
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003 1

TCG: A Transitive Closure Graph-Based
Representation for General Floorplans

Jai-Ming Lin and Yao-Wen Chang, Member, IEEE

Abstract—In this paper, we introduce the concept of the P*-admissible
representation and propose a P*-admissible, transitive closure graph-based
representation for general floorplans, calledTCG, and show its superior
properties. TCG combines the advantages of popular representations such
as sequence pair, BSG, and B*-tree. Like sequence pair and BSG, but un-
like O-tree, B*-tree, and CBL, TCG is P*-admissible. Like B*-tree, but
unlike sequence pair, BSG, O-tree, and CBL, TCG does not need to con-
struct additional constraint graphs for the cost evaluation during packing,
implying faster runtime. Further, TCG supports incremental update dur-
ing operations and keeps the information of boundary modules as well as
the shapes and the relative positions of modules in the representation. More
importantly, the geometric relation among modules is transparent not only
to the TCG representation but also to itsoperations, facilitating the conver-
gence to a desired solution. All these properties make TCG an effective and
flexible representation for handling the general floorplan/placement design
problems with various constraints. Experimental results show the promise
of TCG.

Keywords: Floorplanning, Layout, Physical Design, Tran-
sitive Closure Graph

I. INTRODUCTION

As technology advances, circuit sizes and design complexity
in modern VLSI design are increasing rapidly. To handle the
design complexity, hierarchical design and reuse of IP modules
become popular, which makes floorplanning/placement much
more important than ever. The major objective of floorplan-
ning/placement is to allocate the modules of a circuit into a chip
to optimize some design metric such as area and timing. The
realization of floorplanning/placement relies on a representation
which describes geometric relations among modules. The rep-
resentation has a great impact on the feasibility and complex-
ity of floorplan designs. Thus, it is of particular significance
to develop an efficient, effective, and flexible representation for
floorplan/placement designs.

A. Previous Work

There exist a few floorplan representations in the literature,
e.g., [1], [2], [3], [7], [8], [9], [10], [11], [12], [13], [17], [18].
We shall first review these representations and the types of floor-
plans that they can represent. A slicing floorplan is one of the
simplest type of floorplans. A slicing structure can be obtained
by recursively cutting rectangles horizontally or vertically into
smaller rectangles; it is a non-slicing structure, otherwise. Ot-
ten first proposed a binary-tree representation for slicing floor-
plans [11]. Wong and Liu later in [18] presented a normal-

Manuscript received Sep 7, 2002; revised Feb 28, 2003. This paper was rec-
ommended by Editor-in-Chief Nagarajan Ranganathan.

This work was supported in part by the National Science Council of Taiwan
ROC by Grant No. NSC-89-2215-E-009-117.

Jai-Ming Lin is with Realtek Semiconductor Corp. in Hsinchu Science-Based
Industrial Park, Hsinchu 300, Taiwan. E-mail: gis87808@cis.nctu.edu.tw.

Yao-Wen Chang is with the Department of Electrical Engineering & the Grad-
uate Institute of Electronics Engineering, National Taiwan University, Taipei
106, Taiwan. E-mail: ywchang@cc.ee.ntu.edu.tw.

ized Polish expression (NPE for short) to represent a slicing
floorplan. The slicing structure has several advantages such as
smaller solution space, implying faster runtime for floorplan
design. However, most of real designs are non-slicing. Re-
searchers in [12] and [17] attempted to extend the tree repre-
sentation to the non-slicing floorplans with special topologies,
e.g., the wheel structure.

For the non-slicing floorplan structure, there exist several
well-known “old” graph-based representations. Ohtsuki in [9]
used a pair of horizontal and vertical directed acyclic graphs,
named polar graphs, to represent a topological placement.
Other representations such as adjacency graphs, and channel
intersection graph are also widely used [14]. Recently, Onodera
et al. in [10] used a branch-and-bound method to exhaustively
search an optimal solution for module placement. Since the
method is quite time-consuming, the size of tractable modules
is limited.

The non-slicing floorplan representations have attracted much
attention in the literature recently, e.g., sequence pair [7],
bounded sliceline grid [8], O-tree [2], B*-tree [1], and corner
block list [3]. Murata et al. in [7] used two sequences �������
of module names, called sequence pair (SP for short), to repre-
sent the geometric relations among modules. They defined the
P-admissible solution space, which satisfies the following four
requirements [7]:
(1) the solution space is finite,

(2) every solution is feasible,
(3) packing and cost evaluation can be performed in polynomial
time, and
(4) the best evaluated packing in the space corresponds to an
optimal placement.
(By this definition, the slicing tree is not a P-admissible rep-
resentation since many optimal floorplans are non-slicing.) SP
is P-admissible and is flexible for general floorplan/placement
design; however, it is harder to handle the floorplan/placement
problems with position constraints, e.g., boundary modules, pre-
placed modules, range constraints, etc. Further, two constraint
graphs need to be constructed for cost evaluation for each per-
turbation, consuming a significantly larger running time. Tang
and Wong [16] recently presented an efficient packing scheme,
called FAST-SP, to evaluate the cost of a sequence pair by com-
puting its common subsequence. Nakatake et al. in [8] pro-
posed a flexible bounded sliceline grid representation, called
BSG. BSG is also P-admissible. However, BSG itself has many
redundancies since there could be multiple representations cor-
responding to one packing, implying a larger solution space and
thus longer search time to find an optimal solution.

