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TCAM Razor: A Systematic Approach Towards
Minimizing Packet Classifiers in TCAMs

Alex X. Liu, Chad R. Meiners, and Eric Torng

Abstract—Packet classification is the core mechanism that en-
ables many networking services on the Internet such as firewall
packet filtering and traffic accounting. Using ternary content ad-
dressable memories (TCAMs) to perform high-speed packet clas-
sification has become the de facto standard in industry. TCAMs
classify packets in constant time by comparing a packet with all
classification rules of ternary encoding in parallel. Despite their
high speed, TCAMs suffer from the well-known range expansion
problem. As packet classification rules usually have fields specified
as ranges, converting such rules to TCAM-compatible rules may
result in an explosive increase in the number of rules. This is not a
problem if TCAMs have large capacities. Unfortunately, TCAMs
have very limited capacity, and more rules mean more power con-
sumption and more heat generation for TCAMs. Even worse, the
number of rules in packet classifiers has been increasing rapidly
with the growing number of services deployed on the Internet. In
this paper, we consider the following problem: given a packet clas-
sifier, how can we generate another semantically equivalent packet
classifier that requires the least number of TCAM entries? In this
paper, we propose a systematic approach, the TCAM Razor, that is
effective, efficient, and practical. In terms of effectiveness, TCAM
Razor achieves a total compression ratio of 29.0 %, which is signif-
icantly better than the previously published best result of 54%. In
terms of efficiency, our TCAM Razor prototype runs in seconds,
even for large packet classifiers. Finally, in terms of practicality,
our TCAM Razor approach can be easily deployed as it does not
require any modification to existing packet classification systems,
unlike many previous range encoding schemes.

Index Terms—Algorithm, packet classification, router design,
ternary content addressable memory (TCAM) optimization.

1. INTRODUCTION

ACKET classification, which is widely used on the
P Internet, is the core mechanism that enables routers to
perform many networking services such as firewall packet
filtering, virtual private networks (VPNs), network address
translation (NAT), quality of service (QoS), load balancing,
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TABLE 1
EXAMPLE PACKET CLASSIFIER
# Source IP  Dest. IP  Source Port Dest. Port Protocol | Action
1 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
o * * * ks " discard

traffic accounting and monitoring, differentiated services (Diff-
serv), etc. The function of a packet classification system is
to map each packet to a decision (i.e., action) according to a
sequence (i.e., ordered list) of rules, which is called a packet
classifier. Each rule in a classifier has a predicate over some
packet header fields and a decision to be performed upon the
packets that match the predicate. To resolve possible conflicts
among rules in a classifier, the decision for each packet is the
decision of the first (i.e., highest priority) rule that the packet
matches. Table I shows an example classifier of two rules. The
format of these rules is based upon the format used in access
control lists (ACLs) on Cisco routers.

A. Motivation

To process the neverending supply of packets at wire speed,
using ternary content addressable memories (TCAMs) to per-
form packet classification has become the de facto standard
for high-speed routers on the Internet [12]. A TCAM is a
memory chip where each entry can store a packet classification
rule that is encoded in ternary format. Given a packet, the
TCAM hardware can compare the packet with all stored rules
in parallel and then return the decision of the first rule that the
packet matches. Thus, it takes O(1) time to find the decision for
any given packet. In 2003, most packet classification devices
shipped were TCAM-based [4]. More than 6 million TCAM
devices were deployed worldwide in 2004 [4].

Despite their high speed, TCAMs have their own limitations
with respect to packet classification. 1) Range expansion:
TCAMs can only store rules that are encoded in ternary format.
In a typical classification rule, source IP address, destination IP
address, and protocol type are specified in prefix format, which
can be directly stored in TCAMs, but source and destination
port numbers are specified in ranges (i.e., integer intervals),
which need to be converted to one or more prefixes before
being stored in TCAMs. This can lead to a significant increase
in the number of TCAM entries needed to encode a rule. For
example, 30 prefixes are needed to represent the single range
[1,65534], so 30 x 30 = 900 TCAM entries are required to
represent the single rule 7y in Table I. 2) Low capacity: TCAMs
have limited capacity. The largest available TCAM chip has a
capacity of 36 Mb [1], while 2- and 1-Mb chips are the most
popular [4]. 3) High power consumption and heat generation:
TCAM chips consume large amounts of power (30 times as
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TABLE II

TCAM RAZOR OUTPUT FOR THE EXAMPLE CLASSIFIER IN TABLE I
# Source [P Dest. I[P Source Port Dest. Port Protocol | Action
r1 | 1.2.3.0/24 192.168.0.1 0 * * discard
ro | 1.2.3.0/24 192.168.0.1 65535 * * discard
r3 | 1.2.3.0/24 192.168.0.1 * 0 * discard
rq | 1.2.3.0/24 192.168.0.1 * 65535 * discard
rs | 1.2.3.0/24 192.168.0.1 [0,65535] [0,65535] TCP accept
T6 * * * * * discard

much power as a comparably sized SRAM chip given the same
number of memory accesses [13]) and generate large amounts
of heat. Power consumption of TCAMs increases linearly with
the capacity of the TCAM [2] as well as the number of rules
stored in the TCAM [2], [28]. Power consumption together
with the consequent heat generation is a serious problem for
core routers and other networking devices. 4) Large board
space occupation: TCAMs occupy much more board space
than SRAMs. A given capacity TCAM chip occupies six times
(or more) board space than an equivalent capacity SRAM [13].
For networking devices such as routers, area efficiency of the
circuit board is a critical issue. 5) High hardware cost: TCAM
chips are expensive, costing hundreds of dollars even in large
quantities. In modern routers, TCAM chips sometimes cost
more than network processors [14].

B. Problem Statement

In this paper, we consider the following TCAM minimiza-
tion problem: given a classifier, how can we generate another
semantically equivalent classifier that requires the least number
of TCAM entries? Two classifiers are (semantically) equivalent
if and only if they have the same decision for every packet. For
example, the two classifiers in Tables I and II are equivalent;
however, the one in Table I requires 900 TCAM entries, and the
one in Table II requires only six TCAM entries.

