e. object

classification [25], [26], scene classification [27], semantic

segmentation [28] and also image retrieval for place recog-

nition. In [1], a triplet network was proposed, which takes as

input two images of the same scene (i.e. positives) and one

image from another scene (i.e. negative) and is trained by

optimizing a triplet loss function. The network achieved high

performance results with respect to illumination changes,

and performed less under viewpoint changes. One of the

disadvantages of CNNs is that they require a large amount

of labeled examples to be effectively trained. This motivated

the design of an unsupervised fine-tuning step based on

Bag of Words (BoW) that was applied for selecting training

images depicting similar scenes [29]. In [17] a NetVLAD

architecture was proposed. Its main contribution consisted

of a novel orderless pooling layer for CNN architectures

inspired by the bag of words model. NetVLAD is trained

using weakly-labeled triplets consisting of one reference

image, a set of potential positive matches, and a set of definite

negative matches. In [30], a new version of NetVLAD was

proposed, which performs place recognition based on 3-D

point clouds instead of 2-D images.

On a different line, end-to-end pose regression algorithms

were recently proposed. Instead of relying on SLAMor image

retrieval algorithms, which require to build a map of the

environment, PoseNet regresses a 6DOF pose from a single

image [16]. Further modifications of PoseNet were proposed,

such as a Bayesian CNN for modeling uncertainty [31], or the

addition of LSTMS for capturing feature correlation [32].
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FIGURE 1. Four views of the TrimBot2020 garden at the Wageningen University and research campus.

These visual localization methods have been extended by

using multi-task learning or combining visual localization

with semantic information [33], [34].

III. DATA SET AND ITS ACQUISITION

We propose a new data set, called TB-Places (where TB

stands for TrimBot), of garden images to test visual place

recognition algorithms.We recorded images and ground truth

pose data in the two test gardens of the TrimBot2020 project,

which aims at developing the first outdoor autonomous gar-

dening robot [13]. The gardens are located at the Wagenin-

gen University and Research (Netherlands) and in the Bosch

Research Center in Renningen (Germany). The garden in

Wageningen is approximately 18 × 20 meters in size and

contains various elements, such as box-woods, hedges, rose

bushes, trees and different terrain types, i.e. grass, woodchips

and pebble stone. Some of the bushes are on a slope of 10◦.

The garden is surrounded by a double-line fence, to ensure

safety during robot operations. In Figure 1 we show some

pictures of the garden. We have recorded data in autumn

2016 and spring 2017. The garden in Renningen is about

36×20 meters in size and contains various navigable terrains

(i.e. mowed grass, different types of gravel and an asphalted

path). It also contains several types of obstacles, like hedges,

boxwoods and concrete steps.

We publicly release images from the Wageningen garden,

while use images from the Renningen garden as private test

data. However, we provide a submission procedure to test

place recognition algorithms on the Renningen data set.1

A. HARDWARE SETUP

The robot platform that we used for data recording is based

on a modified Bosch Indego lawn mower robot, on which we

mounted a camera rig with 360◦ field of view. We used an

inertial measurement unit (IMU) and a TopCon laser tracker

for ground truth robot and camera pose registration. The error

on the accuracy of the TopCon laser is lower than 6cm, with

a deviation of ±1cm).

We used two configurations of the camera rig for the data

recording sessions. The first configuration had eight cameras

arranged in an octagon shape, as shown in Figures 2b and 2a.

In both configurations, the cameras record pictures with a res-

olution of 752× 480 pixels. Six cameras recorded gray-scale

1https://github.com/marialeyva/TB_Places

FIGURE 2. The (a) camera rig used for the data recording session
in 2016 has eight cameras arranged in an (b) octagonal shape, while the
(c) rig used in spring 2017 has (d) five pairs of stereo cameras in
a pentagonal frame.

images while other two recorded RGB images. The second

configuration of the camera rig, used for the recording session

in 2017, consisted of a pentagon-shaped arrangement of five

pairs of stereo cameras. A top-view of the camera rig and

a sketch of the camera arrangement are shown in Figure 2c

and Figure 2d, respectively. For each stereo pair, one camera

recorded RGB images and the other grayscale images.

The acquisition of the images is synchronized by means of

an FPGA, which also computes rectified and stereo images

(for the camera rig with five pairs of stereo cameras) on board

at 10Hz [35].

