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T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are the major end
point mediators ofWnt/Wingless signaling throughout metazoans. TCF/LEFs are multifunc-
tional proteins that use their sequence-specific DNA-binding and context-dependent inter-
actions to specify which genes will be regulated by Wnts. Much of the work to define their
actions has focused on their ability to repress target gene expression when Wnt signals are
absent and to recruit b-catenin to target genes for activation whenWnts are present. Recent
advances have highlighted how these on/off actions are regulated by Wnt signals and sta-
bilized b-catenin. In contrast to invertebrates, which typically contain one TCF/LEF protein
that can both activate and repress Wnt targets, gene duplication and isoform complexity of
the family in vertebrates have led to specialization, in which individual TCF/LEF isoforms
have distinct activities.

W
nt signals play important roles during
animal development (Logan and Nusse

2004), as well as in adult tissues that are re-

freshed and repaired by stem cells (Haegebarth
and Clevers 2009). It is the essential function of

Wnt signaling in stem cell self-renewal and cell

proliferation that links this pathway to problems
of aging and disease such as cancer and diabetes

(Polakis 2007; Laudes 2011). The term “Wnt

signaling” does not imply a single-purpose sig-
nal transduction system. Rather, it refers to a

diverse collection of signals triggered by Wnt

ligand–receptor interactions that direct cell
behavior in multiple ways: cell polarity, move-

ment, proliferation, differentiation, survival and

self-renewal. Diversity in Wnt signaling derives
from the diversityof its components, its set of 19

ligands, ten receptors, alternative receptors, its
signal transduction components, as well as the

cell’s particular developmental history. Despite

this complexity, many Wnt signals act through
a single mediator, b-catenin, to regulate gene

expression. Wnt ligand–receptor interactions

at the plasma membrane are communicated to
target genes by the translocation of b-catenin

into the nucleus where it partners with DNA-

binding proteins that recognize specific se-
quence motifs in promoters and enhancers of

target genes. The central 12-armadillo repeat ar-

ray of b-catenin is the main mediator of tran-
scription factor interactions, whereas domains

in the amino and carboxy termini carry potent

transcription-activating functions (Orsulic and
Peifer 1996; van de Wetering et al. 1997; Hsu
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et al. 1998). Thus, onceb-catenin is recruited to

target genes, transcription is activated via the
actions of these domains and an array of tran-

scriptional coactivators (Mosimann et al. 2009;

Cadigan 2012).
Multiple transcription factors that recruit

b-catenin to Wnt targets have been identified

and this review will summarize those that are
best characterized. However, the nuclear medi-

ators most closely associated with Wnt/b-cat-
enin action are the TCF/LEFs, high-mobility
group(HMG)DNA-bindingproteinswithmul-

tiple domains for protein interaction and regu-

lation. This review will focus attention on this
family of factors and discuss recent advances

that shed light on how Wnt signaling works in

stem cell niches and differentiation.

TCF/LEF TRANSCRIPTION FACTOR FAMILY

Almost all invertebrate genomes carry a single

TCF/LEF ortholog, whereas vertebrates have

expanded to a family of four members (five in
the Zebrafish) (Fig. 1) (Arce et al. 2006; Arch-

bold et al. 2012). The first discoveries of TCF/
LEFs came from searches for transcription reg-
ulators of cell-fate markers in human T lym-

phocytes. “T cell factor 1” (HUGO gene name

TCF7 [van de Wetering et al. 1991]) and “lym-
phoid enhancer factor 1” (HUGO gene name

LEF1 [Travis et al. 1991; Waterman et al. 1991])

were discovered in T and B cells. T cell factor
3 and T cell factor 4 were found later through

low-stringency hybridization screens withTCF7

cDNAs (HUGO gene names, TCF7L1, TCF7L2
[Korinek et al. 1998b]). The immunology-con-

nected nomenclature is thus historical, and as

knockout studies and expression studies attest,
these factors play important regulatory roles in

almost all tissues of the body (Oosterwegel et al.

1993; Brunner et al. 1997; van deWetering et al.
1997; Lin et al. 1998; Archbold et al. 2012).

DNA-Binding Domain

All TCF/LEFs contain a highly conserved HMG

box and a small peptide motif of basic residues
(“basic tail”); together the HMG box and basic

tail comprise the HMG DNA-binding domain

(HMG DBD) (Fig. 1). The HMG DBD can rec-

ognize specific DNA sequences with nanomolar
affinity (Giese et al. 1991; van de Wetering and

Clevers 1992; Love et al. 1995). In addition to

DNA sequence specificity, the HMG box has a
DNA bending function. It recognizes its specific

nucleotide sequence in the minor groove of the

DNA and enforces a bend in the helix between
908 and 1278 (Giese et al. 1995; Love et al. 1995).

Both directed and random screen studies have

identified a consensus recognition sequence for
the HMGDBD; 50-SCTTTGATS-30 (Fig. 2) (van

de Wetering et al. 1997; van Beest et al. 2000;

Hallikas and Taipale 2006; Atcha et al. 2007).
Recent chromatin immunoprecipitation experi-

ments to define TCF/LEF-b-catenin-binding
patterns genome wide identify this consensus
as the most frequently occurring sequence in

TCF4 and b-catenin-binding peaks (Hatzis

et al. 2008; Blahnik et al. 2010; Bottomly et al.
2010; Norton et al. 2011). The small basic tail

motif is located nine residues carboxy terminal

to the HMG box and serves two purposes: ele-
vating DNA-binding affinity through contact

with the positively charged DNA backbone and

functioning as a strong nuclear localization sig-
nal for interactions with importins (Giese et al.

1991; Prieve et al. 1998).

b-Catenin-Binding Domain

The connection between TCF/LEFs and Wnt
signaling came from yeast two-hybrid screens

suggesting that b-catenin could bind tightly

to LEF1 and TCF1, an interaction subsequently
delimited to a conserved motif in the amino

terminus of TCF/LEFs (Fig. 1) (Behrens et al.
1996; Huber et al. 1996; Molenaar et al. 1996;
van deWetering et al. 1997; Graham et al. 2000;

Poy et al. 2001). Deletion of this domain was

an important step in establishing TCF/LEFs
as downstream mediators of Wnt and b-cate-

nin. Truncated “dominant negatives” could no

longer bind to b-catenin, they suppressed the
ability of overexpressedWnt or b-catenin to in-

duce secondary axes in frog embryos, and they

phenocopied the segment polarity defect wing-
less mutants in Drosophila (Behrens et al. 1996;

Huber et al. 1996; Molenaar et al. 1996; van de

K.M. Cadigan and M.L. Waterman

2 Cite this article as Cold Spring Harb Perspect Biol 2012;4:a007906

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Wetering et al. 1997).These experiments showed

how powerfully suppressive amino-terminally

truncated TCF/LEFs can be. As we will discuss
below, these forms occur naturally in the verte-

brate family (see “TCF/LEF heterogeneity”).