Solving this problem helps to address the limitations of
TCAMs. As we reduce the number of TCAM entries required,
we can use smaller TCAMs, which results in less board space
and lower hardware cost. Furthermore, reducing the number of
rules in a TCAM directly reduces power consumption and heat
generation because the energy consumed by a TCAM grows
linearly with the number of ternary rules it stores [2].

C. Summary and Limitations of Prior Art

All previous efforts on minimizing d-dimensional (d > 2)
rule lists employ equivalent transformations at the rule level.
That is, they only consider rewriting each rule in place. For
example, all prior range encoding schemes [5], [6], [12], [19],
[21], [22], [27], [29] try to minimize the effects of range ex-
pansion on each individual rule. The fundamental weakness of
this rule-level perspective is that it looks at the problem locally
by examining one rule at a time. This local, not global, perspec-
tive ignores many compression opportunities such as reordering
the rule list. Furthermore, previous rule-level approaches ignore
the decisions associated with each rule and thus the semantics
of classifiers. Thus, when these approaches are given two rule
lists that are syntactically different but semantically the same,
they typically generate two different output lists. Therefore, the
effectiveness of rule-level approaches partially depends on how

the input classifier is specified. Two previous papers do con-
sider classifier semantics when minimizing rule lists [3], [26],
but these results only apply when d = 1 or 2, whereas real-life
classifiers have d = 4 or 5 or more.

D. New Perspective, Challenges, and Our Approach

We perform equivalent transformation at the list level. We
take a rule list as a whole and try to generate another small,
but semantically equivalent, rule list. List-level transforma-
tion is more powerful than rule-level transformation because
it incorporates the classifier semantics and considers more
optimizations. However, it is more challenging due to the
“curse of dimensionality.” That is, these rule list minimization
problems can be solved optimally in polynomial time for
one-dimensional prefix and range rule lists [8], [18], [26],
but no polynomial time algorithms are known even for their
two-dimensional versions. In fact, Applegate ef al. showed that
the range rule list optimization problem is NP-hard for d = 2
[3]. The one-dimensional ternary rule list optimization problem
is essentially the Boolean expression minimization problem,
which is an NP-complete problem [5]. As we add dimensions,
the problems become more and more difficult because of the
complex interactions among multidimensional objects.

To cope with the complex rule interactions, we propose a
novel approach, called TCAM Razor, to perform list-level equiv-
alent transformation. We first decompose a multidimensional
rule list optimization problem into multiple one-dimensional
versions of the problem using decision diagrams. Second, we
optimally solve each of the one-dimensional rule list opti-
mization problems. Finally, we reconstruct a solution to the
multidimensional problem from the multiple one-dimensional
solutions, again using the structure of decision diagrams. This
approach is highly effective because it harnesses the power
of the optimal solutions for one-dimensional problems. On a
set of real-life classifiers, Razor achieves a total compression
ratio of 29.0%, which is significantly better than the previously
published best result of 54%. This approach is highly efficient
because a decision diagram can be constructed efficiently and
each one-dimensional problem can be solved efficiently (and
optimally). Running Razor on a classifier with thousands of
rules takes only a few seconds. This approach is also highly
practical because it can be easily deployed without any modifi-
cation of existing classification systems. In comparison, many
prior solutions require hardware and architecture modifications
to existing classification systems, making their adoption by
networking manufacturers and ISPs much harder. TCAM Razor
works for classifiers with any number of distinct decisions. Its
effectiveness gracefully degrades as the number of decisions
increases.

We name our solution “TCAM Razor” following the principle
of Occam’s razor: “Of two equivalent theories or explanations,
all other things being equal, the simpler one is to be preferred.”
In our context, of all classifiers that are equivalent, the one with
the least number of TCAM entries is preferred.

The rest of this paper proceeds as follows. We start by re-
viewing related work in Section II. In Section III, we formally
define the TCAM Minimization Problem and related terms. In
Section IV, we discuss the weighted one-dimensional TCAM
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minimization problem. In Section V, we give a solution to the
multidimensional TCAM minimization problem. The optimiza-
tion techniques are presented in Section VI. In Section VII, we
show the experimental results on a collection of real-life classi-
fiers. Finally, we give concluding remarks in Section VIIIL.

II. RELATED WORK

Prior work on optimizing TCAM-based packet classification
systems fall into three broad categories: TCAM modification,
range reencoding, and classifier minimization.

1) TCAM Modification: The basic idea is to modify TCAM
circuits for packet classification purposes. For example, Spitz-
nagel et al. proposed adding comparators to better accommo-
date range matching [25]. While important, this direction leads
to solutions that are hard to deploy due to high cost[12].

2) Range Encoding: The basic idea is to reencode ranges that
appear in a classifier and store the reencoded rules in a TCAM.
Packets also need to be reencoded online accordingly. Some en-
coding schemes have been proposed [5], [12], [19]-[23], [27].
While the TCAM circuit does not need to be modified to im-
plement range encoding, the system hardware does need to be
reconfigured to allow for preprocessing of packets. Neverthe-
less, these range encoding schemes are somewhat orthogonal to
our work and combining our approaches with range encoding
schemes could be interesting future work.

3) Classifier Minimization: The basic idea is to convert a
given classifier to another semantically equivalent classifier that
requires fewer TCAM entries. Our work, along with [3], [7], [8],
[16], [17], and [26], falls into this category.

Three papers focus on one-dimensional and two-dimensional
classifiers. Draves et al. proposed an optimal solution for one-di-
mensional classifiers in the context of minimizing routing tables
in [8]. Subsequently, Suri et al. developed a dynamic program-
ming formulation for two-dimensional prefix rule lists, but this
formulation is not optimal even for d = 2 and is extremely inef-
ficient when extended to larger d [26]. Recently, Applegate et al.
focused on the two-dimensional case and only considered strip
rules where one field must contain the entire field domain. They
developed clever insights that led them to find an optimal strip
rule algorithm without being overly constrained by the input rule
list syntax. Unfortunately, it is not obvious how to generalize
their algorithm to more dimensions or other rule formats.