We performed an offline calibration process to compute

intrinsic and extrinsic parameters of the cameras in the

rig [36]. This procedure results in a chain of transformation

matrices, which we use to compute the pose of each camera

in the garden reference system. We represent a camera pose

p = [t,q] as a translation vector t = (t (x), t (y), t (z)) and an

orientation quaternion q = (q(x), q(y), q(z), q(w)).

B. TB-PLACES DATA SET

The TB-places data set that we propose contains about

60k images, organized in three sub-sets, namely the W16,
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W17 and R17 sets. The W16 set contains gray-scale images

while the W17 and R17 sets contain RGB images. For exper-

imental evaluation in this paper we consider the gray-scale

version of the images in W17 and R17. As mentioned in

Section III-A, each image is provided with ground truth

camera pose, which indicates the position of the camera in

the garden reference system when the picture has been taken.

The data set is provided with labels for all possible pairs

of images in each subset, indicating whether they depict the

same scene or not. In Section III-C, we provide details about

the labeling process.We report detailed information about the

number of images in each set, as well as the amount of similar

pairs, in Table 1. We also specify the percentage of positive

pairs on the total amount of pairs in each sub set.

TABLE 1. Details about the TB-Places data set, with information on each
sub-set. We also specify the percentage of similar image pairs on the
total number of image pairs.

C. GROUND TRUTH

We defined a procedure to label pairs of images whether they

depict the same place or not, based on accurate measurements

of the camera poses in the garden reference system. The

labeling process is divided in two steps, an initial rough

labeling and a label-refinement procedure.

The initial labeling step is based on two measures of pose

similarity, namely a translation distance dt (ti, tj) =
∥

∥ti − tj
∥

∥

and a quaternion distance dq(qi,qj) = 1 −
(

qi · qj
)2
, as pro-

posed in [1]. A quaternion distance can be converted to

degrees by means of the formula 1φi,j = 8(qi,qj) =

arccos
(

−2 dq(qi,qj) + 1
)

· 180/π .

FIGURE 3. Example of ambiguous cases where translation and
orientation distances are the same: the cameras are oriented at
(a) different places or at (b) the same place.

These distance measures are meaningful in those cases

where the camera locations are very close and orientations are

very similar. In cases where there are larger camera viewpoint

variations, their values can lead to ambiguous situations.

In Figure 3, we show an example of an ambiguous case.

Two pairs of cameras, whose pose vectors have same transla-

tion and orientation distances, are oriented at different direc-

tions. In order to resolve such cases, we take into account an

approximation of the 2D fields of view of the cameras on the

horizontal plane, which we represent by a radius r and the

camera lens aperture angle β. This choice is motivated by the

fact that the robot navigates a planar surface and the camera

rig can be tilted only by few degrees. We compute the field of

view area fov(pi) = 1/2 · βr2 associated to the camera pose

pi as the area of a circle sector of radius r meters and angle β

radians, where the pose vector pi provides information on the

position ti and orientation qi of the field of view circle sector

with respect to the reference system. For a pair of camera

poses pi and pj, we compute a measure of the percentage

of overlap (FOVO) of their field of view areas (0 means no

overlap, while 1 indicates a perfect overlap) as:

FOVO(pi,pj) =
fov(pi) ∩ fov(pj)

fov(pi) ∪ fov(pj)
(1)

An example of the computation of this measure is illustrated

in Figure 4, where the darker region indicates the region

where the fields of view overlap. We use the FOVO measure

to refine the labeling process, as explained in the following.

FIGURE 4. Examples of two field of view overlaps with (a) dt = 0.2,
1φ = 40◦, FOVO = 0.71 and (b) dt = 1.0, 1φ = 60◦, FOVO = 0.75.

