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ABSTRACT

We revisit the performance of template-based APR to build com-

prehensive knowledge about the e�ectiveness of �x patterns, and

to highlight the importance of complementary steps such as fault

localization or donor code retrieval. To that end, we �rst investi-

gate the literature to collect, summarize and label recurrently-used

�x patterns. Based on the investigation, we build TBar, a straight-

forward APR tool that systematically attempts to apply these �x

patterns to program bugs. We thoroughly evaluate TBar on the De-

fects4J benchmark. In particular, we assess the actual qualitative and

quantitative diversity of �x patterns, as well as their e�ectiveness

in yielding plausible or correct patches. Eventually, we �nd that,

assuming a perfect fault localization, TBar correctly/plausibly �xes

74/101 bugs. Replicating a standard and practical pipeline of APR

assessment, we demonstrate that TBar correctly �xes 43 bugs from

Defects4J, an unprecedented performance in the literature (includ-

ing all approaches, i.e., template-based, stochastic mutation-based

or synthesis-based APR).

CCS CONCEPTS

• Software and its engineering → Software veri�cation and

validation; Software defect analysis; Software testing and debug-

ging.
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1 INTRODUCTION

Automated Program Repair (APR) has progressively become an

essential research �eld. APR research is indeed promising to im-

prove modern software development by reducing the time and costs

associated with program debugging tasks. In particular, given that

faults in software cause substantial �nancial losses to the software

industry [8, 54], there is a momentum in minimizing the time-to-�x

intervals by APR. Recently, various APR approaches [10, 11, 17,
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18, 21, 23, 25, 26, 29, 31, 36, 38, 39, 41, 42, 44, 51, 53, 67, 69, 76, 77]

have been proposed, aiming at reducing manual debugging e�orts

through automatically generating patches.

An early strategy of APR is to generate concrete patches based

on �x patterns [23] (also referred to as �x templates [40] or program

transformation schemas [17]). This strategy is now common in the

literature and has been implemented in several APR systems [13,

17, 23, 24, 38–40, 50, 62]. Kim et al. [23] showed the usefulness of �x

patterns with PAR. Saha et al. [62] later proposed ELIXIR by adding

three new patterns on top of PAR [23]. Durieux et al. [13] proposed

NPE�x to repair null pointer exception bugs, using nine pre-de�ned

�x patterns. Long et al. designed Genesis [41] to infer �x patterns

for speci�c three classes of defects. Liu and Zhong [40] explored

posts from Stack Over�ow to mine �x patterns for APR. Hua et al.

proposed SketchFix [17], a runtime on-demand APR tool with six

pre-de�ned �x patterns. Recently, Liu et al. [39] used the �x patterns

of FindBugs static violations [35] to �x semantic bugs. Concurrently,

Ghanbari and Zhang [15] showed that straightforward application

of �x patterns (i.e., mutators) on Java bytecode is e�ective for repair.

They do not, however, provide a comprehensive assessment of the

repair performance yielded by each implemented mutator.

Although the literature has reported promising results with �x

patterns-based APR, to the best of our knowledge, no extensive

assessment on the e�ectiveness of various patterns is performed. A

few most recent approaches [17, 39, 40] reported which benchmark

bugs are �xed by each of their patterns. Nevertheless, many relevant

questions on the e�ectiveness of �x patterns remain unanswered.

This paper.Our work thoroughly investigates to what extent �x

patterns are e�ective for program repair. In particular, emphasizing

on the recurrence of some patterns in APR, we dissect their actual

contribution to repair performance. Eventually, we explore three

aspects of �x patterns:

• Diversity: How diverse are the �x patterns used by the state-of-

the-art? We survey the literature to identify and summarize the

available patterns with a clear taxonomy.

• Repair performance: How e�ective are the di�erent patterns? In

particular, we investigate the variety of real-world bugs that can

be �xed, the dissection of repair results, and their tendency to

yield plausible or correct patches.

• Sensitivity to fault localization noise: Are all �x patterns similarly

sensitive to the false positives yielded by fault localization tools?

We investigate sensitivity by assessing plausible patches as well

as the suspiciousness rank of correctly-�xed bug locations.

Towards realizing this study, we implement an automated patch

generation system, TBar (Template-Based automated program repair),

with a super-set of �x patterns that are collected, summarized, cu-

rated and labeled from the literature data. We evaluate TBar on the

Defects4J [20] benchmark, and provide the replication package in

a public repository: https://github.com/SerVal-DTF/TBar.

Overall, our investigations have yielded the following �ndings:
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(1) Record performance: TBar creates a new higher baseline of

repair performance: 74/101 bugs are correctly/plausibly �xed with

perfect fault localization information and 43/81 bugs are �xed

with realistic fault localization output, respectively.

(2) Fix pattern selection: Most bugs are correctly �xed only by a

single �x pattern while other patterns generate plausible patches.

This implies that appropriate pattern prioritization can prevent

from plausible/incorrect patches. Otherwise, APR tools might be

over�tted in plausible but incorrect patches.

(3) Fix ingredient retrieval: It is challenging for template-based

APR to select appropriate donor code, which is an ingredient of

patch generation when using �x patterns. Inappropriate donor

code may cause plausible but incorrect patch generation. This

motivates a new research direction: donor code prioritization.

(4) Fault localization noise: It turns out that fault localization ac-

curacy has a large impact on repair performance when using �x

patterns in APR (e.g., applying a �x pattern to incorrect location

yields plausible/incorrect patches).

2 FIX PATTERNS

For this study, we systematically review1 the APR literature to iden-

tify approaches that leverage �x patterns. Concretely, we consider

the program repair website [3], a bibliography survey of APR [52],

proceedings of software engineering conference venues and jour-

nals as the source of relevant literature. We focus on approaches

dealing with Java program bugs, and manually collect, from the

paper descriptions as well as the associated artifacts, all pattern

instances that are explicitly mentioned. Table 1 summarizes the

identi�ed relevant literature and the quantity of identi�ed �x pat-

terns targeting Java programs. Note that the techniques described

in the last four papers (i.e., HDRepair, ssFix, CapGen, and SimFix

papers) do not directly use �x patterns: they leverage code change

operators or rules, which we consider similar to using �x patterns.

Table 1: Literature review on �x patterns for Java programs.

Authors APR tool name
# of �x
patterns

Publication
Venue

Publication
Year

Pan et al. [55] - 27 EMSE 2009
Kim et al. [23] PAR 10 (16∗) ICSE 2013
Martinez et al. [49] jMutRepair 2 ISSTA 2016
Durieux et al. [13] NPE�x 9 SANER 2017
Long et al. [41] Genesis 3 (108∗) FSE 2017
D. Le et al. [25] S3 4 FSE 2017
Saha et al. [62] ELIXIR 8 (11∗) ASE 2017
Hua et al. [17] SketchFix 6 ICSE 2018
Liu and Zhong [40] SOFix 12 SANER 2018
Koyuncu et al. [24] FixMiner 28 UL Tech Report 2018
Liu et al. [35] - 174 TSE 2018
Rolim et al. [60] REVISAR 9 UFERSA Tech Report 2018
Liu et al. [39] AVATAR 13 SANER 2019

D. Le et al. [29] HDRepair† 11 SANER 2016

Xin and Reiss [74] ssFix† 34 ASE 2017

Wen et al. [69] CapGen† 30 ICSE 2018

Jiang et al. [18] SimFix† 16 ISSTA 2018

∗In the PAR paper [23], 10 �x patterns are presented, but 16 �x patterns are released online [2]. In
Genesis, 108 code transformation schemas are inferred for three kinds of defects. In ELIXIR, there is
one �x pattern that consists of four sub-�x patterns.