For tree-based methods, Guo et al. in [2] proposed the O-
tree representation for a left and bottom compacted placement.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003

(A similar idea to the O-tree was independently developed by
Takahashi in [15].) In an O-tree, a node denotes a module and
an edge denotes the horizontal adjacency relation of two mod-
ules. The O-tree can pack modules in linear time, but it needs
to perform a sequence of operations to make a placement com-
pacted to the left and the bottom to obtain a feasible O-tree.
Such an operation may require an overall quadratic time com-
plexity since it may need a linear number of transformations
between O-trees and their corresponding placements (constraint
graphs), and each of the transformation takes linear time. Fur-
ther, the transformation may result in a mismatch between the
original representation and its placement, harming the solution
structure. Chang et al. recently in [1] presented a binary tree-
based representation for a left and bottom compacted placement,
called B*-tree, and showed its superior properties for operations.
In a B*-tree, a node denotes a module, the left child of a node
represents the lowest adjacent module on the right, and the right
child represents the first module above and with the same � co-
ordinate. Similar to O-tree, the representation could be changed
after packing since the space intended for placing a module may
be occupied by a previously placed module. Therefore, given
an O-tree or a B*-tree, it may not be feasible to find a place-
ment corresponding to its original representation. Since the tree-
based representations can represent only compacted floorplans,
they induce smaller solution spaces and have lower complex-
ity for a single packing operation than SP and BSG. However,
they might lead to only suboptimal solutions for some cost met-
ric (such as wirelength) since it is very likely that the optimum
ones occur when modules are not compacted. Fig 1(a) shows an
uncompacted placement that cannot be represented by any O-
tree (since module � is not compacted to module �). Therefore,
the O-tree representation will fail to find the optimum solution
for wirelength optimization if modules � and � are strongly con-
nected.

d

c

(a) (b)
Ch Cv

bn

na

nc

nd
na

bn nc

nda

b

Fig. 1. (a) An uncompacted placement that cannot be represented by any O-tree.
(b) The TCG representation for the placement shown in (a).

Recently, Hong et al. in [3] proposed a corner block list (CBL)
representation for mosaic floorplans. A CBL consists of a 3-
tuple ����� � �, where � is a sequence of corner modules, � is
a list of module orientations (0 for a vertical � -junction at the
corner, and 1 for a horizontal one), and � is a list of � -junction
information. In a mosaic floorplan, each region must contain
exactly one module. Obviously, such restriction makes its solu-
tion space smaller than SP and BSG. However, CBL is not P-
admissible since it cannot guarantee a feasible solution in each
perturbation, and many infeasible solutions may be generated

before a feasible solution is found.

B. Our Contribution

We propose in this paper a transitive closure graph-based rep-
resentation for general non-slicing floorplans, named TCG, and
show its superior properties. TCG uses a horizontal and a ver-
tical transitive closure graphs, 	� and 	�, to describe the hori-
zontal and vertical relations for each pair of modules. In the 	�

(�) of Fig 1(b), for example, an edge from module � to module

 represents that � is left to (below)
. (We will give a formal
definition on the graphs later.) TCG is the first representation
that can perturb on (non-tree) graphs directly and guarantee a
feasible solution in each perturbation.

To differentiate the properties of TCG from other existing
representations, we extend in this paper the concept of the P-
admissible representation to that of the P*-admissible one by
adding the following condition:
(5) the geometric relation between each pair of modules is de-
fined in the representation.
The fifth condition facilitates the handling of the floor-
plan/placement design problems with additional requirements
such as module sizing and position constraints (e.g., boundary
constraints, symmetry constraints, etc). The representation after
packing corresponds to the original one if it satisfies the condi-
tion. It leads to a better solution (neighborhood) structure, facil-
itating the search for an optimum solution. The P*-admissible
representation corresponds to a general topological modeling of
modules, and thus contains a complete structure for searching
for an optimum floorplan/placement solution. For example, for
the placement of Fig 1(a) that cannot be represented by any O-
tree, it can easily be represented by the TCG (a P*-admissible
representation) shown in Fig 1(b). Due to the elegant properties,
it is desirable to develop an effective and flexible P*-admissible
representation.