There are only two prior methods for minimizing classifiers
with more than two dimensions: redundancy removal [16] [17]
and rule trimming/expanding [7]. Removing redundant rules
from classifiers obviously results in less TCAM space usage.
TCAM Razor significantly outperforms redundancy removal
because it finds many more opportunities for minimizing clas-
sifiers. In [7], Dong et al. observed that both expanding and
trimming ranges so they correspond to prefixes boundaries can
result in fewer TCAM entries. TCAM Razor outperforms the
heuristics of Dong et al. because of two major reasons. First, al-
though TCAM Razor and Dong et al.’s heuristics both process
classifiers one dimension at a time, TCAM Razor is guaranteed
to achieve optimal compression on that dimension, but Dong
et al.’s heuristics are not. Specifically, TCAM Razor handles
all the special cases that Dong et al. identify in a systematic
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fashion. Second, TCAM Razor reduces the influence of classi-
fier syntax (i.e., how classifiers are specified) by converting the
given classifier to its canonical representation (i.e., a reduced
decision diagram). On the other hand, Dong ef al. process rules
specified in the original manner, looking at one rule at a time
for optimization possibilities.

III. FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,
packet classifiers, and the TCAM Minimization Problem. A
field F; is a variable of finite length (i.e., of a finite number
of bits). The domain of field F; of b bits, denoted D(F;), is
[0,2° — 1]. A packet over the d fields Fy,. .., Fy is a d-tuple

D(F;). Packet classifiers usually check the following five
fields: source IP, destination IP, source port, destination port,
and protocol type. The length of these fields are 32, 32, 16,
16, and 8, respectively. We use X to denote the set of all
packets over fields Fi, ..., Fy. It follows that X is a finite set
and |X| = |D(Fy)| x -+ X |D(Fy)|, where || denotes the
number of elements in set 3 and |D(F;)| denotes the number
of elements in set D(F}).

A rule has the form (predicate) —(decision). A
(predicate) defines a set of packets over the fields F; through
Fy,and is specifiedas F} € S1A---AF; € Sg where each S; is
asubset of D(F;) and is specified as either a prefix or a range. A
prefix {0, 1}*{x}>~* with k leading O s or 1 s for a packet field
of length b denotes the range [{0, 1}*{0}b=% {0, 1}*{1}°~F].
For example, prefix 01** denotes the range [0100,0111]. A
rule 1 € S1 A--- ANF; € Sq—(decision) is a prefix rule if
and only if each S; is represented as a prefix.

When using a TCAM to implement a classifier, we typically
require that all rules be prefix rules. However, in a typical clas-
sifier rule, some fields such as source and destination port num-
bers are represented as ranges rather than prefixes. This leads to
range expansion, the process of converting a rule that may have
fields represented as ranges into one or more prefix rules. In
range expansion, each field of a rule is first expanded separately.
The goal is to find a minimum set of prefixes such that the union
of the prefixes corresponds to the range. For example, if one
3-bit field of a rule is the range [1, 6], a corresponding minimum
set of prefixes would be 001, 01*, 10*, 110. The worst-case
range expansion of a b-bit range results in a set containing 2b—2
prefixes [11]. The next step is to compute the cross product of
each set of prefixes for each field, resulting in a potentially large
number of prefix rules. In Section I, the range expansion of rule
r1 in Table I resulted in 30 x 30 = 900 prefix rules.

A packet (p1, ..., pq) matches a predicate Fy € Sy A--- A
F, € S4 and the corresponding rule if and only if the condition
p1 € Si A---ANpg € Sg holds. We use « to denote the set
of possible values that (decision) can be. For firewalls, typical
elements of « include accept, discard, accept with logging, and
discard with logging.

A sequence of rules (rq,...,7,) is complete if and only if
for any packet p, there is at least one rule in the sequence that p
matches. To ensure that a sequence of rules is complete and thus
is a classifier, the predicate of the last rule is usually specified
as 1 € D(Fy) A -+ Fqg € AD(Fy). A packet classifier f is a

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2010 at 20:03:27 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: TCAM RAZOR: SYSTEMATIC APPROACH TOWARDS MINIMIZING PACKET CLASSIFIERS IN TCAMs 493

TABLE III
NOTATION
Symbol | Description Symbol | Description
F; | field ¢ Decision(r;) | decision of rule r;
D(F;) | domain of F; d; | decision ¢
d | # of dimensions wq, | cost of decision ¢
b | # of bits Cost(f) | cost of classifier f
3 | set of all packets C(fp) | minimum cost
f | aclassifier of classifiers
p | packet equivalent to fp
f(p) | decision of f on p C( f;i,i) minimum cost of
{f} | set of all classifiers classifiers that are
equivalent to f equivalent to fp
P | prefix and whose last
fp | classifier equivalent rule’s decision s
to fonP d;

sequence of rules that is complete. The size of f, denoted | f|,
is the number of rules in f. A classifier f is a prefix classifier if
and only if every rule in f is a prefix rule.

Two rules in a classifier may overlap; that is, there exists at
least one packet that matches both rules. Furthermore, two rules
in a classifier may conflict; that is, the two rules not only overlap,
but also have different decisions. Classifiers typically resolve
conflicts by employing a first-match resolution strategy where
the decision for a packet p is the decision of the first (i.e., highest
priority) rule that p matches in f. The decision that classifier f
makes for packet p is denoted f(p).

We can think of a classifier f as defining a many-to-one map-
ping function from X to «, where X denotes the set of all pos-
sible packets and « denotes the set of all possible decisions. Two
classifiers f; and f, are equivalent, denoted f; = fo, if and only
if they define the same mapping function from 3 to «; that is,
for any packet p € 3, we have f1(p) = f2(p). For any classifier
f, we use {f} to denote the set of classifiers that are equiva-
lent to f. Now, we are ready to define the TCAM Minimization
Problem.

Definition 3.1 (TCAM Minimization Problem): Given a clas-
sifier f1, find a prefix classifier fo> € {f1} such that for any
prefix classifier f € {f1}, the condition |f2| < |f| holds.

Table III lists the notations used throughout this paper.