2.1 Fix Patterns Inference

Fix patterns have been explored with the following four ways:

(1) Manual Summarization: Pan et al. [55] identi�ed 27 �x pat-

terns from patches of �ve Java projects to characterize the �x

1For conferences and journals, we consider ICSE, FSE, ASE, ISSTA, ICSME, SANER,
TSE, TOSEM, and EMSE. The search keywords are ‘program’+‘repair’, ‘bug’ +‘�x’.

ingredients of patches. They do not however apply the identi-

�ed patterns to �x actual bugs. Motivated by this work, Kim

et al. [23] summarized 10 �x patterns manually extracted from

62,656 human-written patches collected from Eclipse JDT.

(2) Mining: Long et al. [41] proposed Genesis, to infer �x pat-

terns for three kinds of defects from existing patches. Liu and

Zhong [40] explored �x patterns from Q&A posts in Stack Over-

�ow. Koyuncu et al. [24] mined �x patterns at the AST level

from patches by using code change di�erentiating tool [14]. Liu

et al. [35] and Rolim et al. [60] proposed to mine �x patterns

for static analysis violations. In general, mining approaches

yield a large number of �x patterns, which are not always about

addressing deviations in program behavior. For example, many

patterns are about code style [39]. Recently, with AVATAR [39],

we proposed an APR tool that considers static analysis violation

�x patterns to �x semantic bugs.

(3) Pre-de�nition: Durieux et al. [13] pre-de�ned 9 repair actions

for null pointer exceptions by unifying the related �x patterns

proposed in previous studies [12, 22, 45]. On the top of PAR [23],

Saha et al. [62] further de�ned 3 new �x patterns to improve the

repair performance. Hua et al. [17] proposed an APR tool with

six pre-de�ned so-called code transformation schemas. We also

consider operator mutations [49] as pre-de�ned �x patterns, as

the number of operators and mutation possibilities is limited

and pre-set. Xin and Reiss [74] proposed an approach to �xing

bugs with 34 prede�ned code change rules at the AST level. Ten

of the rules are not for transforming the buggy code but for

the simple replacement of multi-statement code fragments. We

discard these rules from our study to limit bias.

(4) Statistics: Besides formatted �x patterns, researchers [18, 69]

also explored to automate program repair with code change in-

structions (at the abstract syntax tree level) that are statistically

recurrent in existing patches [18, 37, 48, 68, 81]. The strategy is

then to select the top-n most frequent code change instructions

as �x ingredients to synthesize patches.

2.2 Fix Patterns Taxonomy

After manually assessing all �x patterns presented in the literature

(cf. Table 1), we identi�ed 15 categories of patterns labeled based

on the code context (e.g., a cast expression), the code change ac-

tions (e.g., insert an “if” statement with “instanceof” check) as well

as the targets (e.g., ensure the program will no throw a ClassCastEx-

ception.). A given category may include one or several specialized

sub-categories. Below, we present the labeled categories and provide

the associated 35 Code Change Patterns described in simpli�ed

GNU di� pattern for easy understanding.

FP1. Insert Cast Checker. Inserting an instanceof check before

one buggy statement if this statement contains at least one unchecked

cast expression. Implemented in: PAR, Genesis, AVATAR, SOFix†,

HDRepair†, SketchFix†, CapGen†, and SimFix†.
+ if (exp instanceof T) {

var = (T) exp; ......

+ }

where exp is an expression (e.g., a variable expression) and T is

the casting type, while “. . . . . .” means the subsequent statements

dependent on the variable var. Note that, “†” denotes that the �x

pattern is not speci�cally illustrated in the corresponding APR tools
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since the tools have some abstract �x patterns that can cover the �x

pattern. The same notation applies to the following descriptions.

FP2. Insert Null Pointer Checker. Inserting a null check before

a buggy statement if, in this statement, a �eld or an expression

(of non-primitive data type) is accessed without a null pointer

check. Implemented in: PAR, ELIXIR, NPE�x, Genesis, FixMiner,

AVATAR, HDRepair†, SOFix†, SketchFix†, CapGen†, and SimFix†.
FP2.1: + if (exp != null) {

...exp...; ......

+ }

FP2.2: + if (exp == null) return DEFAULT_VALUE;

...exp...;

FP2.3: + if (exp == null) exp = exp1;

...exp...;

FP2.4: + if (exp == null) continue;

...exp...;

FP2.5: + if (exp == null)

+ throw new IllegalArgumentException(...);

...exp...;

where DEFAULT_VALUE is set based on the return type (RT) of the

encompassing method as below:

DEFAULT_VALUE =




false, if RT = boolean;

0, if RT = pr imitive type ;

new String(), if RT = Str inд;

“return;”, if RT = void ;

null, otherwise .

(1)

exp1 is a compatible expression in the buggy program (i.e., that has

the same data type as exp). FP2.4 is speci�c to the case of a buggy

statement within a loop (i.e., for or while).

FP3. Insert Range Checker. Inserting a range checker for the

access of an array or collection if it is unchecked. Implemented

in: PAR, ELIXIR, Genesis, SketchFix, AVATAR, SOFix† and SimFix†.
+ if (index < exp.length) {

...exp[index]...; ......

+ }

OR

+ if (index < exp.size()) {

...exp.get(index)...; ......

+ }

where exp is an expression representing an array or collection.

FP4. Insert Missed Statement. Inserting a missing statement be-

fore, or after, or surround a buggy statement. The statement is either

an expression statement with a method invocation, or a return/try-

catch/if statement. Implemented in: ELIXIR, HDRepair, SOFix,

SketchFix, CapGen, FixMiner, and SimFix.
FP4.1: + method(exp);

FP4.2: + return DEFAULT_VALUE;

FP4.3: + try {

statement; ......

+ } catch (Exception e) { ... }

FP4.4: + if (conditional_exp) {

statement; ......

+ }

where exp is an expression from a buggy statement. It may be empty

if the method does not take any argument. FP4.4 excludes three �x

patterns (FP1, FP2, and FP3) that are used with speci�c contexts.

FP5. Mutate Class Instance Creation.Replacing a class instance

creation expression with a cast super.clone() method invocation if

the class instance creation is in an overridden clone method. Im-

plemented in: AVATAR.
public Object clone() {

- ... new T();

+ ... (T) super.clone();

}

where T is the class name of the current class containing the buggy

statement.

FP6. Mutate Conditional Expression.Mutating a conditional ex-

pression that returns a boolean value (i.e., true or false) by either

updating it, or removing a sub conditional expression, or inserting

a new conditional expression into it. Implemented in: PAR, ssFix,

S3, HDRepair, ELIXIR, SketchFix, CapGen, SimFix, and AVATAR.
FP6.1: - ...condExp1...

+ ...condExp2...

FP6.2: - ...condExp1 Op condExp2...

+ ...condExp1...

FP6.3: - ...condExp1...