Among the existing popular representations, SP, BSG, and
TCG are P*-admissible while slicing trees, NPE, O-tree, B*-
tree, and CBL are not. Slicing trees, NPE, and CBL are
not P-admissible and thus non-P*-admissible. The tree-based
representations violates both the fifth condition of the P*-
admissibility. The insufficiency (due to the oversimplified rep-
resentations) incurs the following drawbacks:
� Some geometric relations between modules cannot be ob-
tained from the O-tree and the B*-tree representations directly,
making O-trees and B*-trees harder to handle the flooprlan de-
sign problems with the aforementioned additional requirements.
Fig 2(a) shows a compacted placement with five modules �, �, �,
�, and � whose widths and heights are (6, 4), (4, 6), (7, 4), (6, 3)
and (3, 2), respectively. Fig 2(b) and (c) show the O-tree and the
B*-tree corresponding to the placement of Fig 2(a), respectively.
As illustrated in the figures, we cannot derive any geometric re-
lation between two modules from the O-tree and B*-tree unless
the two corresponding nodes are siblings or on the same path.
For example, even though module � is adjacent to module � in
the placement, we cannot derive any geometric relation from the
representations directly until packing. Further, the geometric re-
lation between two modules for the same O-tree or B*-tree may
change if the dimensions of modules are changed. For example,
if the dimension of module � is changed to ��� ��, module � is

LIN AND CHANG: TCG: A TRANSITIVE CLOSURE GRAPH-BASED REPRESENTATION FOR GENERAL FLOORPLANS 3

right to module � after packing as shown in Fig 2(d), instead
of being above � as in Fig 2(a) (for the same O-tree shown in
Fig 2(b)). The mismatch would inevitably complicate the floor-
plan design process.

na

nb

ne

nd

nc

(b)

na

nb

ne

nd

nc

1
0

0

0

0

0
1

1
1

1

root

0: down traverse
1: up traverse

(a)

b
a

c

e

d

b
a d

c

e

(c)

(d)

na

nb

ne

nd

nc

root

(e)

Fig. 2. (a) A placement. (b) The corresponding O-tree. (c) The corresponding
B*-tree. (d) The placement after packing if the dimension of module � is
changed to (1, 6). (e) The O-tree derived from the placement of (d).

Also, for module sizing, it is better to keep the geometric rela-
tion between each pair of modules in the representation to pre-
vent a re-sized module from overlapping with other modules.
Besides, it is harder to handle boundary and symmetry mod-
ules with the tree-based representations. For the O-tree shown
in Fig 2(b),
� seems to denote a right boundary module be-
cause there exists no node on its right side. However, module
� may not be a right boundary module in the final placement as
shown in Fig 2(d). To deal with symmetry constraints, several
pairs of modules have to be placed symmetrically with respect
to a common axis, and the � or
 coordinates of the modules in
each pair must be the same. It is desirable to keep the geometric
relation between modules in the representation to facilitate the
floorplan/placement design with symmetry modules.
� Due to their compaction operations, the O-tree or the B*-tree
after packing may not correspond to the original one, which
may harm the solution (neighborhood) structure and thus also
the convergence to an optimum solution. After packing, for ex-
ample, the initial O-tree of Fig 2(b) results in the placement
of Fig 2(d) which corresponds to a different O-tree shown in
Fig 2(e).

Despite of their smaller solution spaces and cheaper single pack-
ing complexity, the aforementioned drawbacks make non-P*-
admissible representations less flexible and effective in handling
practical floorplan/placement design problems which need to
consider various requirements.

In contrast, TCG combines the advantages of SP, BSG, and
B*-tree. Like SP and BSG, but unlike O-tree, B*-tree, and CBL,
TCG satisfies the five conditions of P*-admissibility:

(1) its solution space is ����
� and thus finite, where � is the

number of modules,
(2) every solution is feasible (note that the CBL representation
does not guarantee this property),

(3) packing and cost evaluation can be performed in ��� ��
time,
(4) the best evaluated packing in the solution space corresponds
to an optimum placement,
(5) the geometric relation between each pair of modules is de-
fined in the TCG representation.

The solution space is the same as SP but the memory usage is
smaller since we do not need to maintain a sequence pair. Like
B*-tree, but unlike SP, BSG, O-tree, and CBL, TCG does not
need to construct additional constraint graphs for the cost eval-
uation during packing, implying faster running time. Further,
TCG supports incremental update during operations, and keeps
the information of boundary modules as well as the shapes and
the relative positions of modules in the representation. More
importantly, the geometric relation among modules is transpar-
ent not only to the TCG representation but also to its operations
(i.e., the effect of an operation on the change of the geometric re-
lation is known before packing), facilitating faster convergence
to a desired solution and placement with position constraints.
For example, as illustrated in Fig 1, the nodes with zero in-
degree (out-degree) in the horizontal constraint graph 	 � corre-
spond to the left (right) boundary modules in the placement, and
the nodes with zero in-degree (out-degree) in the vertical con-
straint graph 	� correspond to the bottom (top) boundary mod-
ules. The transparency of the geometric relation among modules
distinguishes TCG from other representations in handling place-
ment with position constraints. All these properties make TCG
an effective and flexible representation for handling the gen-
eral floorplan/placement design problems with various require-
ments. Experimental results show the promise of TCG. For area
optimization, TCG achieved average improvements of 2.22%,
2.04%, 1.18%, and 3.54%, compared to O-tree, enhanced O-
tree, B*-tree, and CBL, respectively. Optimizing wirelength,
TCG obtained respective average improvements of 3.56% and
3.18%, compared to O-tree and enhanced O-tree. (Note that B*-
tree and CBL do not report the results for optimizing wirelength
alone.) The runtime requirements of TCG are much smaller than
O-tree and B*-tree, and are comparable to enhanced O-tree.