IV. ONE-DIMENSIONAL TCAM MINIMIZATION

We first consider the special problem of weighted
one-dimensional TCAM minimization, whose solution is
used in the next section as a building block for multi-
dimensional TCAM minimization. Given a one-dimen-

sional packet classifier f of n prefix rules (ry,ro,...,7),
where  {Decision(r1), Decision(rs), ..., Decision(r,)}=
{di1,ds,...,d.} and each decision d; is associated with a cost

wq, (for 1 < 4 < 2), we define the cost of packet classifier f
as follows:

Cost(f) = Z Whecision(r;)-
i=1

Based upon the above definition, the problem of weighted one-
dimensional TCAM minimization is stated as follows.
Definition 4.1 (Weighted One-Dimensional TCAM Mini-
mization Problem): Given a one-dimensional packet classifier
f1 where each decision is associated with a cost, find a prefix

packet classifier fo € {fi} such that for any prefix packet
classifier f € {f1}, the condition Cost(f2) < Cost(f) holds.

The problem of one-dimensional TCAM minimization (with
uniform cost) has been studied in [8] and [26] in the context
of compressing routing tables. In this paper, we extend the dy-
namic programming solution in [26] to solve the weighted one-
dimensional TCAM minimization problem based on the fol-
lowing three observations:

1) For any one-dimensional packet classifier f on {x}°,
we can always change the predicate of the last rule to
be {*}® without changing the semantics of the packet
classifier. This follows from the completeness property
of packet classifiers.

2) Consider any one-dimensional packet classifier f on
{x}b. Let ' be f appended with rule {*}® — d, where
d can be any decision. The observation is that f = f.
This is because the new rule is redundant in f’ since
f must be complete. A rule in a packet classifier is
redundant if and only if removing the rule from the
packet classifier does not change the semantics of the
packet classifier.

3) For any prefix P € {0,1}*{x}*=%(0 < k < b), one
and only one of the following conditions holds: a) P €
{0, 1}F0{«}b k"L by P € {0, 1}F1{x}t k"L o) P =
{0, 1} {2} *,

This property allows us to divide a problem on {0, 1}*{x}>—*
into two subproblems: one on {0, 1}*0{x}*=%=1 and the other
one on {0, 1}*1{x}*=*~1 This divide-and-conquer strategy
can be applied recursively.

Based on the above three observations, we formulate an op-
timal dynamic programming solution to the weighted one-di-
mensional TCAM minimization problem.

Let P denote a prefix {0,1}*{x}b=% We use P to denote
the prefix {0,1}*0{*}*=%=1 and P to denote the prefix
{0,1}*1{*}*~*~1. Given a one-dimensional packet classifier
f on {x}*, we use fp to denote a packet classifier on P such
that for any z € P, fp(z) = f(), and we use f to denote a
similar packet classifier on P with the additional restriction that
the final decision is d. We use C(fp) to denote the minimum
cost of a packet classifier ¢ that is equivalent to fp, and we
use C(f4) to denote the minimum cost of a packet classifier '
that is equivalent to fp and the decision of the last rule in ¢’ is
d. Given a one-dimensional packet classifier f on {x}® and a
prefix P where P C {x}b, f is consistent on P if and only if
Yo,y € P, f(z) = f(y).

Our dynamic programming solution to the weighted one-di-
mensional TCAM minimization problem is based on the
following theorem, the proof of which shows how to divide
a problem into subproblems and how to combine solutions to
subproblems into a solution to the original problem.

Theorem 4.1: Given a one-dimensional packet classifier f
on {*}", a prefix P where P C {x}°, the set of all possible
decisions {dj,ds,...,d.} where each decision d; has a cost
wq, (1 < i < z), we have that

C(fp) = min C(f3)

i=

where each C( g) is calculated as follows:
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1) If f is consistent on P, then

ot = { e

W () + Wd,,

if f(z) =d;Vz e P
if f(z) # d; Vz € P.

2) If f is not consistent on P, then

o dl) C(f2) = wa, +wy,,- .-

C(fp™") + Clf5™") = wa,_, +wa,
C(f&) = min{ C(fE) + (L) = wa,

c(f 1+1) C(f+") = wayy + wa,s ...

C(fF) + C(fE) = wa, + wa,.

Proof:

1) The base case of the recursion is when f is consistent on
‘P. In this case, the minimum-cost prefix packet classi-
fier in { fp} is clearly (P — f(x)), and the cost of this
packet classifier is w (.. Furthermore, for d; # f(x),
the minimum-cost prefix packet classifier in { fp} with
decision d; in the lastruleis (P — f(x), P — d;) where
the second rule is redundant. The cost of this packet clas-
sifier is wy(,) + wa, - -

2) If f is not consistent on P, we divide P into P and P.
The crucial observation is that an optimal solution f*
to { fp} is essentially an optimal solution f; to the sub-
problem of minimizing fp appended with an optimal so-
lution f5 to the subproblem of minimizing fz. The only
interaction that can occur between f; and f5 is if their
final rules have the same decision, in which case both
final rules can be replaced with one final rule covering
all of P with the same decision. Let d,, be the decision
of the last rule in f; and d, be the decision of the last
rule in f5. Then, we can compose f* whose last rule has
decision d; from f; and f, based on the following cases:

A) d, = dy, = d;: In this case, f can be constructed
by listing all the rules in f; except the last rule,
followed by all the rules in f> except the last rule,
and then the last rule P — d;. Thus, Cost(f) =
Cost(f1) + Cost(f2) — wq,.

B) d, = d, # d;: In this case, f can be constructed
by listing all the rules in f; except the last rule,
followed by all the rules in f, except the last rule,
then rule P — d,, and finally rule P — d; Thus,
Cost(f) = Cost(f1) + Cost(f2) — wq, + wyq,.

C) d, # dy,d, = d;,dy, # d;: We do not need to
consider this case because C/( g) + C( f;’") =
C(fp) + (OUfp") + wa) = wa, > C(fF) +
C(fE) — wa,.

D) d, # dy,d, # d;,d, = d;: Similarly, we do not
need to consider this case.