C Clamp

Alignment of TCF sequences reveals a third
region as a highly conserved domain (Fig. 1B)

(van de Wetering et al. 1997). This domain is
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Figure 1. Hallmarks of the TCF/LEF family. (A) Schematic of TCF domains, showing the location of five
conserved domains found in this family, the amino-terminal b-catenin-binding domain, the Groucho binding
sequence (GBS), the high-mobility group (HMG) domain followed by a nuclear localization signal (basic tail),
and theC clamp. The specific TCF shown is from the sea urchin Strongylocentrotus purpuratus. (B) Alignments of
the five domains from six invertebrate TCFs and the four human family members. Consensus residues are
highlighted in dark gray with conservative changes in light gray. The extent of conservation is far greater in the
HMG, basic tail, and C-clamp domains compared with the b-catenin-binding domain and GBS. Three residues
in the b-catenin-binding domain that contact b-catenin and are essential for interaction are marked with
asterisks (Graham et al. 2000; Poy et al. 2001). A GBS could not be identified in TCF/LEFs from porifera and
cnidarians and some flatworms, whereas a C clamp is found in nearly all invertebrate TCFs (it is not found in
some flatwormTCF/LEFs) and in some vertebrate TCF1 and TCF4 isoforms. The sequences shown are from the
sponge Amphimedon queenslandica (gene bank accession number ADO16566.1), the cnidarian Hydra magni-
papillata (XP_002159974.1), the parasitic flatworm Schistosoma mansoni (XP_002572116.1), the nematode
Caenorhabditis elegans (NP_491053.3), the dipteran Drosophila melanogaster (NP_726522), the sea urchin
Strongylocentrotus purpuratus (NP_999640) and human TCF1E (EAW62279.1), TCF4E (CAB97213.1), and
LEF1 (NP_001124185), and TCF3 (NP_112573.1).
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small, enriched in basic, cysteine, and aromatic

residues, and located carboxy terminal to the
HMG DBD. The function of this domain was

defined only recently when its requirement for

gene regulation in human cancer cells (Atcha
et al. 2007) and Drosophila (Chang et al. 2008)

led to the discovery that it is a second DNA-

binding domain. The domain is called the
“C clamp” to highlight the absolute require-

ment for four cysteine residues in DNA bind-

ing (Atcha et al. 2007), and the first had been
previously noted by the Clevers group as the

“CRARF” domain (van de Wetering et al.

1997). Vertebrate TCF/LEFs containing the C
clamp have been suggested to be important in

regulating specific target genes (Wohrle et al.

2007; Weise et al. 2010). Although there is not
yet an nuclear magnetic resonance (NMR) or

crystal structure of the C clamp, experiments

show that it has specificDNA-binding activities.
The C clamp carries specificity for a secondary,

GC-rich sequence called a “Helper site” (Fig. 2)

that can occur with variable spacing and orien-
tation relative to the Wnt response element

(Atcha et al. 2007; Chang et al. 2008). It is un-

usual, but not unprecedented for transcription
factors to carry two sequence-specific DNA-

binding domains and, as will be discussed be-

low, the C clamp is no longer present in every

vertebrate TCF/LEF family member. However,
one of the genome-wide chromatin immuno-

precipitation studies for TCF4 binding noted

enrichment of a Helper-like GC-rich sequence
at a subset of targets (Hatzis et al. 2008). This

suggests that despite the loss of the C clamp in a

couple of family members, this domain is func-
tionally relevant in vertebrates. Understanding

the contribution of the C clamp to Wnt regula-

tion in vertebrates and invertebrates requires
further study.

Gro/TLE-Binding Domain

TCF/LEFs repress gene transcription in the ab-

sence of available b-catenin. Several corepres-
sors participate in this process, such as myeloid

translocation gene related-1 (Mtgr1) (Moore et

al. 2008), corepressor of Pan (Coop) (Song et al.
2010), and hydrogen peroxide-inducible clone

(HIC5) (Ghogomu et al. 2006; Li et al. 2011).

The most intensively studied TCF/LEF co-
repressors are the Groucho/transducin-like en-
hancer of split (Gro/TLE) repressor family. Ge-

netic studies in Drosophila and C. elegans

support a role for their Gro/TLE orthologs re-

pressing Wnt targets (Cavallo et al. 1998; Calvo

1 2 3 4 5 6 7

1 2 3 4 5 1 2 3 4 56 7
8 9

HMG DBD site

(Drosophila)
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(Drosophila)
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Figure 2.High-mobility groupDNA-bindingdomain (HMGDBD)andHelper sites ofDrosophila andvertebrate
TCF/LEFs. Sequence logos were constructed fromTCF/Pangolin sites described in Chang et al. (2008) and from
a collection of vertebrate Wnt-regulated enhancers (N Hoverter, MLWaterman, and KM Cadigan, unpubl.).
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et al. 2001). Gro/TLEs contain a conserved glu-
tamine-rich Q domain at their amino termini
that binds to the central portion of TCF/LEFs as
well as the portion containing the HMG DBD

(Daniels and Weis 2005; Arce et al. 2009). A
short motif in the central domain has been

identified that is essential for binding of LEF1

to TLE1, and similar regions can be found in
most other TCF/LEFs (Fig. 1) (Arce et al. 2009).
Whether this small motif is the core site of bona

fide Gro/TLE interactions in TCF/LEF-assem-
bled complexes at endogenous target genes re-

mains to be determined. Other small sequence

motifs have been discovered between the b-cat-
enin-binding and HMG domains and they ap-

pear to impart additional modes of repression

(see “TCF/LEF heterogeneity”).

EVOLUTION OF TCF/LEFs

Examination of the predicted protein sequences

from sequenced genomes provides a picture

of the evolution of the TCF/LEF family. Defin-
ing proteins solely by sequence similarity has an

important caveat, nicely illustrated by the SYS-1

protein, which clearly functions as a b-catenin
in C. elegans and is structurally similar to other

b-catenins despite having almost no conserva-

tion at the primary sequence level (Kidd et al.
2005; Liu et al. 2008a). Leaving this consider-

ation aside, examination of predicted prote-

omes suggests that Wnts, b-catenin, and TCF/
LEFs are metazoan inventions, because they

are absent in Choanoflagellates (a single-cell

eukaryote) and present in Sponges (King et al.
2008; Adamska et al. 2010; Srivastava et al.

2010). Nearly all invertebrate genomes exam-

ined contain one recognizable TCF gene that
codes for a TCF/LEF containing an amino-ter-

minal b-catenin-binding domain, an HMG

domain followed by a basic tail, and a C-clamp
domain (Fig. 1). The one exception is found

in Platyhelminthes, in which the parasitic flat-

worm Schistosoma mansoni genome (Berriman
et al. 2009) contains three TCF/LEF genes and

the genome of Planaria (Schmidtea mediterra-

nea) has five (C Petersen, pers. comm.). These
flatworm TCF/LEFs all have well conserved

HMG and basic tail motifs, but C clamps are

found in only one TCF/LEF from S. mansoni

and two TCF/LEFs from S. mediterranea (C
Peterson, pers. comm.). It is not yet clear which

TCF/LEFs in these organisms mediate Wnt sig-

naling, but it is interesting to note that a similar
situation exists in amphibians and mammals,

which contain four TCF genes that produce a

large number of isoforms, but only the TCF1E
and TCF4E isoforms contain a C clamp (Atcha

et al. 2007). These findings are consistent with a

rule in which TCFs from organisms containing
a single TCF gene will have a C clamp, whereas

this domain is lost from some TCFs in organ-

isms possessing multiple TCF genes. Evolution
to multiple-TCF genomes may enable organ-

isms to refine Wnt signals to specific subsets

of target genes.