The remainder of this paper is organized as follows. Section II
formulates the floorplan/placement design problem. Section III
presents the procedures to derive a TCG from a placement and
construct a placement from a TCG. Section IV introduces the
operations to perturb a TCG. Experimental results are reported
in Section V. Finally, we conclude our work and discuss future
research directions in Section VI.

II. PROBLEM DEFINITION

Let � � ���� ��� ���� ��� be a set of � rectangular modules
whose width, height, and area are denoted by � �, ��, and ��,
� � � � �. Each module is free to rotate. Let ����
�� denote
the coordinate of the bottom-left corner of rectangle � �, � �
� � �, on a chip. A placement � is an assignment of �� ��
��
for each ��, � � � � �, such that no two modules overlap.
The goal of floorplanning/placement is to optimize a predefined
cost metric such as a combination of the area (i.e., the minimum
bounding rectangle of �) and wirelength (i.e., the summation of
half bounding box of interconnections) induced by a placement.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003

III. TRANSITIVE CLOSURE GRAPH (TCG)

The transitive closure of a directed acyclic graph� is defined
as the graph �� � ������, where � � ��(
�,
�): there is a path
from node
� to node
� in ��. The Transitive Closure Graph
(TCG) representation describes the geometric relations among
modules based on two graphs, namely a horizontal transitive
closure graph 	� and a vertical transitive closure graph 	� . In
this section, we first introduce the procedure for constructing	�

and 	� from a placement. Then, we describe how to pack mod-
ules from TCG. In the last subsection, we discuss the properties
and the solution space of TCG.

A. From a placement to its TCG

For two non-overlapped modules � � and �� , �� is said to be
horizontally (vertically) related to �� , denoted by �� � �� (�� �
��), if �� is on the left (bottom) side of �� and their projections on
the
 (�) axis overlap. (Note that two modules cannot have both
horizontal and vertical relations unless they overlap.) For two
non-overlapped modules �� and �� , �� is said to be diagonally
related to �� if �� is on the left side of �� and their projections
on the � and the
 axes do not overlap. In a placement, every
two modules must bear one of the three relations: horizontal
relation, vertical relation, and diagonal relation. To simplify the
operations on geometric relations, we treat a diagonal relation
for modules �� and �� as a horizontal one, unless there exists a
chain of vertical relations from �� (��), followed by the modules
enclosed with the rectangle defined by the two closest corners
of �� and �� , and finally to �� (��), for which we make �� � ��
(�� � ��).

Fig 3(a) shows a placement with five modules �, �, �, �, and
� whose widths and heights are (6, 4), (4, 6), (7, 4), (6, 3) and
(3, 2), respectively. In Fig 3(a), � � �, � � �, and module �
is diagonally related to module �. There exists a chain of ver-
tical relations formed by modules �, �, and � between the two
modules � and � (i.e., � � � and � � �). Therefore, we make
� � �. Also, module � is diagonally related to module �. How-
ever, there dose not exist a chain of vertical relations between
modules � and �, and thus we make � � �.

TCG can be derived from a placement as follows. For each
module �� in a placement, we introduce a node
 � with the
weight being the width (height) in 	� (�). If �� � �� , we
construct a directed edge from node
 � to node
� (denoted by
(
�,
�)) in 	�. Similarly, we construct a directed edge (
�,
�)
in 	� if �� � �� . Given a placement with � modules, we need
to perform the above process ��� � ���� times to capture all
the geometric relations among modules (i.e., 	� and 	� have
���� ���� edges in total).

As shown in Fig 3(b), for each module � �, � � ��, �, �, �,
��, we introduce a node
� in 	� and also in 	�. For each
node
� in 	� (�), � � ��, �, �, �, ��, we associate the node
with a weight equal to the width (height) of the corresponding
module ��. Since �� � ��, we construct a directed edge (
�,

�) in 	�. Similarly, we construct a directed edge (
�,
�) in
	� since �� � ��. This process is repeated until all geometric
relations among modules are defined. As shown in Fig 3(b),
each transitive closure graph has five nodes, and there are totally
10 edges in 	� and 	� (four in 	� and six in 	��. From the

TCG representation shown in Fig 3(b), we know that module
� is above module � because there exists a directed edge (
 �,

) in 	� ; notice that this relation cannot be directly derived
from the O-tree and B*-tree shown in Fig 2. Further, we also
know directly from the TCG that module � is right to module �
while the relationship is not known to O-tree and B*-tree until
modules are placed. For boundary information, we know that
modules �, � and � (� and �) are on the left (right) boundary since
the in-degrees (out-degrees) of
�,
� and
	 (
� and

) are
zero in 	�. Similarly, it is easy to know from 	� that modules
� and � (� and �) are on the bottom (top) boundary. Therefore,
the floorplan/placement design with boundary constraints can
be handled easily by checking the degree of a node during each
perturbation.

(b)

ne nd

nc

nbna
na

nb

ne

nd

nc

CvCh
(a)

b
a

c

e

d

6

7

3

4

6

4 6

4

2 3

Fig. 3. (a) A placement in a chip. (b) TCG.