+ ...condExp1 Op condExp2...

where condExp1 and condExp2 are conditional expressions. Op is the

logical operator ‘||’ or ‘&&’. Themutation of operators in conditional

expressions is not summarized in this �x pattern but in FP11.

FP7. Mutate Data Type. Replacing the data type in a variable dec-

laration or a cast expression with another data type. Implemented

in: PAR, ELIXIR, FixMiner, SOFix, CapGen, SimFix, AVATAR, and

HDRepair†.
FP7.1: - T1 var ...;

+ T2 var ...;

FP7.2: - ...(T1) exp...;

+ ...(T2) exp...;

where both T1 and T2 denote two di�erent data types. exp means

the being casted expression (including variable).

FP8. Mutate Integer Division Operation.Mutating the integer

division expressions to return a �oat value, by mutating its divisor

or divider to make them be of type �oat.Released by Liu et al. [35],

it is not implemented in any APR tool yet.
FP8.1: - ...dividend / divisor...

+ ...dividend / (double or float) divisor...

FP8.2: - ...dividend / divisor...

+ ...(double or float) dividend / divisor...

FP8.3: - ...dividend / divisor...

+ ...(1.0 / divisor) * dividend...

where dividend and divisor are integer number literals or integer-

returned expressions (including variables).

FP9. Mutate Literal Expression. Mutating boolean, number, or

String literals in a buggy statement with other relevant literals, or

correspondingly-typed expressions. Implemented in: HDRepair,

S3, FixMiner, SketchFix, CapGen, SimFix and ssFix†.
FP9.1: - ...literal1...

+ ...literal2...

FP9.2: - ...literal1...

+ ...exp...

where literal1 and literal2 are of the same type literals, but having

di�erent values (e.g., literal1 is true, literal2 is false). exp denotes

any expression value of the same type as literal1.

FP10. Mutate Method Invocation Expression.Mutating the buggy

method invocation expression by adapting its method name or ar-

guments. This pattern consists of four sub �x patterns:

(1) Replacing the method name with another one which has a

compatible return type and same parameter type(s) as the

buggy method that was invoked.

(2) Replacing at least one argument with another expression

which has a compatible data type. Replacing a literal or

variable is not included in this �x pattern, but rather in

FP9 and FP13 respectively.

(3) Removing argument(s) if the method invocation has the

suitable overridden methods.
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(4) Inserting argument(s) if the method invocation has the suit-

able overridden methods.

Implemented in: PAR, HDRepair, ssFix, ELIXIR, FixMiner, SOFix,

SketchFix, CapGen, and SimFix.
FP10.1: - ...method1(args)...

+ ...method2(args)...

FP10.2: - ...method1(arg1, arg2, ...)...

+ ...method1(arg1, arg3, ...)...

FP10.3: - ...method1(arg1, arg2, ...)...

+ ... method1(arg1, ...)...

FP10.4: - ...method1(arg1, ...)...

+ ...method1(arg1, arg2, ...)...

wheremethod1 andmethod2 are the names of invokedmethods. args,

arg1, arg2 and arg3 denote the argument expressions in the method

invocation. Note that, code changes on class instance creation,

constructor and super constructor expressions are also included in

these four �x patterns.

FP11. Mutate Operators. Mutating an operation expression by

mutating its operator(s). We divide this �x pattern into three sub-

�x patterns following the operator types and mutation actions.

(1) Replacing one operator with another operator from the same

operator class (e.g., relational or arithmetic).

(2) Changing the priority of arithmetic operators.

(3) Replacing instanceof operator with (in)equality operators.

Implemented in: HDRepair, ssFix, ELIXIR, S3, jMutRepair, SOFix,

FixMiner, SketchFix, CapGen, SimFix, AVATAR, and PAR†.
FP11.1: - ...exp1 Op1 exp2...

+ ...exp1 Op2 exp2...

FP11.2: - ...(exp1 Op1 exp2) Op2 exp3...

+ ...exp1 Op1 (exp2 Op2 exp3)...

FP11.3: - ...exp instanceof T...

+ ...exp != null...

where exp denotes the expressions in the operation and Op is the

associated operator.

FP12. Mutate Return Statement. Replacing the expression (ex-

cluding literals, variables, and conditional expressions) in a return

statement with a compatible expression. Implemented in: ELIXIR,

SketchFix, and HDRepair†.
- return exp1;

+ return exp2;

where exp1 and exp2 represent the returned expressions.

FP13. Mutate Variable. Replacing a variable in a buggy statement

with a compatible expression (including variables and literals). Im-

plemented in: S3, SOFix, FixMiner, SketchFix, CapGen, SimFix,

AVATAR, and ssFix†.
FP13.1: - ...var1...

+ ...var2...

FP13.2: - ...var1...

+ ...exp...

where var1 denotes a variable in the buggy statement. var2 and exp

represent respectively a compatible variable and expression of the

same type as var1.

FP14. Move Statement.Moving a buggy statement to a new po-

sition. Implemented in: PAR.
- statement;

......

+ statement;

where statement represents the buggy statement.

FP15. Remove Buggy Statement. Deleting entirely the buggy

statement from the program. Implemented in: HDRepair, SOFix,

FixMiner, CapGen, and AVATAR.

FP15.1: ......

- statement;

......

FP15.2: - methodDeclaration(Arguments) {

- ......; statement;......

- }

where statement denotes any identi�ed buggy statement, andmethod

represents the encompassing method.

2.3 Analysis of Collected Patterns

We provide a study of the collected �x patterns following quantita-

tive (overall set) and qualitative (per �x pattern) aspects. Table 2

assesses the �x patterns in terms of four qualitative dimensions:

(1) Change Action: what high-level operations are applied on a

buggy code entity? On the one hand, Update operations replace

the buggy code entity with retreived donor code, while Delete

operations just remove the buggy code entity from the program.

On the other hand, Insert operations insert an otherwise missing

code entity into the program, and Move operations change the

position of the buggy code entity to a more suitable location in

the program.

(2) Change Granularity: what kinds of code entities are directly

impacted by the change actions? This entity can be an entire

Method, a whole Statement or speci�cally targeting an Expres-

sion within a statement.

(3) Bug Context: what speci�c AST nodes of code entities are

used to match �x patterns.

(4) Change Spread: the number of statements impacted by each

�x pattern.

Quantitatively, as summarized in Table 3, 17 �x patterns are

related to Update change actions, 4 �x patterns implement Delete

actions, 13 �x patterns Insert extra code, and only 1 �x pattern is

associated to Move change action.

In terms of change granularity, 21 and 17 �x patterns are applied

respectively at the expression and statement code entity levels 2.

Only 1 �x pattern is suitable at the method level.

Overall, we note that 30 �x patterns are applicable to a single

statement, while 7 �x patterns can mutate multiple statements at

the same time. Among these patterns, FP14 and FP15.1 can both

mutate single and multiple statements.

3 SETUP FOR REPAIR EXPERIMENTS

In order to assess the e�ectiveness of �x patterns in the taxonomy

presented in Section 2, we design program repair experiments using

the �x patterns as the main ingredients. The produced APR system

is then assessed on a widely-used benchmark in the repair commu-

nity to allow reliable comparison against the state-of-the-art.