TCF/LEF HETEROGENEITY

Refinement of Wnt signaling through TCF spe-

cialization is evident in vertebrates in which

the TCF/LEF family has expanded to four loci
with alternative promoters and alternative

messenger RNA (mRNA) splicing. These capa-

bilities create heterogeneous patterns of ac-
tivity. Alternative promoters produce truncated

dominant–negative forms of LEF1, TCF1, and

TCF4, similar to the Wnt-interfering, amino-
terminal deleted TCF/LEF forms created for

epistasis analysis (van de Wetering et al. 1996;

Hovanes et al. 2001; Vacik and Lemke 2011).
Alternative mRNA splicing produces TCF/LEFs
missing functional domains such as the C clamp

and other small regions amino terminal of the
HMGDBDdomain (van deWetering et al. 1996;

Duval et al. 2000; Hovanes et al. 2000; Proku-

nina-Olsson et al. 2009b;Weise et al. 2010).With
one exception for TCF4 (Kennell et al. 2003),

nearly all variations retain the HMG DBD sug-

gesting that TCF/LEF isoforms exert their spec-
trum of activities via specific DNA binding.

The functional outcome of all this hetero-

geneity is that TCF/LEF isoforms enable Wnt
signals to be interpreted differently. For exam-

ple, although Wnt can activate gene tran-

scription by directing the formation of b-cate-
nin-TCF/LEF complexes with transcription-

activating complexes (Mosimann et al. 2009;

Wnt Target Gene Regulation
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Cadigan 2012), a recent example in Xenopus

shows how it also uses b-catenin to disengage
TCF3 and corepressors (Hikasa et al. 2010;

Mahmoudi et al. 2010; Mohan et al. 2010).

Heterogeneity also means that TCF/LEFs can
specialize for unique gene targeting, or that

they can engage distinct activating or repressing

cofactors. To illustrate, TCF3 is generally known
as a repressor of Wnt target genes (Kim et al.

2000; Merrill et al. 2004) and the full-length,

b-catenin-binding form of TCF4 is also some-
times associated with target gene repression

(Tang et al. 2008). In contrast, full-length TCF1

and LEF1 are more often linked to Wnt target
gene activation (Reya et al. 2000; Kratochwil

et al. 2002; Liu et al. 2005). The mechanistic

basis for these differences is not completely
known but they seem to track to small repres-

sor-recruiting motifs in the central region and/
or the carboxyl terminus of the proteins. For
example, the five amino acid motifs LVPQ and

SxxSS that are present obligatorily in TCF3 ap-

pear as alternatively spliced variations in TCF4
and not at all in TCF1 and LEF1 (Pukrop et al.

2001; Gradl et al. 2002; Liu et al. 2005). Origi-

nal studies in Xenopus systems showed that
forms with SxxSS behave like repressors, where-

as forms missing this motif act like activators

(Liu et al. 2005). This was recently confirmed
in a study of human hepatocellular carcinoma

in which of the 14 alternatively spliced TCF4

isoforms expressed in liver cancer cells, those
that contained the SxxSS motif were growth

suppressive, whereas those lacking the element

were Wnt activating and growth promoting
(Tsedensodnom et al. 2011). The fact that SxxSS

forms of TCF4 are generated through alterna-

tive splicing means that the prevalence of these
forms could differ among cell types and cell

stages. Such variations could be one reason why

TCF4 has been assigned either activating or re-
pressing, oncogenic or tumor suppressor func-

tions in intestine and colon cancer cells (Kor-

inek et al. 1998a; Tang et al. 2008; Angus-Hill
et al. 2011).

Other alternatively spliced regions of TCFs

have been noted to increase or decrease target
gene activation potential (Weise et al. 2010; Le

Bacquer et al. 2011). Perhaps the most interest-

ing of these are the CtBP motifs in the carboxyl

terminus of invertebrate TCF/LEFs and mam-
malian TCF3 and TCF4 (PXDLS) (Brannon

et al. 1999; Valenta et al. 2003). Direct CtBP:

TCF-binding interactions are controversial
and have been variously deemed irrelevant or

functional depending on the study (Brannon

et al. 1999; Valenta et al. 2003; Hamada and
Bienz 2004; Fang et al. 2006). InDrosophila cells,

CtBP represses Wnt targets in the absence of

signaling, and CtBP associates with Wnt target
gene chromatin independently of TCF/LEF
(Fang et al. 2006). Interestingly, homo-oligo-

merization of CtBP is required for repression
of some Wnt targets, but CtBP is also necessary

for activation of other targets as a TCF/LEF-b-
catenin-associated monomer (Bhambhani et al.
2011). These novel findings suggest that CtBP

could be part of the heterogeneity and context-

dependent actions of TCF/LEFs, including the
activating/repressing functions of mammalian

TCF3 and TCF4—a correlation that might refo-

cus attention on the question of whether CtBP
does or does not directly interact with the

PXDLSmotifs in the carboxyl terminus of these

two TCF/LEFs.

THE TCF/LEF TRANSCRIPTIONAL SWITCH

For genes whose expression is induced byWnt/
b-catenin signaling, the standard model is that

TCF/LEF represses transcription in the absence
of signaling, and is converted to an activator by

association with b-catenin. This model is well

supported in Drosophila and C. elegans, organ-
isms that contain a single TCF/LEF gene. How-

ever, the situation is more complex in verte-

brates, in which individual TCF/LEF proteins
have become more specialized in their ability to

repress and/or activate Wnt target genes.

InDrosophila tissues and cell culture, loss or
depletion of TCF/LEF (also known as Pangolin,
or Pan) results in a strong reduction in activa-

tion of Wnt targets (Brunner et al. 1997; van de
Wetering et al. 1997; Stadeli and Basler 2005;

Fang et al. 2006; Parker et al. 2008). In addition,

reduced TCF/Pan also causes derepression of
several Wnt targets in the absence of signal-

ing (Cavallo et al. 1998; Fang et al. 2006; Liu

K.M. Cadigan and M.L. Waterman
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et al. 2008b). Studies with POP1, the nematode

TCF/LEF, also support this dual role with both
repression (Rocheleau et al. 1997; Thorpe et al.

1997; Maduro et al. 2002) and activation of

Wnt targets being severely compromised in
POP1 mutants (Herman 2001; Shetty et al.