E) d. # dy,ds # d;,dy # d;: Similarly, we do not

need to consider this case. O

Fig. 1 illustrates a one-dimensional TCAM minimiza-
tion input instance where f(00) = f(10) = accept and
f(01) = f(11) = discard. Graphically, the black bar denotes

decision accept and the white bar denotes decision discard.
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Fig. 1. A one-dimensional TCAM minimization instance.
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Fig. 2. Tllustration of dynamic programming algorithm.

Fig. 2 illustrates how we compute an optimal solution for
this instance using dynamic programming. In this instance, we
have four distinct domain values (00, 01, 10, 11) and two dis-
tinct decisions accept and reject for eight base cases that are

t t
listed across the top of Flg 2. faccep ((]hscard accep fd1scard
iigccpt . iléscard flcccpt and fdlscard Here, Oa(v):ccpt denotes a

solution for the domain value 00 with a default rule of accept.
Four base cases including fis°°"" require one rule because the
decision for the domain value matches the decision of the de-
fault rule. The other four base cases including f&i*°2" require
two rules: the first rule to set the correct decision for the given
domain value and the second default rule with a different deci-
sion. The middle and bottom of the figure show how to use sub-
SOlutiOHS to Compute fa(‘(‘ept fdiscard fa(‘,cept fdiscard fa(‘(‘ept’
and fdiscard_ For example, to find the solution for fo ", we
must consider two cases: compose the solutions from faccept
and f3°°°P* or compose the solutions from fgi*c2*d and fgi d‘scard.
In this example, the first choice costs two rules and the second
choice costs three rules (where the last rule is a default accept
rule), so the lower cost first choice is selected. This process re-
peats for each subproblem.

accept

V. MULTIDIMENSIONAL TCAM MINIMIZATION: THE BASICS

In this section, we present TCAM Razor, our algorithm for
minimizing multidimensional prefix packet classifiers. A key
idea behind TCAM Razor is processing one dimension at a time
using the weighted one-dimensional TCAM minimization algo-
rithm in Section IV to greedily identify a local minimum for the
current dimension. Although TCAM Razor is not guaranteed to
achieve a global minimum across all dimensions, it does sig-
nificantly reduce the number of prefix rules in real-life packet
classifiers.

A. Conversion to Firewall Decision Diagrams

We represent classifiers using firewall decision diagrams, a
special kind of decision tree [10]. A firewall decision diagram
(FDD) with a decision set DS and over fields F1,..., Fyis an
acyclic and directed graph that has the following five properties:
1) There is exactly one node that has no incoming edges. This
node is called the root. The nodes that have no outgoing edges
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QF**

1000
1001
101* 11%*

F2€10** — accept

Fae**** — discard

(b)

F.e**** — discard

Fig. 3. An FDD and its “virtual” one-dimensional classifier.

are called rerminal nodes. 2) Each node v has a label, denoted
F(v), such that

roe { i

if v is a nonterminal node
if v is a terminal node.

-de}7

3) Each edge e : u — v is labeled with a nonempty set of inte-
gers, denoted I(e), where I(e) is a subset of the domain of u’s
label (i.e., I(e) C D(F(u))).4) A directed path from the root to
a terminal node is called a decision path. No two nodes on a de-
cision path have the same label. 5) The set of all outgoing edges
of a node v, denoted E(v), satisfies the following two condi-
tions: a) Consistency: I(e)NI(e’) = ) for any two distinct edges
e and e in F(v). b) Completeness: | ¢ g, 1(e) = D(F(v)).

Fig. 3(a) shows an example FDD over two fields Fi, Fb,
where the domain of each field is [0, 15]. Note that in labeling
terminal nodes, we use letter “a” as a shorthand for “accept”
and letter “d” as a shorthand for “discard.”

Given a classifier fi, we can construct an equivalent FDD
f2 using the FDD construction algorithm in [15]. An improved
FDD construction algorithm is presented in Section VI.

B. Multidimensional TCAM Minimization

We start the discussion of our greedy solution by examining
the FDD in Fig. 3(a). We first look at the subgraph rooted at
node vy. This subgraph can be seen as representing a one-di-
mension packet classifier over field F5. We can use the weighted
one-dimensional TCAM minimization algorithm in Section IV
to minimize the number of prefix rules for this one-dimensional
packet classifier. The algorithm takes the following three pre-
fixes as input:

10 % % (with decision accept and cost 1)
0% =  (with decision accept and cost 1)
11 %% (with decision accept and cost 1).

The one-dimensional TCAM minimization algorithm will
produce a minimum (one-dimensional) packet classifier of two
rules as shown in Table IV(a). Similarly, from the subgraph
rooted at node v3, we can get a minimum classifier of one rule
as shown in Table IV(b).

Next, we look at the root v1. As shown in Fig. 3(b), we view
the subgraph rooted at vy as a decision with a multiplication
factor or cost of 2 and the subgraph rooted at v3 as another deci-
sion with a cost of 1. The graph rooted at v; can be thought of as

TABLE IV
MINIMUM PACKET CLASSIFIERS FOR (a) v2 AND (b) v3
7# I Decision
1 10%* accept # Fy Decision
P discard 1| FHxx discard
minimum packet classifier for vo minimum packet classifier for v3
(@) (b)

TABLE V
(a) MINIMUM 1-D CLASSIFIER FOR v; AND (b) THE FINAL 2-D CLASSIFIER

# Fy F> Decision
# Fy Decision 1 1001 Hkkk discard
1 1001 go to node v3 2 10%*  10%* accept
2 10%* g0 to node v2 3 10 ek discard
3 Hokgok g0 to node v3 4 ddkk dokdkok discard
minimum 1-D classifier for vq final 2-D classifier

() (b)

a “virtual” one-dimensional classifier over field £, where each
child has a multiplicative cost. Thus, we can use the one-dimen-
sional TCAM minimization algorithm in Section IV to mini-
mize the number of rules for this “virtual”” one-dimensional clas-
sifier. The algorithm takes the following five prefix rules and the
associated decision costs as input:

1000
101 *
0 * % *
1001
11 % %

(with decision v and cost 2)
(with decision vy and cost 2)
(with decision v3 and cost 1)
(with decision v and cost 1)

(with decision v3 and cost 1).