B. From a TCG to its placement

We have introduced how to derive a TCG from its placement
in the previous section. We now present the packing method for
a TCG.

Given a TCG, its corresponding placement can be obtained
in ����� time by performing a well-known longest path algo-
rithm [5] on the TCG, where � is the number of modules. To
facilitate the implementation of the longest path algorithm, we
augment the given two closure graphs as follows. (Note that the
TCG augmentation is performed only for packing. It will be
clear later that such augmentation is not needed for other oper-
ations such as solution perturbation.) We introduce two special
nodes with zero weights for each closure graph, the source
 �

and the sink
�, and construct an edge from
� to each node
with in-degree equal to zero, and also from each node with out-
degree equal to zero to
�. Fig 4 shows the augmented TCG for
the TCG shown in Fig 3(b).

Let ���
�� (���
��) be the length of the longest path from
�

to
� in the augmented 	� (�). ���
�� (���
��) can be deter-
mined by performing the single source longest path algorithm
on the augmented 	� (�) in ����� time, where � is number
of modules. The coordinate (��,
�) of a module �� is given by
(���
��, ���
��). Since the respective width and height of the
placement for the given TCG are ���
�� and ���
��, the area
of the placement is given by ���
�����
��.

C. Properties of TCG

Property 1: (TCG Feasibility Conditions) A feasible TCG
has the following three properties:
(1) 	� and 	� are acyclic.

LIN AND CHANG: TCG: A TRANSITIVE CLOSURE GRAPH-BASED REPRESENTATION FOR GENERAL FLOORPLANS 5

na
nb

ne

nd

nc0

6

7

3

4

6

ns
nt

ne

na
4 nb 6

nc4

2 nd3

nt

0 ns

(a) (b)

Fig. 4. Augmented TCG. (a) Augmented �� . (b) Augmented �� .

(2) Each pair of nodes must be connected by exactly one edge
either in 	� or in 	�.
(3) The transitive closure of 	� (�) is equal to 	� (�) itself.

Proof:
(1) For each pair of nodes, we construct a directed edge accord-
ing to the geometrical relation of two modules. Since a mod-
ule cannot be both left and right (below and above) to another
module in a placement, the resulting graphs 	� and 	� must be
acyclic.
(2) Given a placement with � modules, as mentioned earlier,
we construct ��� � ���� edges to capture all geometric rela-
tions among modules. Since there are also ��� � ���� pairs
of nodes and no multiple edges are allowed, each pair of nodes
would be connected by exactly one edge either in 	� or in 	� .
(3) To prove Property 3, we claim that � � � �
 (�� � �
) if
�� � �� and �� � �
 (�� � �� and �� � �
). Suppose �� � ��
and �� � �
, but we make �� � �
. This implies that all modules
��’s overlapped with the rectangle defined by the two closest
corners of �� and �
 have the geometric relations �� � �� and
�� � �
, which is a contradiction to our assumption that � � � ��
and �� � �
. Similarly, we claim that �� � �
 if �� � �� and
�� � �
.

Property 1 ensures that a module �� cannot be both left and
right to (below and above) another module � � in a placement.
Property 2 guarantees that no two modules overlap since each
pair of modules have exactly one of the horizontal or vertical
relation. Property 3 is used to eliminate redundant solutions.
It guarantees that if there exists a path from
� to
� in one
closure graph, the edge (
�,
�) must also appear in the same
closure graph. For example, there exist two edges (
 �,
�) and
(
� ,

) in 	�, which means that �� � �� and �� � �
, and thus
�� � �
. If the edge (
�,

) appears in 	� instead of in 	�,
�
 is not only left to �� but also above ��. The resulting area
of the corresponding placement must be larger than or equal to
that when the edge (
�,

) appears in 	�. Fig 5 illustrates
this phenomenon. In Fig 5(a), there exists a path from
� to
	
in ��, which consists of (
�,
�) and (
�,
). Thus, the edge
�
��
	� must also belong to 	� . If the edge (
�,
) appears in
	� instead of in 	� as shown in Fig 5(c), the resulting area of
the placement must be larger than or equal to the configuration
of Fig 5(a) and (b). Property 3 eliminates such a redundancy.

(b)(a)

b
a

c

e

d

b
a

c

e

d

(c) (d)

ne nd

nc

nbna
na

nb

ne

nd

nc

CvCh

3

7

6

6

4

4 6

4

2 3

ne nd

nc

nbna
na

nb

ne

nd

nc

CvCh

3

7

6

6

4

4 6

4

2 3

Fig. 5. Examples of the TCG feasibility. (a) A feasible TCG. (b) The placement
corresponding to the TCG shown in (a). (c) A non-TCG. (d) The placement
corresponding to the non-TCG shown in (c).

Based on the properties of TCG, we have the following theo-
rems.

Theorem 1: There exists a unique placement corresponding
to a TCG.

Proof: We first show that each TCG is feasible (i.e.,
there must exist a placement for each TCG), and then show the
uniqueness of the placement.