3.1 TBar: a Baseline APR System

Based on the investigations of recurrently-used �x patterns, we

build TBar, a template-based APR tool which integrates the 35 �x

patterns presented in Section 2. We expect the APR community to

consider TBar as a baseline APR tool: new approachesmust come up

with novel techniques for solving auxiliary issues (e.g., repair pre-

cision, search space optimization, fault locations re-prioritization,

2Among these, four sub-�x patterns (FP10) can be applied to either expressions or
statements, given that constructor and super-constructor code entities in Java program
are grouped into statement level in terms of abstract syntax tree by Eclipse JDT.
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Figure 1: The overall work�ow of TBar.

Table 2: Change properties of �x patterns.

Fix
Pattern

Change
Action

Change
Graunlarity

Bug Context
Change
Spread

FP1 Insert statement cast expression single

FP2.1

Insert statement

a variable or
an expression
returning non-

primitive-type data

single

FP2.(2,3,4,5) dual

FP3 Insert statement
element access
of array or

collection variable
single

FP4.(1,2,3,4) Insert statement any statement single

FP5 Update expression
class instance

creation expression
and clone method

single

FP6.1 Update
expression conditional expression singleFP6.2 Delete

FP6.3 Insert

FP7.1 Update expression
variable declaration

expression
single

FP7.2 Update expression cast expression single

FP8.(1,2,3) Update expression
integral division

expression
single

FP9.(1,2) Update expression literal expression single

FP10.1
Update

expression,
or statement

method invocation,
class instance creation,

constructor, or
super constructor

single
FP10.2
FP10.3 Delete
FP10.4 Insert

FP11.1 Update expression
assignment or
in�x-expression

single

FP11.2 Update expression
arithmetic

in�x-expression
single

FP11.3 Update expression instance of expression single

FP12 Update expression return statement single

FP13.(1, 2) Update expression variable expression single

FP14 Move statement any statement
single or
multiple

FP15.1 Delete statement any statement
single or
multiple

FP15.2 Delete method any statement multiple

Table 3: Diversity of �x patterns w.r.t change properties.

Action Type # �x patterns Granularity # �x patterns Spread # �x patterns

Update 17 Expression 21 Single-
30

Delete 4 Statement 17 Statement
Insert 13 Method 1 Multiple-

7
Move 1 Statements

etc.) to boost automated program repair beyond the performance

that a straightforward application of common �x patterns can o�er.

Figure 1 overviews the work�ow that we have implemented in TBar.

We describe in the following subsections the role and operation of

each process as well as all necessary implementation details.

3.1.1 Fault Localization. Fault localization is necessary for template-

based APR as it allows to identify a list of suspicious code lo-

cations (i.e., buggy statements) on which to apply the �x pat-

terns. TBar leverages the GZoltar [9] framework to automate the

execution of test cases for each buggy program. In this frame-

work, we use the Ochiai [4] ranking metric to compute the sus-

piciousness scores of statements that are likely to be the faulty

code locations. This ranking metric has been demonstrated in

several empirical studies [56, 65, 73, 78] to be e�ective for lo-

calizing faults in object-oriented programs. The GZoltar frame-

work for fault localization is also widely used in the literature of

APR [18, 24, 34, 38, 39, 49, 69, 74, 76, 77], allowing for a fair assess-

ment of TBar’s performance against the state-of-the-art.

3.1.2 Fix Pa�ern Selection. In the execution of the repair pipeline,

once the fault localization process yields a list of suspicious code

locations, TBar sequentially attempts to select the encoded �x pat-

terns from its database of �x patterns for each statement in the

locations list. The selection of �x patterns is conducted in a naïve

way based on the AST context information of each suspicious state-

ment. Speci�cally, TBar sequentially traverses each node of the

suspicious statement AST from its �rst child node to its last leaf

node and tries to match each node against the context AST of the �x

pattern. If a node can match any bug context presented in Table 2,

a related �x pattern will be matched to generate patch candidates

with the corresponding code change pattern. If the node is not a

leaf node, TBar keeps traversing its children nodes. For example,

if the �rst child node of a suspicious statement is a method in-

vocation expression, it will be �rst matched with FP10. Mutate

Method Invocation Expression �x pattern. If the children nodes

of the method invocation start from a variable reference, it will be

matched with FP13. Mutate Variable �x pattern as well. Other

�x patterns follow the same manner. After all expression nodes of

a suspicious statement are matched with �x patterns, TBar further

matches �x patterns from statement and method levels respectively.

3.1.3 Patch Generation and Validation. When a matching �x pat-

tern is found (i.e., a pattern is selected for a suspicious statement),

a patch is generated by mutating the statement, then the patched

program is run against the test suite. If the patched program passes

all tests successfully, the patch candidate is considered as a plau-

sible patch [58]. Once such a plausible patch is identi�ed, TBar

stops generating other patch candidates for this bug to �x bugs in a

standard and practical program repair work�ow [38, 39, 49, 76, 77],

but does not generate all plausible patches for each bug, unlike

PraPR [15]. Otherwise, the pattern selection and patch generation

process is resumed until all AST nodes of buggy code are traversed.

When several �x pattern contexts match one node, their actions

are used for ordering: TBar prioritizes Update over Insert that is

over Delete, which is prioritized over Move. In case of multiple

donor code options for a given �x pattern, the candidate patches

(each generated with a speci�c donor code) are ordered based on

the distances between donor code node and buggy code node in the

AST of the buggy code �le: priority is given to smaller distances.

Due to space limitation, detailed steps, illustrated in an algorithmic

pseudo-code, are released in the replication package.

Considering that some buggy programs have several buggy lo-

cations, if a patch candidate can make a buggy program pass a

sub-set of previously failing test cases without failing any previ-

ously passing test cases, this patch is considered as a plausible

sub-patch of this buggy program. TBar will further validate other

patch candidates, until either a plausible patch is generated, or all

patch candidates are validated, or TBar exhausts the time limitation

set (i.e., three hours) for repair attempts.
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If a plausible patch is generated, we further manually check

the equivalence between this patch and the ground-truth patch

provided by developers and available in the Defects4J benchmark.

If the plausible patch is semantically equivalent to the ground-truth

patch, the plausible patch is considered as correct. Otherwise, it is

only considered as plausible. We o�er a replication package with

extensive details on pattern implementation within TBar. Source

code is publicly available in the aforementioned GitHub repository.

3.2 Assessment Benchmark

For our empirical assessments, we selected theDefects4J [20] dataset

as the evaluation benchmark of TBar. This benchmark includes

test cases for buggy Java programs with the associated developer

�xes. Defects4J is an ideal benchmark for the objective of this study,

since it has been widely used by most recent state-of-the-art APR

systems targeting Java program bugs. Table 4 provides summary

statistics on the bugs and test cases available in the version 1.2.0 [1]

of Defects4J which we use in this study.

Table 4: Defects4J dataset information.

Project
Chart
(C)

Closure
(Cl)

Lang
(L)

Math
(M)

Mockito
(Mc)

Time
(T)

Total

# bugs 26 133 65 106 38 27 395
# test cases 2,205 7,927 2,245 3,602 1,457 4,130 21,566

# �xed bugs by all
APR tools (cf. [38, 39])

13 16 28 37 3 4 101

Overall, we note that, to date, 101 Defects4J bugs have been

correctly �xed by at least one APR tool published in the literature.