2005; Lam et al. 2006). TCF/LEF loss-of-func-

tion studies are nicely complemented in both
organisms by analysis of reporter genes whose

expressions are driven by Wnt response ele-

ments (WREs).Mutation of the TCF/LEF bind-
ing sites in these WREs results in a reduction of

activation byWnt signaling, but also depression

of reporter activity in cells where the WRE is
normally not active (Yang et al. 2000; Knirr

and Frasch 2001; Shetty et al. 2005). These re-

sults support themodel depicted inFigure 3A,C,
in which these invertebrate TCF/LEFs restrict
WRE activity in cells receiving little or no Wnt

signal, and activate the WRE in cells with suf-
ficient Wnt signaling. It should be noted that

the repression role for TCF/LEF is not observed
at every WRE, presumably owing to the lack of
elements that would activate gene expression in

the absence of functional TCF/LEF sites (Lam

et al. 2006; Chang et al. 2008).
In vertebrate systems, initial studies with

simple reporters containing multimerized TCF/
LEF sites indicated that all four TCFs can me-
diate activation of transcription by b-catenin

(Molenaar et al. 1996; Korinek et al. 1997; van

de Wetering et al. 1997; Hsu et al. 1998) and are
bound by corepressors of the Gro/TLE family

(Brantjes et al. 2001).However, loss-of-function

analyses support the view that repression and
activation capabilities of these factors have been

divided among the family. In Xenopus ventral–

lateral patterning, systematic knockdown of
TCF/LEFs with morpholinos combined with a

rescue by chimeric TCFs fused to repressor or

activator domains, found that TCF3 and TCF4
acted as repressors, whereas LEF1 and TCF1

Invertebrate TCF switch

co-rep

co-rep

co-rep

co-act
co-act co-act

co-act

HIPK2

β-cat β-cat

β-cat

TCF TCF1

co-rep

TCF TCF3

TCF3

TCF1
no Wntno Wnt

A B

C DWnt present Wnt present

TSS

TSS TSS

TSS

Vertebrate TCF exchange

P P

Figure 3. Regulation of TCF/LEFs in invertebrates and vertebrates. (A) Most invertebrates have one TCF/LEF
gene producing a protein that can recruit corepressors to Wnt targets in the absence of signaling. (B) In
vertebrates, TCF/LEFs are more specialized, with TCF3 often fulfilling this repressive role. (C)When high levels
of b-catenin are found in the nucleus after Wnt signaling, it binds to invertebrate TCF, displacing (or inacti-
vating) corepressors and recruiting coactivators through its amino- and carboxy-terminal transactivation do-
mains. (D) For at least some vertebrate Wnt targets, a TCF/LEF exchange occurs, in which Wnt/b-catenin
signaling promotes HIPK2-dependent phosphorylation of TCF3, causing it to leaveWnt target gene chromatin,
allowing TCF1-b-catenin to occupy the WRE, facilitating transcriptional activation. See text for more infor-
mation.
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acted as activators (Liu et al. 2005). A similar

separation of roles was observed at a different
developmental stage duringWnt-dependent in-

duction of the Spemann organizer. Here, TCF3

and TCF1 provided repressor roles and TCF4 an
activator function (Houston et al. 2002; Stand-

ley et al. 2006). TCF3 seems to actmost often as a

repressor as evident in genetic studies in other
systems (Kimet al. 2000;Merrill et al. 2004; Cole

et al. 2008; Yi et al. 2011), whereas LEF1 appears

restricted to activation ofWnt targets (Reya et al.
2000; Kratochwil et al. 2002). TCF1 and TCF4

have both repressor and activator functions,

depending on the cells or tissues examined
(Korineket al. 1998a; Galceran et al. 1999; Roose

et al. 1999; Tang et al. 2008; Nguyen et al. 2009).

An important limitation of these studies is
the heterogeneity of TCF isoforms produced in

cells. As described above, some TCF1 and TCF4

isoforms lack the b-catenin-binding domain
and act as dominant negatives, so they would

behave genetically as repressors of the pathway

in a mouse knockout (Roose et al. 1999).
In addition to a Wnt-directed exchange of

corepressors for the coactivator b-catenin, dif-

ferential activities of vertebrate TCFs raise the
possibility that the transcriptional switch pro-

moted byWnt could also involve an exchange of

TCF family members. Direct evidence for this
type of mechanism has been found in Xenopus

for the Vent2 gene, in which TCF/LEF repres-

sion and activation occurs through a single
binding site (Hikasa et al. 2010). Wnt stimula-

tion promotes the phosphorylation of repres-

sor-acting TCF3 by homeodomain-interacting
protein kinase (HIPK2), which results in its dis-

sociation from the WRE (Hikasa et al. 2010).

TCF1 is not phosphorylated by HIPK2 and re-
places TCF3 on the Vent2WRE for gene activa-

tion (Fig. 3B) (Hikasa and Sokol 2011). Wnt-

HIPK2 signaling also promotes the dissociation
of LEF1 and TCF4 from theVent2WRE (Hikasa

et al. 2010), suggesting that the HIPK2 pathway

could play a prominent role in regulating TCF/
LEF chromatin occupancy in many contexts.

One potential example is embryonic stem cells,

in which it has recently been shown that Wnt
signaling promotes an exchange of TCF3 and

TCF1 at several Wnt targets (Yi et al. 2011).

Whether HIPK2 is involved in the exchange in

stem cells is not known.

TCF/LEF-b-CATENIN REGULATION OF
HISTONE MODIFICATIONS

The transcriptional switch model for regulation
of TCF/LEF activity by Wnt/b-catenin signal-

ing proposes that in the absence of signaling,

TCF/LEF recruits corepressors to target gene
chromatin. Upon b-catenin association with

TCF/LEF, these corepressors are displaced or

inactivated, and a variety of coactivators are re-
cruited via interactions with b-catenin. The list

of transcriptional coregulators involved in this

switch is large (Willert and Jones 2006; Parker
et al. 2007; Cadigan and Peifer 2009; Mosimann

et al. 2009; Cadigan 2012) and a comprehensive

list will not be presented here. Rather, the con-
nection between these factors and histone

modifications of Wnt target gene chromatin

will be discussed given the wealth of evidence
that the state of chromatin has a profound in-

fluence on transcription (Berger 2007; Suga-

numa and Workman 2011).
The most extensive chromatin modification

to be examined in the context ofWnt target gene

regulation is histone acetylation. Addition of
acetyl groups to several conserved lysine residues

on the amino termini of histone H3 and H4

subunits is highly correlated with transcription-
al activation. This reaction is catalyzed by his-

tone acetyltransferases (HATs) and counteracted

by histone deacetylases (HDACs). The role of
HDACs in repression of Wnt targets in the ab-

sence of signaling was first proposed using an

artificial Wnt reporter (Billin et al. 2000), but
it has been extended to endogenous targets as

well (Kioussi et al. 2002; Sierra et al. 2006; Lyu

et al. 2011). In addition, TCF/LEF1-binding
corepressors such as members of the Groucho/
transducin-like enhancer of split (Gro/TLE)
andmyeloid translocation gene (MTG) families,
which contribute to Wnt target gene repression

(Cavallo et al. 1998; Roose et al. 1998; Moore

et al. 2008), are known to act in part by binding
toHDACs (Chen et al. 1999; Brantjes et al. 2001;