The weighted one-dimensional TCAM minimization algorithm
will produce the “virtual” one-dimensional classifier of three
rules as shown in Table V(a). Combining the “virtual” 1-D clas-
sifier in Table V(a) and the two 1-D classifiers in Table IV, we
get a 2-D classifier of 4 rules as shown in Table V(b).

C. Removing Redundant Rules

Next, we observe that rule r3 in the classifier in Table V(b)
is redundant. If we remove rule r3, all the packets that used to
be resolved by r3 (that is, all the packets that match r3 but do
not match r; and r9) are now resolved by rule r4, and 74 has
the same decision as r3. Therefore, removing rule r3 does not
change the semantics of the packet classifier. Redundant rules
in a packet classifier can be removed using the algorithms in
[16] and [17]. Finally, after removing redundant rules, we get a
packet classifier of three rules from the FDD in Fig. 3(a).

D. The Algorithm

To summarize, TCAM Razor, our multidimensional TCAM
minimization algorithm, consists of the following four steps:
Step 1: Convert the given classifier to an equivalent FDD.

Step 2: Use the FDD reduction algorithm described in the

next section to reduce the size of the FDD. This step

will be explained in more detail in the next section.

Step 3: Generate a classifier from the FDD in the following

bottom-up fashion. For every terminal node, assign
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a cost of 1. For a nonterminal node v with z out-
going edges {e1,...,e.}, formulate a one-dimen-
sional TCAM minimization problem as follows. For
every prefix P in the label of edge ¢;, (1 < j < 2),
we set the decision of P to be j and the cost of
P to be the cost of the node that edge e; points
to. For node v, we use the weighted one-dimen-
sional TCAM minimization algorithm in Section IV
to compute a one-dimensional prefix classifier with
the minimum cost. We then assign this minimum
cost to the cost of node v. After the root node is pro-
cessed, generate a classifier using the prefixes com-
puted at each node in a depth first traversal of the
FDD. The cost of the root indicates the total number
of prefix rules in the resulting classifier.

Step 4: Remove all redundant rules from the resulting clas-
sifier.

E. TCAM Updates

In most applications, such as router ACLs and firewalls, the
rule sets are relatively static. Therefore, we propose using the
bank mechanism in TCAMs to handle rule list updates. TCAMs
are commonly configured into a series of row banks. Each bank
can be individually enabled or disabled; entries from disabled
banks are not examined in TCAM searches. We propose storing
the compressed classifier before update in the active banks and
the one after update in the disabled banks. Once the writing is
finished, we activate the banks containing the newly compressed
classifier and deactivate the banks containing the old one.

In some applications, there may be more frequent updates of
the rule set. In such applications, there typically is a small static
set of rules at the top of the classifier followed by a large dy-
namic set of rules. Furthermore, updates are typically the inser-
tion of new rules to the top of the dynamic set of rules or the
deletion of recently added dynamic rules.! We can support this
update pattern by storing the small static set of rules at the top of
the TCAM and then running TCAM Razor on the dynamic set of
rules and storing this compressed set of rules in the bottom of the
TCAM. New dynamic rules are appended to the top of the com-
pressed set of rules in a bottom-up fashion. This update scheme
is correct because adding rules to the top of the compressed set
of rules is functionally equivalent to adding rules to the top of
the original set of rules. Thus, TCAM Razor only needs to run
when the TCAM is almost full rather than when each new rule
is added. Note, we may not include specific dynamic rules when
running TCAM Razor if they are likely to be deleted in the near
future. Instead, we run TCAM Razor on the remainder of the
dynamic rules and retain these likely-to-be-deleted rules at the
front of the compressed set of rules.

VI. MULTIDIMENSIONAL TCAM MINIMIZATION: THE
OPTIMIZATION TECHNIQUES

In this section, we discuss the following two optimization
techniques that we implemented to reduce the running time and
memory usage of TCAM Razor: lazy copying in FDD construc-
tion and hashing in FDD reduction.

ILearned from private conversation with a large ISP
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Fig. 5. Example of lazy copying.

A. Lazy Copying in FDD Construction

The FDD construction algorithm in [15] performs deep
copying of subgraphs when splitting edges. This is inefficient in
terms of both running time and memory usage. In TCAM Razor,
we use the technique of lazy copying, which is explained as
follows. Consider the subgraph (of an FDD) in Fig. 4. The root
of this subgraph is v, and v has k outgoing edges ey, €3, . . ., €,
which point to the subgraphs g1, g2, - - . , gk, respectively. When
we need to make another copy of this subgraph, instead of
making a deep copy of the whole subgraph, we only make
another copy of the root of the subgraph. Let v’ denote the new
node. Node v’ has the same label as v and also has k outgoing
edges e, €5, . .., e}, where each e} has the same label I(e;) as
e;, and also points to the same subgraph g; that e; points to.

Each time we need to modify a node v, we first need to check
its in-degree (i.e., the number of edges that point to v): If its
in-degree is 1, then we can directly modify wv; if its in-degree
is greater than 1, then we need to first make a lazy copy of the
subgraph rooted at v, and then modify the new node v’. To the
outside, lazy copying looks like deep copying, but it reduces
unnecessary copying of subgraphs (and promotes the sharing of
common subgraphs) in the constructed FDD as much as pos-
sible.

Fig. 5 shows the process of appending rule (F; € 0000) A
(F € 010%) A (F3 € 0% %x) — d to node v; of the partial FDD
in the upper-left side of the figure. A partial FDD is a diagram
that has all the properties of an FDD except the completeness
property.