Property 1 avoids that a module is both left and right to (or
below and above) another module in the packing. Property 2
guarantees that no two modules overlap in the packing. Thus,
Properties 1 and 2 guarantee that there exists a placement for
each TCG. Given a TCG, the � and
 coordinates of each mod-
ule are determined by the respective longest paths in 	� and
	� , which are well-defined values in the TCG. Therefore, the
placement is unique.

Theorem 2: The size of the solution space for TCG is �����,
where � is the number of modules.

Proof: To show the size, we prove that there exists a one-
to-one correspondence between a TCG �	�� 	�� and a sequence
pair �������. Since there are ����

� such sequence pairs, the
theorem thus follows.

Let the fan-in (fan-out) of a node
 �, denoted by ����
��
(�����
��), be the nodes
�’s with edges �
� �
�� (�
��
��).
Given a TCG, we can transform it into a sequence �� by re-
peatedly extracting a node
� with ����
�� � 	 in 	� and
�����
�� � 	 in 	� , and then deleting the edges �
��
��’s
(�
� �
��’s) from 	� (�) until no node is left in 	� (�). Sim-
ilarly, we can transform a TCG into another sequence �� by
repeatedly extracting the node
� with ����
�� � 	 both in 	�

and 	�, and then deleting the edges �
��
��’s from both 	�

and 	� until no node is left in 	� and 	�. As the example
shown in Fig 3(a), we have �� ��
	�
��
��

�
� � and
�� ��
��
��
��
	�

 �.

We claim that there exists a unique sequence pair �������
corresponding to a TCG. Since the node
 � with ����
�� � 	 in

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003

	� and �����
�� � 	 (����
�� �) in 	� denotes the unique
module on the left and the top (bottom) boundaries of a place-
ment, such a unique node can be found in each iteration during
the transformation. By removing the node
 � and its incident
edges, we obtain a new TCG with fewer nodes. It is obvious
that there is also a unique module on the left-top (left-bottom)
corner in the placement corresponding to the new TCG. Repeat-
ing this process, we can transform a TCG into a unique sequence
pair �������.

Given a sequence pair �������, we can obtain a unique TCG
�	�� 	�� from the two constraint graphs induced from the se-
quence pair ������� by removing the source, the sink, and their
associated edges in the graphs. To claim that the two resulting
constraint graphs form a TCG, we shall prove that they satisfy
the three properties of TCG. We shall first review the constraint
graph construction for a sequence pair defined in [7]. Module
�� is left (right) to module �� (i.e, there exists an edge �
��
��
(�
��
��) in the horizontal constrain graph) if � is before (after)
� in both �� and ��. Module �� is below (above) module ��
(i.e, there exists an edge �
��
�� (�
��
��) in the vertical con-
strain graph) if � is before (after) � in ��, and � is before (after)
� in ��.
� Property 1: Suppose there exists a cycle �
��
�� � � � �
� �
in the horizontal constraint graph of a sequence pair. Then,
the corresponding �� and �� must be both in the sequence
� � � � � � � � � � � � � � �, contradicting to the fact that a module cannot
appear twice in a sequence. Similarly, there does not exist any
cycle in 	� .
� Property 2: For every pair of nodes
� and
�, there exists
a unique edge �
��
�� or �
��
�� in a horizontal or a vertical
constraint graph, depending on the relative positions of � and �
in �� and ��.
� Property 3: To show that the transitive closure of a horizontal
(vertical) constraint graph is equal to itself, we shall prove that
if there exists a path �
��
� �

 � in a constraint graph, the
edge �
��

� also exists in the graph. If there exists a path �

��
� �

 � in the horizontal (vertical) constraint graph of a
sequence pair, the sequence pair must be in this form �� � � � � � �
� � � � � � � �, � � � � � � � � � � � � � � �� (�� � � � � � � � � � � � � � �, � � � � � � �
� � � � � � � ��), which implies that the edge �
��

� also exists in
the same graph.
The theorem thus follows.

According to the above discussions, we conclude the follow-
ing theorem.

Theorem 3: TCG is P*-admissible.
We summarize in TABLE I the properties of several recently

published representations for non-slicing floorplans 1.

IV. FLOORPLANNING ALGORITHM

We develop a simulated annealing based algorithm [4] using
TCG for non-slicing floorplan design. Given an initial solution
represented by a TCG, the algorithm perturbs the TCG to ob-
tain a new TCG. To ensure the correctness of the new TCG, as
described in the previous section, the new TCG must satisfy the

�In [3], the authors claim that the solution space of CBL is�������������.
However, in the 3-tuple ��� �� 	 � of CBL, there should be �� combinations for
�, ���� combinations for�, and ����� combinations for 	 ; there its solution
space should be ��������

aforementioned three feasibility properties. To identify feasi-
ble TCG for perturbation, we introduce the concept of transitive
reduction edges of TCG in the following section.

A. Transitive Reduction Edges

An edge �
��
�� is said to be a reduction edge if there does
not exist another path from
� to
� , except the edge �
��
��
itself; otherwise, it is a closure edge. For example, in the 	�

of Fig 5(a), the edges �
��
��, �
��
��, �
��
	�, and �
��

�
are reduction edges while �
��
	� and �
��
	� are closure
ones since there exist respective paths �
��
��
	 � and
�
��
��
	 � from
� to
	 and from
� to
	.