Linggi et al. 2005).
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On the activation side of the transcriptional

switch, there is abundant evidence that CREB-
binding protein (CBP) and its close relative

p300, both of which encode HATs, can bind to

the carboxy-terminal transactivation domain of
b-catenin and mediate activation of Wnt target

gene expression (Mosimann et al. 2009; Teo and

Kahn 2010). Recruitment of CBP/p300 to Wnt
target gene chromatin has been correlated with

an increase in H3 and H4 acetylation (Kioussi

et al. 2002; Sierra et al. 2006; Parker et al. 2008;
Badis et al. 2009; Lyu et al. 2011). In Drosophila

cells, Wnt/b-catenin signaling causes a wide-

spread increase in H3/H4 acetylation across
the entire Wnt target locus (up to 40 kb), even

though CBP recruitment is limited to the site

of TCF binding (Parker et al. 2008). However,
depletion of CBP resulted in loss of all the

Wnt-dependent histone acetylation, support-

ing a model in which CBP directly or indirectly
catalyzes the widespread modification. Al-

though the evidence outlined above suggests a

major role for histone acetylation in activation
of some Wnt targets, other studies have found

no evidence for a significant change in histone

acetylation at other Wnt targets in response to
pathway activation (Wohrle et al. 2007; Blythe

et al. 2010).

Trimethylation of the fourth lysine of H3
(H3-K4me3) has also been linked to activation

of Wnt targets and the function of the Wnt

coactivator Pygopus. H3-K4me3 is a chromatin
mark found at proximal promoters, a signature

which is positively correlated with transcription

(Berger 2007; Suganuma and Workman 2011).
Wnt/b-catenin signaling causes an elevation

of H3-K4me3 at various target promoters (Par-

ker et al. 2008; Blythe et al. 2010; Chen et al.
2010) and the mixed-lineage-leukemia proteins

(MLL1/2), the methyltransferases that catalyze

this modification, are required for full activa-
tion of several Wnt targets (Sierra et al. 2006;

Chen et al. 2010).

Pygopus proteins (Pygo in flies; Pygo1 and
Pygo2 inmammals) contain PHD domains and

are Wnt coactivators that bind to the amino-

terminal transactivation domain of b-catenin
indirectly through Legless (in flies) or BCL9

and BCL9-2 (in mammals) (Kramps et al. 2002;

Jessen et al. 2008). The PHD domain of Pygo

can bind H3-K4me3 (Fiedler et al. 2008; Gu
et al. 2009; Kessler et al. 2009). Although the

role of this interaction is controversial in Dro-

sophila (Kessler et al. 2009), in mammalian sys-
tems Pygo2 also interacts with MLL2 (Chen

et al. 2010), suggesting a model in which Pygo-

pus proteins act to connect WREs bound by
TCF and b-catenin with proximal promoters

of Wnt targets (Cadigan and Peifer 2009).

This idea is further strengthened by physical
interactions between Pygo and Mediator sub-

units (Carrera et al. 2008) and TAF4 (a TFIID

subunit) (Wright and Tjian 2009), both of
which physically associate with the RNA poly-

merase II complex. Indeed, there is recent evi-

dence that several WREs in the c-myc locus
form loops with the proximal promoter to af-

fect transcriptional activation (Wright et al.

2010; Yochum et al. 2010; Yochum 2011).
Other recent examples of histone modifi-

cation complexes that participate in activation

of Wnt targets are protein arginine methyl-
transferase 2 (PRMT2) in Xenopus, which pro-

motes H3K8me signatures (Blythe et al. 2010),

and the DOT-COM complex, responsible for
H3K79me3, a chromatin mark associated with

transcriptional elongation (Steger et al. 2008;

Mahmoudi et al. 2010; Mohan et al. 2010).
PRMT2 was biochemically associated with b-

catenin in Xenopus embryonic extracts, and is

required for Wnt/b-catenin signaling-depen-
dent establishment of the dorsal (Spemann) or-

ganizer (Blythe et al. 2010). A more general role

in the activation of other Wnt targets remains
to be tested. Components of the DOT/COM
complex, such as DOTL1 (the methyltransfer-

ase subunit; also called DOT1) are required for
the pathway inDrosophila andmammalian cells

(Mahmoudi et al. 2010; Mohan et al. 2010).

In the latter system, transcription profiling sug-
gested that DOTL1 functions predominately in

the regulation of genes activated byWnt/b-cat-
enin signaling (Mohan et al. 2010). Further in-
vestigations will be needed to determine the role

of the DOTL1 complex in general versus Wnt-

specific gene activation, as well as exploring the
mechanism by which DOT-COM and PRMT8

complexes are recruited to WRE chromatin.
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In addition to the chromatin marks dis-

cussed above, there are others (e.g., H4K20me
via SET8 and H3R17me via CARM1) that have

been linked to activation ofWnt targets (Li et al.

2011; Ou et al. 2011). Although still to be inves-
tigated, it seems likely that not all Wnt targets

will require all the aforementioned chromatin

marks, and a more genome-wide systematic
analysis may reveal the existence of classes of

chromatin signatures that define subsets of

target genes. Adding to this complexity in ver-
tebrate systems is the likelihood that different

target genes will require different TCFs for reg-

ulation. For example, loss of TCF3 in a neuro-
blast stem cell results in global elevation of H3/
H4ac levels (Lluis et al. 2011), a change consis-

tent with its role in transcriptional repression.
Perhaps targets that are more dependent on

TCF3will also show larger differences in histone

acetylation in response to pathway activation.

TCF/LEF EXPRESSION AND REGULATION

Because TCF/LEFs are potent transcription reg-
ulators, it is important to control their activity.
New insights into regulation of transcription

and protein localization show how Wnt signal-

ing and other signals control TCF/LEFs beyond
just making b-catenin and its chromatin mod-

ifiers available.

TCF/LEFs are expressed in distinct but
broadly overlapping patterns such that it is

common for more than one TCF/LEF to be

coexpressed in any one cell. Double knockout
studies in mice show that functional redundan-

cy is common, as mice missing more than

one TCF/LEF develop early and severe embry-
onic lethal phenotypes, much more than single

knockouts (Galceran et al. 1999; Gregorieff et al.

2004). TCF3 is unique in that its knockout leads
to an early embryonic lethal phenotype (Hous-

ton et al. 2002; Merrill et al. 2004; Liu et al.