Nevertheless, we recall that SimFix [18] currently holds the record

number of bugs �xed by a single tool, which is 34.

4 ASSESSMENT

This section presents and discusses the results of repair experiments

with TBar. In particular, we conduct two experiments for:

• Experiment #1: Assessing the e�ectiveness of the various

�x patterns implemented in TBar. To avoid the bias that fault

localization can introduce with its false positives (cf. [38]),

we directly provide perfect localization information to TBar.

• Experiment #2: Evaluating TBar in a normal program re-

pair scenario. We investigate in particular the tendency of

�x patterns to produce more or less incorrect patches.

4.1 Repair Suitability of Fix Patterns

Our �rst experiment focuses on assessing the patch generation per-

formance of �x patterns for real bugs. In particular, we investigate

three research questions in Experiment #1.

Research Questions for Experiment #1
RQ1. How many real bugs from Defects4J can be correctly �xed by �x patterns from

our taxonomy?
RQ2. Can each Defects4J bug be �xed by di�erent �x patterns?
RQ3. What are the properties of �x patterns that are successfully used to �x bugs?

In a recent study, Liu et al. [38] reported how fault localization

techniques substantially a�ect the repair performance of APR tools.

Given that, in this experiment, the APR tool (namely TBar) is only

used as a means to apply the �x patterns in order to assess their ef-

fectiveness, we must eliminate the fault localization bias. Therefore,

we assume that the bug positions at statement level are known,

and we directly provide it to the patch generation step of TBar,

without running any fault localization tool (which is part of the nor-

mal APR work�ow, see Figure 1). To ensure readability across our

experiments, we denote this version of the APR system as TBarp
(where p stands for perfect localization). Table 5 summarizes the

experimental results of TBarp .

Table 5: Number of bugs �xed by �x patterns with TBarp .

Fixed Bugs C Cl L M Mc T Total

# of Fully Fixed Bugs 12/13 20/26 13/18 23/35 3/3 3/6 74/101
# of Partially Fixed Bugs 2/4 3/6 1/4 0/4 0/0 1/1 7/20

∗We provide x/y numbers: x is the number of correctly �xed bugs; y is the number of bugs
�xed with plausible patches. The same notation applies to Table 7.

Among 395 bugs in the Defects4J benchmark, TBarp can generate

plausible patches for 101 bugs. 74 of these bugs are �xedwith correct

patches. We also note that TBarp can partially �x3 20 bugs with

plausible patches, and 8 of them are correct. In a previous study, the

kPAR [38] baseline tool (i.e., a Java implementation of the PAR [23]

seminal template-based APR tool) was correctly/plausibly �xing

36/55 Defects4J bugs when assuming perfect localization.

While the results of TBarp are promising, ∼79%(=314/395) of

bugs cannot be correctly �xed with the available �x patterns. We

manually investigated these un�xed bugs and make the following

observations as research directions for improving the �x rates:

(1) Insu�cient �x patterns. Many bugs are not �xed by TBarp sim-

ply due to the absence of matching �x patterns. This suggests

that the �x patterns collected in the literature are far from be-

ing representative for real-world bugs. The community must

thus keep contributing with e�ective techniques for mining �x

patterns from existing patches.

(2) Ine�ective search of �x ingredients. Template-based APR is a kind

of search-based APR [69]: some �x patterns require donor code

(i.e., �x ingredients) to generate actual patches. For example,

as shown in Figure 2, to apply the relevant �x pattern FP9.2, one

needs to identify �x ingredient “ImageMapUtilities.htmlEscape”

as the necessary in generating the patch. The current imple-

mentation of TBar limits its search space for donor code to the

“local” �le where the bug is localized. It is a limitation to �nd

the correct donor code, but it reduces the risk of search space

explosion. In addition, TBar leverages the context of buggy code

to prune away irrelevant �x ingredients. Therefore, some bugs

cannot be �xed by TBar although its �x pattern can match with

code change actions. With more e�ective search strategies (e.g.,

larger search space such as �x ingredients from other projects

as in [34]), there might be more chances to �x more bugs.

RQ1: The collected �x patterns can be used to correctly �x 74 real bugs

from the Defects4J dataset. A larger portion of the dataset remains

however un�xed by TBarp , notably due to (1) the limitations of the �x

patterns set and to (2) the naïve search strategy for �nding relevant

�x ingredients to build concrete patches from patterns.

Figure 3 summarizes the statistics on the number of bugs that

can be �xed by one or several �x patterns. The Y-axis denotes the

number of �x patterns (i.e.,n = 1, 2, 3, 4, 5, and >5) that can generate

plausible patches for a number of bugs (X-axis). The legend indicates

that “P” represents the number of plausible patches generated by

TBarp (i.e., those that are not found to be correct). “#k”, where

3Partial �x: a patch makes the buggy program pass a part of previously failed test
cases without causing any new failed test cases [38].
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public String generateToolTipFragment(String toolTipText) {

- return " title=\"" + toolTipText

+ return " title=\"" + ImageMapUtilities.htmlEscape(toolTipText)

+ "\" alt=\"\"";

}

Code Change Action:
Replace variable "toolTipText" with a method invocation expression "

ImageMapUtilities.htmlEscape(toolTipText)".

Matchable �x pattern: FP9.2.

Figure 2: Patch and code change action of �xing bug C-10.
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Figure 3: Number of bugs plausibly and correctly �xed by single or

multiple �x patterns.

k ∈ [1, 4], indicates that a bug can be correctly �xed by only k �x

patterns (although it may be plausibly �xed by more �x patterns).

Consider for the bottom-most bar in Figure 3: 66 (=28+38) bugs

can be plausibly �xed by a single pattern (Y-axis value is 1); it

turns out that only 38 of them are correctly �xed. Note that several

patterns can generate (plausible) patches for a bug, but not all

patches are necessarily correct. For example, in the case of the top-

most bar in Figure 3, 5 bugs are each plausibly �xed by over 5 �x

patterns. However, only 1 bug is correctly �xed by 3 �x patterns.

In summary, 86% (= 38+10+5+3+10+4
74+7

) of correctly �xed bugs (74

fully and 7 partially �xed bugs) are exclusively �xed correctly by

single patterns. In other words, generally, several �x patterns can

generate patches that can pass all test cases but, in most cases, the

bug is correctly �xed by only one pattern. This �nding suggests that

it is necessary to carefully select an appropriate �x pattern when

attempting to �x a bug, in order to avoid plausible patches which

may prevent the discovery of correct patches by halting the repair

process (given that all tests are passing on the plausible patch).

RQ2: Some bugs can be plausibly �xed by di�erent �x patterns.

However, in most cases, only one �x pattern is adequate for generating

a correct patch. This �nding suggests a need for new research on �x

pattern prioritization.

Table 6 details which bug is �xed by which �x pattern(s). We note

that �ve �x patterns (i.e., FP3, FP4.3, FP5, FP7.2 and FP11.3) cannot

be used to generate a plausible patch for any Defects4J bug. Two

�x patterns (i.e., FP9.2 and FP12) lead to plausible patches for some

bugs, but none of them is correct. It does not necessarily suggest

that the aforementioned �x patterns are useless (or ine�ective) in

APR. Instead, two reasons can explain their performance:

• The search for donor code may be ine�cient for �nding relevant

ingredients for applying these patterns

• The Defects4J dataset does not contain the types of bugs that can

be addressed by these �x patterns.