For a pair of images with a small translation distance dt ,

a small quaternion distance dq is also required so that the

FOVO measure is large (i.e. close to 1). If the translation

distance is large, the rotation distance can be larger as well,

so that the two camera poses share a bigger part of the field

of view. We considered different translation distances and

their possible combinations with several rotation distances

in order to find a satisfying FOVO measure. We refer at

Figure 5a where we show the relation between the considered

distance measures. We considered several values for trans-

lation and quaternion distances, and calculated the possible

FOVO measures. We computed a function f (·) by a polyno-

mial interpolation (Fig. 5b) that computes, for a given value

of the translational distance between two poses, the quater-

nion distance that would guarantee the maximum FOVO

measure. Given a translation distance, the function f com-

putes the rotation distance that maximizes the FOVOmeasure

d̂q
(i,j)

= f (dt (ti, tj)).
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FIGURE 5. Relationship between the (a) camera viewpoint angle and FOV overlap for different translation distance values. (b) Approximation of function
f by a polynomial regression, that computes the quaternion distance that maximizes the FOVO for a given translation distance.

Finally, we defined that a pair of images with associated

camera poses pi = (ti,qi) and pj = (tj,qj) are depicting the

same place if they fulfill the following conditions:

1) dt (ti, tj) ≤ 1.5m

2) |8
(

dq(qi,qj)
)

− d̂q
(i,j)

| < 15◦

3) FOVO(pi,pj) ≥ 0.53

We consider two images to depict the same place if their

ground truth camera poses 1) are close enough, 2) have a

relative rotation angle that guarantees an overlap of at least

53 % of the area of their fields of view. The values were

determined by experimental observations, in which we took

into account the presence and arrangement of close objects,

which are relevant to recognize places in such environments.

Some examples can be seen in Figure 6. We provide the

ground truth in the form of a binary compressedmatrix, where

entries with value equal to zero indicate a negative pair (that

is, a pair of images not depicting the same scene), and a one

indicates a positive match, that is, two images showing the

same place. In Figure 6, we show some examples of images

from the TB-Places data set, consisting in three reference

images (leftmost images), two positive (second and third

column) and one negative (rightmost column) images.

IV. EVALUATION

In the following, we provide details about the holistic image

descriptors that we employ in our comparative analysis,

the experiments that we designed and the metrics that we

employed to evaluate the results on the proposed TB-Places

data set.

A. IMAGE DESCRIPTORS

We consider the holistic image descriptor proposed in [1],

where the authors compute a 128-D feature vector with a

lightweight deep neural network, called DepredNet, trained

for visual place recognition in outdoor environments. We also

consider Histogram of Oriented Gradients (HOG), with fea-

ture vectors of size 19200 [37]. We include in the evaluation

TABLE 2. Details on the whole-image descriptors used for the baseline
performance comparison analysis.

the descriptors computed as output of several layers of the

VGG and AlexNet CNNs, pre-trained on the Places365 data

set [27]. Furthermore, we consider a descriptor computed

by using the NetVLAD-VGG16 CNNs with whitening,

pre-trained on the Pittsburgh30K and Tokyo Time Machine

data sets [17]. The size of the feature vector computed by

NetVLAD is 4096 elements. We report a summary of the

employed descriptors and their feature vector size in Table 2.

B. EXPERIMENTS

For the baseline experimental analysis on the proposed

TB-Places data set, we defined the following tests:

• Training set: W16, Test set: W17. This experiment

is meant to evaluate robustness of place recognition

algorithms against different illumination conditions and

variations of the garden due to seasonal changes.We also

evaluate robustness to camera viewpoint variation.

• Training set: W16, Test set: R17. This experiment

aims to evaluate the generalization capability of place

recognition descriptors to new garden environments.

Since training is usually a time consuming and com-

putationally expensive procedure and requires large

amount of ground truth data, it is very desirable that
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FIGURE 6. Example images from the TB-Places data set. For each reference image (left column), we show two positive matches (second and third
column, surrounded by a green solid line) and one negative image (surrounded by a red dashed line). In (a), the translation distances between the
reference and the query images are, from left to right, dt = (0.99, 0.77, 12.47)m, the quaternion distances are dq = (0.0387, 0.0006, 0.0050), which
correspond to 1φ = (22.68◦, 2.72◦, 8.10◦), and the FOVOs are (0.7820, 0.7289, 0.1941). In (b), the translation distances between the reference and the
query images are dt = (0.70, 0.78, 7.01m), the quaternion distances dq = (0.0301, 0.0028, 0.0442), which correspond to 1φ = (19.98◦, 6.02◦, 24.28◦),
and the FOVOs are FOVO = (0.5491, 0.5789, 0). In (c) the translation distances between the reference and the query images are dt = (0.43, 0.68, 9.21)m,
the quaternion distances dq = (0.0007, 0.0026, 0.1146), which correspond to 1φ = (3.04◦, 5.81◦, 39.57◦), and the FOVOs are (0.7545, 0.8048, 0.0004).
In (d) the translation distances between the reference and the query images are dt = (0.76, 0.78, 0.90)m, the quaternion distances
dq = (0.0506, 0.0212, 0.0187), which correspond to 1φ = (26.01◦, 16.73◦, 15.71◦), and the FOVOs are (0.5353, 0.6312, 0.5130).

place recognition algorithms and descriptors generalize

robustly to different environments.