2005). Given that TCF3 is the most abundant
family member in embryonic stem cells, this

phenotypemakes sense. However, single knock-

out experiments also show that TCF/LEFs have
specialized in their function and expression pat-

terns. What are the pathways that control ex-

pression, and do these pathways regulate all

TCF/LEFs or specific members?
First, TCF/LEF gene transcription can be

regulated by the Wnt pathway. With the excep-

tion of TCF3 (TCF7L1), all of the TCF/LEF
promoters (including the promoters for dom-

inant–negative isoforms) contain predicted

WREs (Fig. 4) (K Pate and MLWaterman, un-
publ.). These WREs have been experimentally

validated in the LEF1 and TCF7 promoters and

both genes often appear as Wnt-regulated tran-
scripts in microarray studies (Roose et al. 1999;

Hovanes et al. 2001; Li et al. 2006). In addition,

genome-wide ChIP-ChIP experiments show
that the promoters for full-length LEF1, TCF7,

and TCF7L2 are occupied by TCF4 (Hatzis

et al. 2008; Bottomly et al. 2010). The TC7L1

promoter (for TCF3) is the lone exception; it

is not occupied by TCF4 and its promoter

does not have identifiable TCF/LEF binding
sites.

Second, regulation of the internal promot-

ers for dominant–negative TCF/LEFs is equally
important and could vary during development

or disease progression. For example, domi-

nant–negative forms of TCF1/TCF7 are detect-
ed in normal colon crypt epithelial cells but they

are absent in colon cancer cells (Najdi et al.

2009). A switch in isoform expression from a
Wnt-opposing dominant negative in normal

cells, to a Wnt-promoting full-length isoform

in cancer cells could explain why knockout of
TCF7 in mice produces adenomas in the intes-

tine, whereas knockout of TCF7 in colon cancer

cell lines slows their growth (Tang et al. 2008).
Likewise, the LEF1 locus is aberrantly activated

in colon cancer, but only the promoter for full-

length LEF1. The promoter for dnLEF1 is silent
(Hovanes et al. 2001). Reexpression of dnTCF1

or dnTCF4 in colon cancer cells can shut down

Wnt signaling and force a stall in the G1 phase
of the cell cycle (van de Wetering et al. 2002).

How is it that dnTCF/dnLEF promoters are si-

lent in cancer? A partial explanation is available
for the dnLEF1 promoter: Its promoter is si-

lenced through active repression by an upstream

distal repressor element that makes WREs in
the promoter inaccessible (Li et al. 2006; Yoko-

yama et al. 2009). The YY1 transcription factor
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is necessary for this repression as it binds to the

core promoter and communicates with the dis-

tal repressor (Yokoyama et al. 2009).
Another example comes from the recent

discovery of a promoter for dominant–negative

TCF4 and an intronic enhancer connected to
risk of diabetes. The strongest diabetes-associ-

ated polymorphism identified to date occurs in

an intervening sequence of the TCF4/TCF7L2
gene (Grant et al. 2006; Lyssenko et al. 2007; and

reviewed inDoria et al. 2008). Single-nucleotide

polymorphisms (SNP) in introns can change
splicing efficiencies and influence the relative

expression of spliced isoforms (Prokunina-Ols-

son et al. 2009a,b), but the most significant di-

abetes-associated SNP lies within a 92-kb geno-

mic interval that has additional activities. A
recent bacterial artificial chromosome (BAC)

survey in transgenic mice determined that this

region contains a strong regulatory enhancer
(Savic et al. 2011). This region also contains a

signal for alternative polyadenylation for pro-

duction of a truncated, inhibitory TCF4 iso-
form missing the HMG DNA-binding domain

(Fig. 4) (Kennell et al. 2003; Locke et al. 2011).

The SNP-containing interval is clearly an
important regulator of the levels of TCF7L2

gene expression. But there is an even deeper

4
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TCF7 321
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TCF4

TCF7L2 2 44 6

~+150 kb
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Figure 4. TCF/LEF isoform diversity. (A) Schematic of the LEF1 locus with two promoters. The first promoter
produces an mRNAwith an internal ribosome entry site in the 50 UTR (encoded by exon1) (Jimenez et al. 2005;
Tsai et al. 2011). A second promoter in intron2 produces a truncated, dominant–negative form of LEF1missing
the b-catenin-binding domain (green rectangle) (Hovanes et al. 2001; Li et al. 2006). Red and blue domains are
theHMGand basic domains forDNAbinding (refer to Fig. 1). (B) Schematic of theTCF7 locus (which codes for
TCF1). Similar to LEF1, the TCF7 locus codes for full-length and dominant–negative forms through the use of
two promoters (van de Wetering et al. 1996). (C) The TCF7L2 locus (codes for TCF4) produces multiple
truncated isoforms in addition to the full-length form. A putative intron1 promoter has been proposed that
produces a dnTCF4 similar to dnLEF1 and dnTCF1 (Duval et al. 2000). A third promoter in intron5 has been
defined (Vacik and Lemke 2011). This promoter produces a dnTCF4 isoformbecause it ismissing theb-catenin-
binding domain. The promoter lies immediately downstream from a 92-kb genomic interval (yellow rectangle)
that contains the strongest known risk alleles for type 2 diabetes (black asterisk; rs7903146 and rs12255372
[Grant et al. 2006]) as well as an alternative polyadenylation signal that might produce the previously discovered
inhibitory form referred to as TCF4N (red asterisk) (Kennell et al. 2003; Locke et al. 2011).

Wnt Target Gene Regulation

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a007906 11

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


consideration. A recent study of TCF4 expres-

sion during development showed that the fifth
intron of the TCF7L2 locus harbors a highly

conserved promoter for a dominant–negative

isoform of TCF4—a form missing the b-cate-
nin-binding domain but retaining the HMG

DNA-binding domain. This promoter is acti-

vated during embryogenesis by VAX1/VAX2, a
homeobox regulator essential for negative feed-

back of Wnt signaling. Although the VAX-in-

duced dnTCF4 form is most prevalent in the
brain, it might be important to reassess how

the diabetes-associated SNPs located upstream

affect the production of full-length versus dom-
inant–negative TCF4 in tissues such as the pan-

creas. Such changes would be mostly invisible

in microarray and RNA-seq data unless one was
specifically looking for it. Sorting out the con-

nection between expression and activity of

TCF4 isoforms is important because out of all
the vertebrate TCF/LEFs, this family member

shows the most polymorphisms and mutations

in cancer and diabetes (Grant et al. 2006; Sjo-
blom et al. 2006; Cauchi et al. 2007; Bass et al.

2011; Mullighan et al. 2011).

As illustrated with the HIPK2-directed
“TCF exchange,” TCF/LEF localization appears

to be dynamic on target gene chromatin. As

mentioned above, Wnt signals direct a swap
of TCF3 for TCF1 in a b-catenin- and HIPK2-

dependent manner in Xenopus embryos and

mouse embryonic stem cells (mESCs) (Hikasa

et al. 2010; Hikasa and Sokol 2011; Yi et al.