In addition, twenty (20) �x patterns lead to the generation of

correct patches for some bugs. Most of these �x patterns are in-

volved in the generation of plausible patches (which turn out to be

incorrect). Interestingly, we found the cases of six (6) �x patterns

which can generate several4 patch candidates, some which being

correct and others being only plausible, for the same 10 bugs (as

indicated in Table 6 with ‘G#’). This observation further highlights

4Note that, in this experiment TBarp generates and assesses all possible patch
candidates for a given pair "bug location - �x pattern" with varying ingredients.

the importance of selecting a relevant donor code for synthesizing

patches: selecting an inappropriate donor code can lead to the gen-

eration of a plausible (but incorrect) patch, which will impede the

generation of correct patches in a typical repair pipeline.

Aside from �x patterns, �x ingredients collected in donor code are

essential to be properly selected to avoid patches that are plausible

but may yet be incorrect.

We further inspect properties of �x patterns, such as change ac-

tions, granularity, and the number of changed statements in patches.

The statistics are shown in Figure 4, highlighting the number of

plausible (but incorrect) and correct patches for the di�erent prop-

erty dimensions through which �x patterns can be categorized.
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Figure 4: Qualitative statistics of bugs �xed by �x patterns.

More bugs are �xed by Update change actions than any by any

other actions. Similarly, �x patterns targeting expressions �x more

bugs correctly than patterns targeting statements and methods.

However, �x patterns mutating whole statements have a higher rate

of correct patches among their plausible generated patches. Finally,

�x patterns changing only single statements can correctly �x more

bugs than those touchingmultiple statements. Fix patterns targeting

multi-statements have however a higher rate of correctness.

RQ3: There are noticeable di�erences between successful repair

among �x patterns depending on their properties related to imple-

mented change actions, change granularity and change spread.

4.2 Repair Performance Comparison: TBar vs
State-of-the-art APR tools

Our second experiment evaluates TBar in a realistic setting for patch

generation, allowing for reliable comparison against the state-of-

the-art in the literature. Concretely, we investigate two research

questions in Experiment #2.

Research Questions for Experiment #2
RQ4. What performance can be achieved by TBar in a standard and practical repair

scenario?
RQ5. To what extent are the di�erent �x patterns sensitive to noise in fault localization

(i.e., spotting buggy code locations)?

In this experiment we implement a realistic scenario, using a

normal fault localization (i.e., no assumption of perfect localization

as for TBarp ) on Defects4J bugs. To enable a fair comparison with

performance results recorded in the literature, TBar leverages a

standard con�guration in the literature [38] with GZoltar [9] and

Ochiai [4]. Furthermore, TBar does not utilize any additional tech-

nique to improve the accuracy of fault localization, such as crashed

stack trace (used by ssFix [74]), predicate switching [80] (used by

ACS [76]), or test case puri�cation [79] (used by SimFix [18]).

With respect to the patch generation step, contrary to the exper-

iment with TBarp where all positions of multi-locations bugs were

known (cf. Section 4.1), TBar adapts a “�rst-generated and �rst-

selected” strategy to progressively apply �x patterns, one at a time,

in various suspicious code locations: TBar generates a patch pi ,
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Table 6: Defects4j bugs �xed by �x patterns.

Bug
ID F

P
1 FP2

F
P
3 FP4

F
P
5 FP6 FP7 FP8 FP9 FP10 FP11

F
P
1
2 FP13

F
P
1
4 FP15

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1 2 3 1 2 1 2 3 4 1 2 3 1 2 1 2

C-1 ❍ ● ❍ ❍ ❍ 1/5
C-4 ● ❍ ● 2/3
C-7 ❍ G# 1/2
C-8 ● 1/1
C-9 ● ❍ 1/2
C-11 ● 1/1
C-12 ● 1/1
C-14 ● ● ❍ 2/3
C-18 ❍ ❍ ❍ ❍ ● 1/5
C-19 ● 1/1
C-20 ● 1/1
C-24 ● 1/1
C-25 ● ❍ ❍ 1/3
C-26 ● ❍ ● 2/3

Cl-2 ● ❍ ❍ 1/3
Cl-4 ● 1/1
Cl-6 ❍ ❍ ❍ ❍ ❍ ● 1/6
Cl-10 ● 1/1
Cl-11 ❍ ❍ ❍ ❍ ● 1/5
Cl-13 ● 1/1
Cl-18 ● ❍ 1/2
Cl-21 ❍ ❍ ❍ ❍ ● 1/5
Cl-22 ❍ ❍ ❍ ❍ ● 1/5
Cl-31 ● ❍ 1/2
Cl-38 ❍ ❍ ● 1/3
Cl-40 ● 1/1
Cl-46 ● 1/1
Cl-62 ❍ ❍ ❍ G# ❍ 1/5
Cl-63 ❍ ❍ ❍ G# ❍ 1/5
Cl-70 ● 1/1
Cl-73 ● 1/1
Cl-85 ● 1/1
Cl-86 ● 1/1
Cl-102 ● ● 2/2
Cl-106 ❍ ● 1/2
Cl-115 ❍ ❍ ❍ ❍ ● 1/5
Cl-126 ❍ ❍ ❍ ❍ ❍ ● 1/6

L-6 ● 1/1
L-7 ❍ ❍ ❍ ● 1/4
L-10 G# ● 2/2
L-15 ❍ ● ❍ ❍ ❍ 1/5
L-22 ❍ ❍ G# ❍ ❍ 1/5
L-24 ● 1/1
L-26 ● 1/1
L-33 ● 1/1
L-39 ● ❍ ❍ 1/3
L-47 ● 1/1
L-51 ● 1/1
L-57 ❍ ❍ ❍ ● ● 2/5
L-59 ● 1/1
L-63 ❍ ❍ ❍ ❍ ❍ ❍ ● 1/7

M-4 ● 1/1
M-5 ● ❍ 1/2
M-11 ● ● ● ● 4/4
M-15 G# 1/1
M-22 ● ❍ 1/2
M-30 G# 1/1
M-33 ❍ ❍ ● 1/3
M-34 ● 1/1
M-35 ● 1/1
M-50 ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● 1/9
M-57 ● 1/1
M-58 ● 1/1
M-59 ● ❍ 1/2
M-65 ● 1/1
M-70 ● 1/1
M-75 ● 1/1
M-77 ❍ ● ❍ ● 2/4
M-79 G# 1/1
M-80 ❍ ● ❍ ❍ 1/4
M-82 ❍ ❍ ❍ ● ❍ 1/5
M-85 ❍ G# G# ❍ ● ❍ ❍ ❍ 3/8
M-89 ● 1/1
M-98 ● 1/1

Mc-26 ● 1/1
Mc-29 ● ● 2/2
Mc-38 ● ● 2/2

T-3 G# 1/1
T-7 ● ❍ 1/2
T-19 ❍ ● 1/2
T-26 ● 1/1

# 1 1 6 5 4 1 1 0 3 1 0 1 0 1 3 5 3 0 1 1 1 6 0 3 1 1 3 11 1 0 0 12 2 2 13 2
# 2 1 7 10 6 1 1 0 4 1 0 14 0 15 12 32 3 0 1 1 1 6 7 4 2 2 3 24 2 0 1 43 19 6 25 4