In step (a), we split the single edge leaving v; into two edges,
where v is a shallow copy of vs. In step (b), we further split the
edge labeled 01 * x into two edges, where vg is a shallow copy
of v4. In step (c), we add the edge labeled 00 * * to vg.
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Algorithm 1: Lazy Copying Based FDD Construction

Input: A packet classifier f of a sequence of rules (ri,-- -
Output: An FDD f’ such that f and f’ are equivalent

1 build a decision path with root v from rule r1;
2 for i := 2 to n do APPEND(v, r;);

,Tn)

3 APPEND(v, (Frn € Sm) A--- A (Fq € Sq) — (dec) )
[#*F(v) = Fy, and E(v) = {e1, - ,ex}*/
4 if (Sp, — (I(e1) U---UI(ex))) # 0 then

5 add an outgoing edge exr+1 with label
Sm — (I(er) U---UI(ex)) to v;
6 build a decision path from rule
(Fm+1 € Sm41) A+ A (Fq € Sq) — (dec), and make
| ex+1 point to the first node in this path;
7 if m < d then
8 for j :=1to k do
9 if I(e;) C Sy, then
10 if Indegree(Target(e;)) > 1 then
11 (1) create a new node v’ labeled the same as
Target(e;);

12 (2) let e; point to v';

13 [*suppose Target(e;) has h outgoing edges

€1,€2," " 78h*/

14 (3) create h new outgoing edges

€,e5,-+ , &), for v/, where each new edge ¢}
| point to Target(ey) for 1 <t < h;

15 APPEND(Target(e;),

L (FnLJrl € Sm+1) JARERIAN (Fd € Sd) — <d€C>),

16 else if I(ej) N Sn, # 0 then

17 (1) create a new node v’ labeled the same as
Target(e;);

18 (2) create a new edge e from v to v’ with label

19 (3) replace the label of e; by I(e;) — Sm;

20 /*suppose Target(e;) has h outgoing edges
€1,€2, " 78h*/

21 (4) create h new outgoing edges &, ¢5,- -+ , &}, for
v’, where each new edge &} point to Target(e)
for 1 <t <h;

22 (5) APPEND( Target(e;),

| (Fimt1 € Smt1) A+ A (Fq € Sq) — (dec) );

The pseudocode for the lazy-copying-based FDD construc-
tion algorithm is in Algorithm 1.

B. Hashing in FDD Reduction

To further reduce the number of rules generated by our al-
gorithm, after we convert a packet classifier to an equivalent
FDD, we need to reduce the size of the FDD. An FDD is re-
duced if and only if it satisfies the following three conditions:
1) no two nodes are isomorphic; 2) no two nodes have more
than one edge between them; 3) no node has only one outgoing
edge. Two nodes v and v’ in an FDD are isomorphic if and only
if v and v’ satisfy one of the following two conditions: 1) both
v and v’ are terminal nodes with identical labels; 2) both v and
v’ are nonterminal nodes, and there is a one-to-one correspon-
dence between the outgoing edges of v and the outgoing edges
of v" such that every pair of corresponding edges have identical
labels and they both point to the same node.

We next show an example where FDD reduction helps to re-
duce the number of prefix rules generated from an FDD. Con-
sider the two equivalent FDDs in Fig. 6, where (a) is nonreduced

Fig. 6. Example of FDD reduction: (a) before and (b) after FDD reduction.

TABLE VI
RULES FROM THE FDDS IN (a) FIG. 6(a) AND (b) FIG. 6(b)

# Fy F Decision

1 00**  010* accept

2 QOk*  swskekok discard # Fy Fo Decision
3| e Q10% accept 1 wEE S 010% accept

4 kg sk sokoksk discafd 2 Hekgosk ki diSCaId
Rules generated from Fig. 6(a) Rules generated from Fig. 6(b)

(a) (W]

and (b) is reduced. If we run our multidimensional TCAM min-
imization algorithm on the two FDDs, we will produce four
prefix rules as shown in Table VI(a) and two prefix rules as
shown in Table VI(b), respectively.

A brute-force deep comparison algorithm for FDD reduction
was proposed in [10]. In TCAM Razor, we use a more efficient
FDD reduction algorithm that processes the nodes level by level
from the terminal nodes to the root node using signatures to
speed up comparisons. This algorithm works as follows.

Starting from the bottom level, at each level, we compute a
signature for each node at that level. For a terminal node v, set
v’s signature to be its label. For a nonterminal node v, suppose
v has k children vy, va, . .., vk, in increasing order of signature
(Sig(v;) < Sig(viy1) for 1 <4 < k—1), and the edge between
v and its child v; is labeled with F;, a sequence of nonover-
lapping prefixes in increasing order. Set the signature of node
v as Sig(v) = h(Sig(v1), E,...,Sig(vy), Ex), where h is
a one-way and collision-resistant hash function such as MD5
[24] and SHA-1 [9]. For any such hash function A, given two
different input x and y, the probability of h(z) = h(y) is ex-
tremely small.

After we have assigned signatures to all nodes at a given level,
we search for isomorphic subgraphs as follows. For every pair
of nodes v; and v;(1 < ¢ # j < k) at this level, if Sig(v;) #
St g(vj), then we can conclude that v; and v; are not isomorphic;
otherwise, we explicitly determine if v; and v; are isomorphic.
If v; and v; are isomorphic, we delete node v; and its outgoing
edges and redirect all the edges that point to v; to point to v;.
Furthermore, we eliminate double edges between node v; and
its parents. For example, the signatures of the nonroot nodes in
Fig. 6(a) are computed as follows:

= h(Sig(vyg),010%, Sig(vs), 00 * *,011x, 1 % %)
= h(Sig(v4),010%, Sig(vs), 00 % %, 011, 1 * *x).
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Fig. 7. Classifier sizes of RL.

At the end, for any nonterminal node v, if v has only one
outgoing edge, we remove v and redirect the incoming edge of
v to v’s single child. As this step does not affect the number of
rules generated from the FDD, we can skip it in practice.

VII. EXPERIMENTAL RESULTS

We now evaluate TCAM Razor’s effectiveness and effi-
ciency.