2011). The swap results in activation of Wnt
target genes because TCF3 is repressive, whereas

TCF1 is activating. Multiple sites of phosphor-

ylation in the central portion of xTCF3 are es-
sential target residues for the switch, and these

sites are also phosphorylated in the correspond-

ing region of xTCF4 and mLEF1 (Fig. 5) (Hi-
kasa and Sokol 2011). It is worth noting that

these residues are conserved in human ortho-

logs of TCF3, TCF4, and LEF1, but they are not
present in any TCF1 homolog (Fig. 5). This sug-

gests that Wnt-triggered HIPK2 signals may be

especially effective at promotingTCF1occupan-
cy of WREs. It is also worth emphasizing that

HIPK2 activation and the TCF3/TCF1 swap is

b-catenin dependent.
The Wnt- and b-catenin-dependent feature

of HIPK2 action has intriguing parallels to

regulation of the C. elegans ortholog POP1. In
this case, a Wnt signal that is delivered asym-

metrically to dividing daughters of the EMS

progenitor cell directs the alternative catenin
WRM1 and a Nemo-like kinase (NLK) called

LIT1, to bind the carboxyl terminus of POP1

and phosphorylate its context-dependent
regulatory domain (CRD) (Lo et al. 2004;

Yang et al. 2011). NLK phosphorylates CRD

residues that are similar to those targeted by
Wnt/b-catenin/HIPK2 (Fig. 5). Phosphorylat-

ed POP1 is recognized by 14-3-3 proteins for

rapid nuclear export, an action that lowers

HIPK2

LEF1 SLSPPIPRT–SNKVPVVQPSHAVHPLTPLITYSDEHFSPGSHPSHIPSDV

TRSPSPAHL–SNKVPVVQHPHHMHPLTPLITYSNDHFSPGSPPTHLSPEI
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215
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TCF3 TRSPSPAHL–SNKVPVVQHPHHMHPLTPLITYSNDHFSPGSPPTHLSPEI
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201

LIT1/NLK

LEF1 SLSPPIPRT–SNKVPVVQPSHAVHPLTPLITYSDEHFSPGSHPSHIPSDV
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Figure 5. TCF/LEF phosphorylation sites for HIPK2, LIT1/NLK, and TNIK. Amino acid alignment of human
LEF1, TCF3, and TCF4 and theC. elegans ortholog POP1. The indicated regions are amino terminal of theHMG
domain. Residues in red are validated, mapped phosphorylation sites by the kinase HIPK2 (Hikasa and Sokol
2011), the kinase NLK and its C. elegans ortholog LIT1 (Ishitani et al. 2003; Lo et al. 2004), and TNIK
(Mahmoudi et al. 2009).
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nuclear concentrations of POP1 and results in

an increase in target gene activation (Thorpe
et al. 1997; Maduro et al. 2002; Shetty et al.

2005). Activation of mammalian NLK also has

negative actions on TCF/LEFs. In this case,
NLK is activated by Wnt ligands such as

Wnt5a to phosphorylate TCF4 and LEF1 and

trigger their dissociation from DNA (Ishitani
et al. 1999, 2003). Similar to LIT1 and HIPK2,

Wnt directs the formation of a complex between

NLK, b-catenin, and the TCF/LEF protein, and
once again, the residues phosphorylated byNLK

are a subset of the LIT1- and HIPK2-dependent

phosphorylations (Fig. 5) (Sokol 2011).
There is one other kinase that phosphory-

lates TCFs in a Wnt- and b-catenin-dependent

manner. TNIK (for Traf2- and Nck-interact-
ing kinase) was discovered through proteomic

analysis of TCF4 complexes in mouse intestine

and human colon cancer (Mahmoudi et al.
2009). This kinase is recruited by b-catenin to

WRE-bound TCFs for phosphorylation. TNIK

is a Germinal Center/Ste20-type kinase, very
different from NLK and HIPK2, yet it targets a

residue in the CRD region of TCF3 and TCF4

that is identical to a HIPK2 site (Fig. 5) (Shita-
shige et al. 2010). TNIK actions enhance Wnt

target gene activation much like the outcomes

ofHIPK2 and LIT1 action but how it does this is
unknown (Mahmoudi et al. 2009; Satow et al.

2010; Shitashige et al. 2010). TNIK could cer-

tainly function in a manner that is completely
different fromHIPK2, but it is also possible that

it triggers a transcriptional switchbetweenTCF/
LEFs. In fact, TCF4 has been recently proposed
to function as a growth suppressor in colon

cancer cells, whereas TCF1 has been observed

to promote Wnt signals and proliferation (at
least in colon cancer) (Tang et al. 2008; An-

gus-Hill et al. 2011). Because TCF1 is expressed

as a full-length activating form in colon cancer,
and because it is not targeted by any of these

kinases, it would be interesting to knowwhether

TNIK can activate Wnt target gene transcrip-
tion by directing a transcription switch between

TCF4 and TCF1.

TCF1 appears as a stand-alone in that it is
not phosphorylated by HIPK2, NLK, or TNIK,

but its TCF1 actions are controlled in other

ways. First, normal colon crypts express a dom-

inant–negative form of TCF1 that can oppose
its full-length counterpart (Najdi et al. 2009).

Asmentionedabove, thisWnt-suppressing form

is missing in colon cancer. A second tier of neg-
ative regulationuses specificWnt signals (Wnt1,

Wnt5a) to trigger nuclear export of TCF1 (Najdi

et al. 2009; RNajdi, unpubl.). This action shares
similarities with the Wnt-directed inhibition

of other TCF/LEFs because b-catenin appears

to be involved, but whether TCF1 is phosphor-
ylated by a different kinase for export is not

known.

The heterogeneity inherent in the TCF/LEF
family means that linking the molecular effects

of b-catenin-dependent kinases (HIPK2, NLK,

and TNIK) to their overall effect onWnt signal-
ing in any one cell type or tissue may not

be straightforward because multiple TCF/LEFs
with different activities are often coexpressed.
For example, can we conclude that Wnt-HIPK2

always results in Wnt target gene activation and

that Wnt-NLK-nuclear export of TCF1 always
leads toWnt target gene repression? The answer

is clearly no. Because the vertebrate family has

expanded and specialized, the functional out-
come of HIPK2 or NLK kinases on Wnt signal-

ing depends on how they alter the relative con-

centrations of activating and repressing TCF/
LEFs versus the available pool of b-catenin (So-

kol 2011). In fact, Wnt-NLK-TCF1 export pre-

dicts a very different outcome for normal colon
epithelia in which dnTCF1 is expressed (export

would lead toWnt target geneactivation), versus

colon cancer cells that express full-length TCF1
(export would reduce Wnt target expression)

(Najdi et al. 2009). Another important case in

point is the observation in C. elegans that ex-
porting the single TCF ortholog POP1 from the

nucleus leads to overall Wnt target gene activa-

tion. It may seem paradoxical that reduction
of TCF/POP1 concentrations in the nucleus

leads to target gene activation, but a recently

proposed model suggests that nuclear concen-
trations of TCFs are as important as nuclear

b-catenin concentrations for establishing an

optimalb-catenin:TCF ratio (Phillips and Kim-
ble 2009). Too much TCF might translate into

target gene repression rather than activation.
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Consistent with this, quantitative modeling of

Wnt signaling in Xenopus shows that sensing
fold changes inWnt signals works best by mon-

itoring the relative amounts of two interacting

factors (i.e., b-catenin and TCF) than by trying
to measure absolute levels of stabilized b-cate-

nin (Goentoro and Kirschner 2009). Thus, it

could be that Wnt signals regulate gene expres-
sion by dynamically controlling the concentra-

tions of TCF/LEFs in the nucleus as much as

they do b-catenin.