Since TCG is formed by directed acyclic transitive closure
graphs, given an arbitrary node
 � in one transitive closure
graph, there exists at least one reduction edge �
 ��
��, where

� � �����
��. Here, we define the fan-in (fan-out) of a
node
�, denoted by ����
�� (�����
��), as the nodes
�’s with
edges �
� �
�� (�
��
��). For nodes

�
� � �����
��, the
edge �
��

� cannot be a reduction edge if

 � �����
��.
Hence, we remove those nodes in �����
�� that are fan-outs
of others. The edges between
� and the remaining nodes in
�����
�� are reduction edges. For the 	� shown in Fig 5(a),
�����
�� � �
��
	�. Since
	 belongs to �����
��, edge
�
��
	� is a closure edge while �
��
�� is a reduction one.

Lemma 1: Given an arbitrary node
 � in one transitive clo-
sure graph, for nodes

�
� � �����
��, the edge �
��

� can-
not be a reduction edge if

 � �����
��.

Proof: For nodes

�
� � �����
�� and

 � �����
��,
the edge �
��

� cannot be a reduction edge because there exists
at least a path �
��
��

 � from
� to

 except the edge
�
��

�.

Theorem 4: Given a node
� in 	� or 	� , it takes �����
time to find a reduction edge �
��
��, where � is the number of
modules.

Proof: Given a node
�, there exist at most � � � nodes
in �����
��. For the nodes in �����
��, we pick a node
� from
�����
�� and remove eack node

 � �����
�� from �����
��.
Since
� has at most � � � fan-outs, and each of the fan-outs
has at most �� � fan-outs, we need ����� to find a reduction
edge �
��
��.

B. Solution Perturbation

We apply the following four operations to perturb a TCG:
� Rotation: Rotate a module.
� Swap: Swap two nodes in both of 	� and 	� .
� Reverse: Reverse a reduction edge in 	� or 	� .
� Move: Move a reduction edge from one transitive closure
graph (� or 	�) to the other.
Rotation and Swap do not change the topology of a TCG while
Reverse and Move do. To maintain the properties of the TCG
after performing the Reverse and Move operations, we may need
to update the resulting graphs. We detail the four operations as
follows.

B.1 Rotation

To rotate a module ��, we only need to exchange the weights
of the corresponding node
 � in 	� and 	� . Fig 6(b) shows
the resulting 	�, 	� , and placement after rotating the module �

LIN AND CHANG: TCG: A TRANSITIVE CLOSURE GRAPH-BASED REPRESENTATION FOR GENERAL FLOORPLANS 7

Representation SP [7] FAST-SP [16] BSG [8] O-tree [2] B*-tree [1] CBL [3] TCG

Type of floorplans that general general general compacted mosaic general
can be represented
Is P*-admissible? Yes Yes Yes No No Yes
Solution space ����� ����� ��	������ ������������� �������� �����

Every solution Yes Yes Yes Resulting packing may be different No Yes
is feasible? from the original representation
Runtime for packing Amortized

����� ��� 	
 	
�� ����� ���� ���� �����

Best evaluated Yes Yes Yes True for are optimization, No Yes
packing corresp. to but not for wirelength
optimal placement? optimization
Geometric relation Yes Yes Yes No No Yes
between any two
modules is defined?
Need module Yes Yes No Yes No Yes No
sequence encoding?
Construct additional Yes No Yes Yes No Yes No
constraint graphs
for packing?
Evaluate cost directly No No No No Yes No Yes
on representation?
Geometric relation is No No No No No No Yes
transparent to its
operations?
Boundary information No No No No No No Yes
on representation?

TABLE I

PROPERTIES OF REPRESENTATIONS. HERE, � IS THE NUMBER OF MODULES IN A PLACEMENT.

shown in Fig 6(a). Notice that the weights associated with the
node

 in 	� and 	� have been exchanged.

Theorem 5: TCG is closed under the rotation operation, and
such an operation takes ���� time.

Proof: We do not change a TCG for the Rotation opera-
tion, and thus the resulting graphs are still a TCG. It is obvious
that exchanging the weights of a node in 	� and 	� takes ����
time.

B.2 Swap

To swap two nodes
� and
� , we only need to exchange two
nodes in both 	� and 	� . Fig 6(c) shows the resulting 	�, 	�,
and placement after swapping the nodes
� and
� shown in
Fig 6(b). Notice that the nodes
� and
� in both 	� and 	�

have been exchanged.

Theorem 6: TCG is closed under the swap operation, and
such an operation takes O(1) time.

Proof: Since we only exchange two nodes in both 	�

and 	� without changing the topology of a TCG for the Swap
operation, the resulting graphs are still a TCG. Exchanging the
corresponding pointers of two nodes in both 	� and 	� takes
���� time.