A. Effectiveness

1) Methodology: We first define the metrics for measuring
the effectiveness of TCAM Razor. Note that in cases where
TCAM Razor cannot produce smaller classifiers than redun-
dancy removal alone, TCAM Razor will return the classifier
produced by redundancy removal. Let f denote a classifier, S
denote a set of classifiers, and A denote a classifier minimiza-
tion algorithm. We let | f| denote the number of rules in f, A(f)
denote the prefix classifier produced by applying A on f, and
Direct(f) denote the prefix classifier produced by applying di-
rect range expansion on f. The compression ratio of A on f
is defined as -2 ik and the expansion ratio of A on f is

|Direct(f
defined as

‘Al(f ). We define the following four metrics for as-
sessing the effectiveness of A on a set of classifiers S. The av-
1A

A(f
. . EfeS [Direci(n]
erage compression ratio of A over S = % The
_ZreslA)
e Direci(D]* 1N€
5 e AU
average expansion ratio of A over S = T’”

. . Tres|A
expansion ratio of A over S = ZgeslAQ
Treslfl

2) Experimental Data: We obtained 65 real-life classifiers
from different network service providers that range in size from
dozens to thousands of rules. Although this collection of classi-
fiers is diverse, some classifiers from the same source have sim-
ilar structure and exhibited similar results under TCAM Razor.
To prevent this repetition from skewing the performance data,
we divided the 65 packet classifiers into 40 structurally distinct
groups and randomly chose one from each of the 40 groups to
form our experimental data set denoted as R L. Most classifiers
have two decisions; however, one classifier has three decisions
and three classifiers have four decisions. Fig. 7 shows the distri-
bution of classifier sizes for RL.

To stress test the sensitivity of TCAM Razor on the number of
decisions in a classifier, we created a set of classifiers RLy; by
replacing the decision of every rule in each classifier by a unique

total compression ratio of A over S =

. The total
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Fig. 9. Compression ratios for RL.

decision. Thus, each classifier in RLy has the maximum pos-
sible number of distinct decisions. Such classifiers might arise
in the context of rule logging where the system monitors the fre-
quency that each rule is the first matching rule for a packet.

3) Variable Ordering: There are 5! = 120 variable orders
that Razor can use to convert a classifier into an equivalent FDD
because there are 5! = 120 different permutations of the five
packet fields (source IP, destination IP, source port, destination
port, and protocol type). We use Razor? to denote the TCAM
Razor algorithm using permutation p. For a given classifier f,
we use Razor® to denote the TCAM Razor algorithm using the
best of the 120 permutations for f specifically. To find the vari-
able order that achieves the best average compression ratio, for
each permutation p, we computed the average compression ratio
Razor? on RL. Fig. 8 shows the corresponding accumulated
percentage graph. From this figure, we see that the average com-
pression ratios of 120 permutations range from 31.3% to 48.8%.
The seventh permutation protocol type, source IP, destination
IP, source port, destination port achieves the best average com-
pression ratio, as well as the best total compression ratio, which
is 29.0%.

4) Sensitivity To Number of Unique Decisions: TCAM
Razor’s effectiveness gracefully degrades as we increase the
number of unique decisions in a classifier. In the extreme case
where we assign each rule a unique decision in RLy, Razor’
achieves an average compression ratio of 48.3% and a total
compression ratio of 55.8%.

5) Compression and Expansion Ratios: Fig. 11 shows the
average compression and expansion ratios of Razor’, Razor”,
and RR (denoting the redundancy removal algorithm) on both
RL and RLy . Figs. 9 and 10 show the accumulated percentage
graphs for the compression and expansion ratios of Razor’,
Razor®? , and RR on RL. We draw two conclusions from
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Compression Ratio
Average Total
RR Razor” Razor” RR Razor” Razor®
RL 64.0 % 313 % 272 % 78.2 % 29.0 % 25.1 %
RLy 78.9 % 48.3 % 46.1 % 86.1 % 55.8 % 46.6 %
Expansion Ratio
Average Total
RR Razor’ Razor® RR Razor” Razor®
RL 957.1 % 83.4 % 61.0 % 201.3 % 74.6 % 64.7 %
RLy 2109.3 % 156.4 % 1429 % | 2215 % 1435 % 120.0 %

Fig. 11. Effectiveness of TCAM Razor.

our experimental results. First, the effectiveness of Razor”
is close to Razor®. For example, the average compression
ratios of Razor’ and Razor® are 31.3% and 27.2%, respec-
tively. Second, TCAM Razor significantly outperforms the
redundancy removal algorithm. For example, the average com-
pression ratio of Razor” is more than two times better than that
of RR.

It is difficult to compare our results directly with those of
Dong et al. [7] because we have access to neither their programs
nor the classifiers they experimented with. However, Dong et al.
reported a total compression ratio? of 54% on their real-life clas-
sifiers.

B. Efficiency of TCAM Razor

We implemented TCAM Razor using Visual Basic on Mi-
crosoft .Net framework 2.0. In our experiments, we tested
TCAM Razor on RL. Our experiments were carried out on
a desktop PC running Windows Vista with 4 G memory and
a four CPU 2.4-GHz Intel Q6600. Note that TCAM Razor
is not multithreaded, so only a single core is utilized for the
experiments. Fig. 12 shows the total running time of Razor’
for some representative classifiers. We see that TCAM Razor
is very efficient. For classifiers with thousands of rules, it only
takes a few seconds.

VIII. CONCLUSION

TCAMs have become the de facto industry standard for
packet classification. However, as the rules in packet classifiers
grow in number and complexity, the viability of TCAM-based
solutions is threatened by the problem of range expansion. In
this paper, we propose TCAM Razor, a systematic approach to
minimizing TCAM rules for packet classifiers. While TCAM
Razor does not always produce optimal packet classifiers, in our

2By clarifying with the authors, the term “average compression ratio” in [7]
is actually what we define as “total compression ratio” in this paper.

# Rules Seconds
691 0.47
807 | 0.81

1183 | 0.51
1308 1.10
1365 | 2.29
1794 | 2.99
2331 3.69
3410 | 3.03
3928 | 2.60
4004 | 5.13
4456 | 7.76
7652 | 21.419

Fig. 12. Razor” running time.

experiments with 40 structurally distinct real-life packet clas-
sifier groups, TCAM Razor achieves an average compression
ratio of 31.3% and 29.0%, respectively. Unlike other solutions
that require modifying TCAM circuits or packet processing
hardware, TCAM Razor can be deployed today by network
administrators and ISPs to cope with range expansion.
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