We performed different experiments: both in the training

and test phases, we extracted descriptors from the images

in the TB-Places data set and normalized them using one of

the following feature vector normalization: none, L1 and L2.

Furthermore, we explored the use of Principal Component

Analysis (PCA) on the descriptors computed on the training

set. We computed the principal components and considered

a number of dimensions that contain the 95% of the variance

of the training data. The purpose of using the PCA in this

analysis is twofold. We aim at 1) showing that the training

image data contains useful information to train models that

are meaningful for place recognition in gardens and 2) evalu-

ating if features computed by pre-trained networks for place

recognition generalize to and are robust for the analysis

of garden scenes. For each feature normalization approach,

we performed experiments with and without PCA. In Table 3,

we report the size of the considered image descriptors before

and after applying PCA on the training data. One can observe

that, for all the considered descriptors, most of the features are

not useful for effective descriptions of garden images. The

PCA analysis, indeed, significantly reduced the number of

dimensions that contain relevant information for the task at

hand (between 37.5% and 98.45% of the feature dimensions,

according to the specific descriptor and feature normalization

employed).

In the evaluation phase, we projected the feature vectors

extracted from the test images onto the PCA space com-

puted on the training data. Subsequently, we computed all

52282 VOLUME 7, 2019



M. Leyva-Vallina et al.: TB-Places: A Data Set for Visual Place Recognition in Garden Environments

TABLE 3. Dimension reduction performed by computing principal
component analysis (PCA) on the training data of the TB-Places data set.
We evaluated different feature normalization, namely no normalization,
L1 and L2 norms. In the last column, we report the percentage of
dimensions that are discarded by the PCA.

the pairwise distance between descriptors. We considered

the Cosine dissimilarity and Euclidean distance measures.

We computed the two distance measures for each combina-

tion of descriptor and feature normalization, with and without

applying the PCA transformation. If the computed distance

is higher than a certain threshold t , the two images are

considered to depict different places, otherwise, the images

are classified as showing the same place. During the evalua-

tion, we studied the effect of different values of the distance

threshold t .

C. PERFORMANCE MEASURES

We evaluate the performance of the considered descriptors by

computing the precision (P), recall (R) and F1-score for the

classification of pairs of images as depicting or not the same

place:

P =
TP

TP+ FP

R =
TP

TP+ FN

F1 = 2 ·
P · R

P+ R

where TP are true positives, FP are false positives, and FN

are false negatives. A positive class example is defined in

the ground truth as a pair of images that depict the same

place, otherwise it is a negative sample. We also compute

the precision-recall curve by varying the value of the thresh-

old t on the distance of image descriptors (small distance

indicates high image similarity). We compute the Average

Precision (AP) as the mean of the Precisions obtained for

each threshold weighted by the increase in Recall achieved

at threshold n with respect to the one achieved at threshold

n− 1. It is defined as:

AP =
∑

n

(Rn − Rn−1)Pn

V. RESULTS AND DISCUSSION

In Table 4, we report the AP that we achieved on theW17 and

R17 test sets.We also report the results that we obtained when

using the descriptors projected onto the PCA space computed

on the W16 training set. We measured very low recognition

performance achieved by DepredNet (W17: AP = 4.30%;

R17: 5.09%) and HOG descriptors (W17: AP = 9.31%;

R17: 3.87%). Internal representations computed in popular

CNN architectures, such as AlexNet and VGGNet, do not

perform well to garden scenes and the task of visual place

recognition too.

We obtained the best results by using the NetVLAD

CNN architecture pre-trained on the Pittsburgh30k data set.