NON-TCF RELAYS: WNT/b-CATENIN
SIGNALING THROUGH NON-TCF/LEF
PROTEINS

As outlined thus far in this review, TCFs are
major nuclear recipients of Wnt/b-catenin sig-

naling. However, there are other transcription

factors that can bind b-catenin and activate
transcription. These include type I and type II

nuclear receptors (Mulholland et al. 2005; Beil-

deck et al. 2010), several members of the SOX
family (Kormish et al. 2010), FOXO proteins

(Essers et al. 2005; Almeida et al. 2007), the

homeodomain proteins Prop1 and PitX2 (Kio-
ussi et al. 2002; Olson et al. 2006), hypoxia-in-

ducible factor 1a (HIF1a) (Kaidi et al. 2007),

and the bHLH protein MyoD (Kim et al. 2008).
Here we summarize some of this work, to high-

light general questions regarding non-TCF pro-

teins and their role inWnt/b-catenin transcrip-
tion and biology.

One well-studied example of b-catenin in-

teracting with a nuclear receptor is the androgen
receptor (AR). The ligand-binding domain of

AR binds directly to the Arm repeats of b-cate-

nin (Mulholland et al. 2002; Yang et al. 2002;
Song et al. 2003). Androgen increases the

strength of the AR-b-catenin interaction (Tru-

ica et al. 2000; Song et al. 2003) and promotes
nuclear accumulation of the complex (Mulhol-

land et al. 2002; Pawlowski et al. 2002; Song et al.

2003). Consistent with these studies, Wnt/b-
catenin signaling promotes transcriptional acti-

vation by AR at the level of simple reporter con-

structs (Truica et al. 2000; Mulholland et al.
2002; Verras et al. 2004) and AR target genes

(Masiello et al. 2004; Cronauer et al. 2005;

Read et al. 2007). Both AR and b-catenin can

bind to TIF2/GRIP1, a p160 steroid receptor
coactivator and the three proteins may act to-

gether in a complex to activate transcription

(Song and Gelmann 2005).
The AR-b-catenin interaction likely plays a

crucial role in prostate cancer, in which AR is

required for progress of this cancer at all stages
(Culig et al. 2002; Niu et al. 2010). Mutations

stabilizing b-catenin are found in 5%–7%

of prostate cancers (Voeller et al. 1998; Chesire
et al. 2000) and other proteins that elevate nu-

clear b-catenin levels are also found at high fre-

quency in tumors (Rios-Doria et al. 2004; Chen
et al. 2006). Most prostate cancers initially re-

spond to a reduction in androgen levels, but

eventually convert to an androgen-independent
state (Culig et al. 2002; Niu et al. 2010). In the

mouse, expression of a stabilized form of b-cat-

enin can promote prostate hyperplasia pre- or
post-castration (Bierie et al. 2003; Yu et al. 2009)

and the physical association of AR and b-cate-

nin is stronger post-castration (Wang et al.
2008) or with an AR mutant that is hormone

insensitive (Masiello et al. 2004). Thus, b-cate-

nin may play an essential role in enabling AR to
operate independently in low androgen envi-

ronments (Schweizer et al. 2008).

b-catenin-binding proteins have the po-
tential to compete with TCF/LEF for limiting

amounts ofb-catenin. For example, overexpres-

sion of AR inhibits activation of the TCF/LEF
reporter TOPFLASH by b-catenin (Chesire and

Isaacs 2002; Pawlowski et al. 2002). The signifi-

cance of this competition is not clear for AR,
but has been proposed to be significant in the

case of HIF-1a (Kaidi et al. 2007). Hypoxia

(which increases HIF1a levels) reduces TCF/
LEF-b-catenin transcriptional activity, which

is correlated with cell-cycle exit of colorectal

cancer cells (Kaidi et al. 2007), and it also regu-
lates gene expression in a b-catenin-dependent

manner (Kaidi et al. 2007; Zhao et al. 2011).

However in some hypoxic stem cells, there ap-
pears to be sufficient b-catenin to interact with

both TCFs and HIF1a (Mazumdar et al. 2010).

In colorectal cancer cell lines, a positive-feed-
back loop occurs, in which HIF1a represses

APC transcription, elevating b-catenin protein
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levels, which promotes high levels of HIF1a

transcript and protein (Newton et al. 2010).
These data indicate a complex interaction be-

tween HIF1a, TCF/LEFs, and b-catenin, which
may differ between cell types.

Given the large number of transcription

factors that can bind and recruit b-catenin to

regulatory sequences, how much of Wnt/b-
catenin is mediated through TCFs in vertebrate

systems? To answer this question, mutations

that specifically abolish b-catenin binding will
have to be examined in vivo. For example, the

vitamin D receptor (VDR) a type II nuclear re-

ceptor, can bind b-catenin independent of
vitamin D to promote transcription (Palmer

et al. 2001; Malloy et al. 2002; Shah et al. 2006).

Recessive mutations of the human VDR gene
result inhereditaryvitaminD-dependent rickets

(HVDDR) and are usually accompanied by epi-

dermal defects such as alopecia, i.e., hair loss
(Malloy and Feldman 2011). However, some

VDR alleles display HVDDR without alopecia

(Malloy et al. 2002; Malloy and Feldman 2011).
Characterization of one such mutation showed

that it lacked the ability to respond to vitamin

D (Malloy et al. 2002) but still retained the abil-
ity to be activated by b-catenin (Shah et al.

2006; Palmer et al. 2008). Given recent data

thatb-catenin andVDRact together topromote
hair follicle development (Palmer et al. 2008;

Baker et al. 2010), these data suggest that VDR

acts in bones primarily through vitamin D and
through b-catenin in hair formation. Although

this model requires further testing, it provides

a blueprint for dissecting the importance of
b-catenin interactions for other transcription

factors.

CONCLUDING REMARKS

The transcription regulatory actions of b-cate-
nin are much more varied and complex than

originally assumed when TCF/LEFs were first

identified as a b-catenin partner. This review
has highlighted how b-catenin participates in

the switch-in/switch-out of different TCFs at
target genes, how it recruits varied andmultiple
histone modifying complexes, and how it inter-

acts with other types of transcription factors.

Likewise, we have reviewed how the transcrip-

tion regulatory actions of TCF/LEFs are equally
complex and powerful. Genomes with multi-

ple TCF/LEFs have evolved individual family

members with specialized functions, a feature
that might explain how some TCFs can act as

growth suppressors or tumor suppressors and

how some TCFs access selective subsets of target
genes. Multiple isoforms from alternative pro-

moters and alternative splicing create many

of these specialized functions. Defining the reg-
ulatory networks that control isoform expres-

sion is not only important for understanding

how each TCF/LEF gene functions in stem cells
and their differentiating progeny, but it is im-

portant for understanding how these isoforms

participate (or oppose) disease states such as
diabetes or cancer. Tools that detect specific

TCF/LEF forms, and mutations that selectively

remove one form or another will be critical for
this understanding.
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