∗ ● indicates that the bug is correctly �xed and ❍ indicates that the generated patch is plausible but not correct. G#means that the �x pattern can generate both correct patch and plausible patch for a bug. ● and ❍ denote that the bug
can be partially �xed by the corresponding �x pattern. In the last column, we provide x/y numbers: x is the number of �x patterns that can generate correct patches for a bug, and y is the number of �x patterns that can generate plausible
patches for a bug. Note that, the bugs that can be plausible but incorrectly �xed by �x patterns are not shown in this table. # 1: number of bugs correctly �xed by a �x pattern. # 2: number of bugs plausible �xed by a �x pattern.

using a �x pattern that matches a given bug. If pi passes a subset of

previously-failing test cases without failing any previously-passing

test case, TBar selectspi as a plausible patch for the bug. Then, TBar

continues to validate another patchpi+1 (which can be generated by

the same �x pattern on the same code entity with other ingredients,

or on another code location). When pi+1 passes a subset of test

cases as pi , if pi+1 is generated for the same buggy code entity as

pi , pi+1 will be abandoned; otherwise, TBar takes pi+1 as another

plausible patch as well. Through this process, TBar creates a patch

set P = { pi , pi+1, ...} of plausible patches. Here, as soon as any patch

can pass all the given test cases for a given bug, TBar takes it as a

plausible patch for the given bug, which is regarded as a fully-�xed
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Table 7: Comparing TBar against the state-of-the-art APR tools.

Project jGenProg jKali jMutRepair HDRepair Nopol ACS ELIXIR JAID ssFix CapGen SketchFix FixMiner LSRepair SimFix kPAR AVATAR
TBar

Fully �xed Partially �xed

Chart 0/7 0/6 1/4 0/2 1/6 2/2 4/7 2/4 3/7 4/4 6/8 5/8 3/8 4/8 3/10 5/12 9/14 0/4
Closure 0/0 0/0 0/0 0/7 0/0 0/0 0/0 5/11 2/11 0/0 3/5 5/5 0/0 6/8 5/9 8/12 8/12 1/5
Lang 0/0 0/0 0/1 2/6 3/7 3/4 8/12 1/8 5/12 5/5 3/4 2/3 8/14 9/13 1/8 5/11 5/14 0/3
Math 5/18 1/14 2/11 4/7 1/21 12/16 12/19 1/8 10/26 12/16 7/8 12/14 7/14 14/26 7/18 6/13 19/36 0/4
Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/2 2/2 1/2 0/0
Time 0/2 0/2 0/1 0/1 0/1 1/1 2/3 0/0 0/4 0/0 0/1 1/1 0/0 1/1 1/2 1/3 1/3 1/2

Total 5/27 1/22 3/17 6/23 5/35 18/23 26/41 9/31 20/60 21/25 19/26 25/31 19/37 34/56 18/49 27/53 43/81 2/18

P(%) 18.5 4.5 17.6 26.1 14.3 78.3 63.4 29.0 33.3 84.0 73.1 80.6 51.4 60.7 36.7 50.9 53.1 11.1

∗“P” is the probability of generated plausible patches to be correct. The data of other APR tools are excerpted from the corresponding work. kPAR [38] is an open-source implementation of PAR [23].

Table 8: Per-pattern repair performance.

F
P
1 FP2

F
P
3 FP4

F
P
5 FP6 FP7 FP8 FP9 FP10 FP11

F
P
1
2 FP13

F
P
1
4 FP15

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1 2 3 1 2 1 2 3 4 1 2 3 1 2 1 2

Correct 1 4 2 1 0 1 0 1 0 0 0 0 0 0 3 3 0 0 0 1 2 0 1 1 1 1 7 1 0 0 9 1 0 2 2
Avg position* (1) (16) (1) (5) - (5) - (5) - - - - - - (23) (16) - - - (9) (1) - (2) (62) (6) (1) (12) (18) - - (5) (1) - (2) (1)

Plausible (all) 1 7 4 1 0 1 0 3 0 0 0 0 1 0 11 4 0 0 0 1 4 0 2 2 1 1 12 1 0 0 25 4 1 7 5

Avg position* (1) (12)† (191) (5) - (5) - (20) - - - - (8) - (27)† (15) - - - (9) (18) - (4) (49) (6) (1) (15)† (18) - - (8)† (20) (15) (26) (16)

∗Average position of the exact buggy position in the list of suspicious statements yield by fault localization tool. † The exact buggy positions of some bugs cannot be yield by fault localizaiton tool.

bug, and all pi ∈ P will be abandoned. Otherwise, our tool yields P ,

a set of plausible patches that can each partially �x the given bug.

We run the TBar APR system against the buggy programs of

the Defects4J dataset. Table 7 presents the performance of TBar

in comparison with recent state-of-the-art APR tools from the lit-

erature. TBar can �x 81 bugs with plausible patches, 43 of which

are correctly �xed. No other APR tool had reached this number

of �xed bugs. Nevertheless, its precision (ratio of correct vs. plau-

sible patches) is lower than some recent tools such as CapGen

and SimFix which employs sophisticated techniques to select �x

ingredients. Nonetheless, it is noteworthy that, despite using �x

patterns catalogued in the literature, we can �x three bugs (namely

Cl-86,L-47,M-11) which had never been �xed by any APR system:

M-11 is �xed by a pattern found by a standalone �x pattern mining

tool [35] but which was not encoded by any APR system yet. Cl-86

and L-47 are �xed by patterns that were not applied to Defects4J.

RQ4: TBar outperforms all recent state-of-the-art APR tools that

were evaluated on the Defects4J dataset. It correctly �xes 43 bugs,

while the runner-up (SimFix) is reported to correctly �x 34 bugs.

It is noteworthy that TBar performs signi�cantly less than TBarp
(43 vs. 74 correctly �xed bugs). This result is in line with a recent

study [38], which demonstrated that fault localization imprecision

is detrimental to APR repair performance. Table 6 summarizes in-

formation about the number of bugs each �x pattern contributed

to �xing with TBarp . While only 4 �x patterns did not lead to the

generation of any plausible patch when assuming perfect localiza-

tion. With TBar, it is the case for 13 �x patterns (see Table 8). This

observation further con�rms the impact of fault localization noise.

We propose to examine the locations where TBar applied �x

patterns to generate plausible but incorrect patches. As shown in

Figure 5, TBar has made changes on incorrect positions (i.e., non-

buggy locations) for 24 out of the 38 fully-�xed and 15 out of the

16 partially-�xed bugs.
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Figure 5: The mutated code positions of plausibly but incorrectly

�xed bugs.

Even when TBar applies a �x pattern to the precise buggy loca-

tion, the generated patch may be incorrect. As shown in Figure 5,

14 patches that fully �x Defects4J bugs mutate the correct locations:

in 3 cases, the �x patterns were inappropriate; in 2 other cases,

TBar failed to locate relevant donor code; for the remaining, TBar

does not support the required �x patterns.

Finally, Figure 6 illustrates the impact of fault localization per-

formance: un�xed bugs (but correctly �xed by TBarp ) are generally

more poorly localized than correctly �xed bugs. Similarly, we note

that many plausible but incorrect patches are generated for bugs

which are not well localized (i.e., several false positive buggy loca-

tions are mutated leading to plausible but incorrect patches).