NetVLAD is specifically designed for place recognition and

to be robust against camera viewpoint changes. We achieved

21.60 % average precision on the W17 test set, and 15.68 %

on the R17 test set. These results are also due to the very

unbalanced data sets, where positive image pairs are much

less represented than the negative ones. When applying the

PCA transformation learned from theW16 training set data to

the descriptors computed on the test images, the performance

results increase both on the W17 (AP = 23.61 %) and the

R17 (AP = 16.86 %) test sets.

In general, we observed that the use of the cosine dis-

similarity contributes to slightly better results than using

Euclidean distance, and that feature vector normalization also

improves the performance results. In most of the cases the

Average Precision increases after applying the PCA projec-

tion learned from the training data. This confirms the use-

fulness of training data, which can be used to learn image

recognitionmodels specific for garden data and achieve better

results.

In Figure 7a and Figure 7b, we show the precision-recall

curves that we obtained on theW17 and R17 test sets, respec-

tively. The average scarce performance of various descriptors

are an indication that garden scenes have very peculiar char-

acteristics, which existing methods or models are not robust

to. Non-sharp object boundaries and the abundance of texture

and green color are hard challenges for existing algorithms

for holistic image description and visual place recognition.

In order to support visual navigation and localization of

robots in such environments, further studies and improvement

of the existing approaches on the challenges provided by

garden scenes are required.
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TABLE 4. Average precision that we achieved using the considered descriptors, with and without normalization and PCA, using Cosine (C), and Euclidean
(E) distances, on the Wageningen 2017 and Renningen 2017 test sets.

We also evaluated the robustness of the considered image

descriptors with respect to variations of the camera viewpoint.

For a given descriptor and feature normalization, we select the

value t∗ of the threshold t that contributes to the highest value

of the F1-score. We thus analyzed the performance results

achieved by using the considered descriptors as the viewpoint

angle between the positions of the cameras where the pictures

were taken from increases. We compute the viewpoint angle

by converting the quaternion distance dq to an angle on the

horizontal plane and measuring its degrees. We indicate with

1φ, the viewpoint angle difference in degrees. We show the

results of this evaluation, in Figure 8. We report the F1-score

achieved by the considered image descriptors for increasing

values of the viewpoint angle difference 1φ. We observe

a general decrease of performance with increasing view-

point angle between cameras. In most cases, the recognition
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FIGURE 7. Precision recall curves achieved on the (a) W17 and (b) R17 test sets.

FIGURE 8. F1-score as the camera viewpoint difference(1φ) increases for (a) W17 and (b) R17 data sets.

performance results drops to 0 (i.e. images are not recog-

nized as depicting the same place) when the viewpoint angle

between camera 1φ is greater than 30◦. NetVLAD is the

method that shows the highest robustness with respect to

camera viewpoint changes, maintaining stable recognition

performance when the camera viewpoint angle is lower that

20◦. Generally, the considered descriptors show reasonable

performance when the viewpoint angle between cameras is

very small (e.g. NetVLAD and VGG descriptors achieved

an F1-score of 0.6 on the W17 and of 0.5 on the R17 test

sets). The drop of recognition performance under increasing

camera viewpoint angle demonstrates that existing holis-

tic descriptors are not robust to perspective changes in the

images. This stimulates the necessity of designing models

that are able to deal with such geometric changes, which sum

up to the challenges of garden scenes.

VI. CONCLUSIONS

We proposed a novel data set to test algorithms for visual

place recognition in garden environments, called TB-Places.

The data set is composed of about 60k images recorded in

real gardens, in the context of the TrimBot2020 project, and
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it’s designed for the evaluation of robustness of algorithms

to strong camera viewpoint changes and to largely textured

scenes.We provided ground truth labels for all possible image

pairs, indicating whether they depict the same place or not.

We compared the performance of several holistic image

descriptors on the task of place recognition under camera

viewpoint changes. The baseline results that we obtained

show that existing descriptors suffer from challenging con-

ditions of garden scenes and are not robust, or are robust

to a small extent, to perspective changes in the images. The

decrease of performance results as the camera viewpoint

angle increases, indeed, indicates a lack of robustness against

this kind of scene changes.

The challenges contained in the proposed data set, such as

the prevalent green-color and textured environment and the

large camera viewpoint difference under which the scenes are

depicted, require the design of new robust image descriptors

to be embedded in systems for robot localization or naviga-

tion in gardens.
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