U
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* X-axis: Bug positions in suspicious list reported by fault localization.

Figure 6: Distribution of the positions of buggy code locations in

fault localization list of suspicious statements. C and P denote

Correctly- and Plausibly- (but incorrectly) �xed bugs, respectively.

F and U denote Fixed and Un�xed bugs.

Average positions bugs (in fault localization suspicious list) are

also provided in Table 8. It appears that some �x patterns (e.g.,

FP2.1, FP6.3, FP10.2) can correctly �x bugs that are poorly localized,

showing less sensitivity to fault localization noise than others.

RQ5: Fault localization noise has a signi�cant impact on the per-

formance of TBar. Fix patterns are diversely sensitive to the false

positive locations that are recommended as buggy positions.

5 DISCUSSION

Overall, our investigations reveal that a large catalogue of �x pat-

terns can help improve APR performance. However, at the same

time, there are other challenges that must be dealt with: more ac-

curate fault localization, e�ective search of relevant donor code,

�x pattern prioritization. While we will work on some of these

research directions in future work, we discuss in this section some

threats to validity of the study and practical limitations of TBar.

5.1 Threats to Validity

Threats to external validity include the target language of this study,

i.e., Java. Fix patterns studied in this paper only cover the �x pat-

terns targeting at Java program bugs released by the state-of-the-art

pattern-based APR systems. However, we believe that most �x pat-

terns presented in this study could be applied to other languages

since �x patterns are illustrated as abstract syntax tree level. An-

other threat to external validity could be the �x pattern diversity.

Our study may not consider all available �x patterns so far in the

literature. To reduce this threat, we systematically reviewed the
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research on pattern-based program repair in the literature. Never-

theless, we acknowledge that integrating more �x patterns may

not necessarily lead to increased number of bugs that are correctly

�xed. With too many �x patterns, the search space of �x patterns

and patch candidates will explode. Eventually, the APR tool will

produce a huge number of plausible patches, many of which might

be validated before the correct ones [69]. A future research direction

could be on the construction and curation of �x patterns database

for APR.

Our strategy of �x pattern selection can be a threat to internal

validity: it naïvely matches patterns based on the AST context

around buggy locations. More advanced strategies would give a

higher probability to select appropriate patterns to �x more bugs.

Our approach to searching for donor code also carries some threats

to validity: TBar focuses on the local buggy �le, while previous

works have shown that the adequate donor code, for some bugs, is

available in other �les [18, 69]. In future work, we will investigate

the search of donor code beyond local �les, while using heuristics to

cope with the potential search space explosion. Finally, the selected

benchmark for evaluation constitutes another threat to external

validity for assessment. The performance achieved by TBar on

Defects4J may not be reached on a bigger, more diverse and more

representative dataset. To address this threat, new benchmarks such

as Bugs.jar [61] and Bears [46] should be investigated.

5.2 Limitations

TBar selects �x patterns in a naïve way, it thus would be necessary

to design a sophisticated strategy (such as bug symptom, bug type,

or other information from bug reports) for �x pattern selection to

reduce the noise from inappropriate �x patterns. Searching donor

code for synthesis patches is another limitation of TBar, as the

correct donor code for �xing some bugs is located in the code �les

that do not contain the bug [18, 69]. If TBar extends the donor code

searching to other non-buggy code �les, it will cause the search

space explosion.

6 RELATED WORK

Fault Localization. In general, most APR pipelines start with fault

localization (FL), as shown in Figure 1. Once the buggy position is

localized, ARP tools can mutate the buggy code entity to generate

patches. To identify defect locations in a program, several auto-

mated FL techniques have been proposed [72]: slice-based [47, 71],

spectrum-based [6, 57], statistics-based [32, 33], etc.

Spectrum-based FL is widely adopted in APR systems since they

identify bug position at the statement level. It relies on the ranking

metrics (e.g., Trantula [19], Ochiai [5]) to calculate the suspicious-

ness of each statement. GZoltar [9] and Ochiai have been widely in-

tegrated into APR systems since their e�ectiveness has been demon-

strated in several empirical studies [56, 65, 73, 78]. As reported by

Liu et al. [38] and studied in this paper, this FL con�guration still has

a limitation on localizing bug positions. Therefore, researchers tried

to enhance FL techniques with new techniques, such as predicate

switching [76, 80] and test case puri�cation [18, 79].

PatchGeneration.Another key process of APR pipelines is search-

ing for another shape of a program (i.e., a patch) in the space of

all possible programs [30, 43]. If the search space is too small, it

might not include the correct patches. [69]. To reduce this threat,

a straightforward strategy is to expand the search space, however,

which could lead to other two problems: (1) at worst, there still is

no correct patch in it; and (2) the expanded search space includes

more plausible patches that enlarge the possibility of generating

plausible patches before correct ones [34, 69].

To improve repair performance, many APR systems have been

explored to address the search space problem. Synthesis-based

APR systems [42, 76, 77] explored to limit the search space on

conditional bug �xes by synthesizing new conditional expressions

with variables identi�ed from the buggy code. Pattern-based APR

tools [13, 17, 18, 23, 25, 29, 39–41, 62] are designed to purify the

search space by following �x patterns to mutate buggy code entities

with retrieved donor code. Other APR pipelines focus on speci�c

search methods for donor code or patch synthesizing strategies, to

address the search space problem, such as contract-based [10, 66],

symbolic execution based [53], learning based [7, 16, 44, 59, 64,

70], and donor code searching [21, 51] APR tools. Various existing

APR tools have achieved promising results on �xing real bugs,

but there is still an opportunity to improve the performance; for

example, mining more �x patterns, improving pattern selection and

donor code retrieving strategy, exploring a new strategy for patch

generation, and prioritizing bug positions.

Patch Correctness. The ultimate goal of APR systems is to auto-

matically generate a correct patch that can resolve the program

defects. In the beginning, patch correctness is evaluated by passing

all test cases [23, 29, 67]. However, these patches could be over�t-

ting [27, 58] and even worse than the bug [63]. Since then, APR

systems are evaluated with the precision of generating correct

patches [18, 39, 69, 76]. Recently, researchers start to explore au-

tomated frameworks that can identify patch correctness for APR

systems automatically [28, 75].

7 CONCLUSION

Fix patterns have been studied in various scenarios to understand

bug �xes in the wild. They are further implemented in di�erent APR

pipelines to generate patches automatically. Although template-

based APR tools have achieved promising results, no extensive

investigation on the e�ectiveness �x patterns was conducted. We

�ll this gap in this work by revisiting the repair performance of �x

patterns via a systematic study assessing the e�ectiveness of a vari-

ety of �x patterns summarized from the literature. In particular, we

build a straightforward template-based APR tool, TBar, which we

evaluate on the Defects4J benchmark. On the one hand, assuming

a perfect fault localization, TBar �xes 74/101 bugs correctly/plausi-

bly. On the other hand, in a normal/practical APR pipeline, TBar

correctly �xes 43 bugs despite the noise of fault localization false

positives. This constitutes a record performance in the literature

on Java program repair. We expect TBar to be established as the

new baseline APR system, leading researchers to propose better

techniques for substantial improvement of the state-of-the-art.
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