B.3 Reverse

The Reverse operation reverses the direction of a reduction
edge (
�,
�) in a transitive closure graph, which corresponds
to changing the geometric relation of the two modules � � and
�� . For two modules �� and �� , �� � �� (�� � ��) if there exists
a reduction edge (
�,
�) in 	� (�); after reversing the edge
�
��
��, we have the new geometric relation �� � �� (�� � ��).
Therefore, the geometric relation among modules is transparent
not only to the TCG representation but also to the Reverse oper-
ation (i.e., the effect of such an operation on the change of the
geometric relation is known before packing); this property can
facilitate the convergence to a desired solution.

To reverse a reduction edge (
�,
�) in a transitive closure
graph, we first delete the edge from the graph, and then add the
edge (
� ,
�) to the graph. For each node

 � ����
��

�
�� and
� � �����
��
 �
�� in the new graph, we shall
check whether the edge �

�
�� exists in the new graph. If the
graph contains the edge, we do nothing; otherwise, we need to
add the edge to the graph and delete the corresponding edges
�

�
�� (or �
��

�) in the other transitive closure graph, if any,
to maintain the properties of the TCG.

Fig 6(d) shows the resulting 	�, 	� , and placement after re-
versing the reduction edge �
��
	� of the 	� shown in Fig 6(c).
In the 	� of Fig 6(d), ����
	�
 �
	� � �
��
��
	� and

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003

ne nd

nc

nbna
na

nb

ne

nd

nc

CvCh

b
a

c

e

d

6

7

3

4

3

4

4
6

na

nb

ne

nd

nc

Ch

3

7

6

4

6

ne nd

nc

nbna Cv

4 6

4

2 3

b
a

c

e

d

ne nd

nc

nb na

na

nb

ne

nd

nc

CvCh

b
a

c

e

d
6

4 6 4

7

3

3

4

2 6

b
a

c

e d

ne

ndnc

nb nav

2

6

46

4

C

na

nb

ne

nd

nc

h

4

7

3
3

6

C

(b) rotate module d

(c) swap na nb,

(d) reverse ()n ,c ne

ne

ndnc

nb na

b
a

c

e
d

v

6

2

4
C

4 6

na

nb

ne

nd

nc

h

4

7

3
3

6

C

(e) ()n , nemove b

62
(a) initial configuration of TCGs

Fig. 6. Four types of perturbation. (a) The initial TCG (�� and ��) and
placement. (b) The resulting TCG and placement after rotating the module

 shown in (a). (c) The resulting TCG and placement after swapping the
nodes �� and �� shown in (b). (d) The resulting TCG and placement after
reversing the reduction edge ���� ��� shown in (c). (e) The resulting TCG
and placement after moving the reduction edge ���� ��� from the �� of (d)
to ��.

�����
��
 �
�� � �
��. For each node

 � ����
	�
 �
	�
and
� � �����
��
 �
��, we check whether the edge �

�
��
exists. Since the edge �
	�
�� was just added to 	� and the
edges (
�,
�) and �
��
�� already exist in 	� of Fig 6(c), we
do not need to add the three edges to 	� . Neither do we need to
update the 	� of Fig 6(c). Notice that by reversing the reduction
edge (
�,
) in the 	� , we transform the relation �� � �	 into
�	 � �� in the resulting placement of Fig 6(d).

To maintain the properties of a TCG, we can only reverse a
reduction edge. For example, if we reverse a closure edge (
 �,

) associated with the two reduction edges (
�,
�) and (
� ,

), a cycle �
��
� �

�
� � is formed, and thus the resulting
graphs are no longer a TCG. Further, for each edge introduced
in a transitive closure graph, we remove its corresponding edge
from the other graph. Therefore, there is always exactly one
relation between each pair of modules.

Theorem 7: TCG is closed under the reverse operation, and
such an operation takes ����� time, where � is the number of
modules in the placement.

Proof: We first show that the resulting graphs 	� and 	�

of a TCG satisfy the three properties of TCG after performing
the Reverse operation.

Without loss of generality, we focus on the case for reversing
a reduction edge (
�,
�) in 	�. For Property 1, suppose that
the new 	� is not acyclic after the Reverse operation. Then,
there must exist a path from
� to
� in 	� before the operation,
implying that (
�,
�) is a closure edge, which is a contradic-
tion. The new 	� must also be acyclic since we do not add any
edge into 	� during the operation. For Property 2, each pair of
nodes must be connected by exactly one edge either in the new
	� or in the new 	� after the operation because we delete the
edge (
�,
�) from 	� after adding the edge into 	�. For Prop-
erty 3, suppose that the new 	� is not a transitive closure of it-
self. Then, there exists a path �
�� � � � �
� �
�� � � � �
� � in the
new 	�, but the 	� does not contain the closure edge �
��
��.
During the operation, for each node

 � ����
��
 �
�� and

� � �����
��
 �
�� in 	�, we add the edges �

�
��’s to the
new 	� and delete them from 	�. Therefore, at least one of the
edges �
��
�� and �
��
�� does not exist in the original 	�;
otherwise, we would have added the closure edge �
��
�� into
the new 	� during the Reverse operation. This implies that the
original	� is not a transitive closure graph, contradicting to our
assumption. It is clear that the deleted edges in 	� are the clo-
sure edges of the new 	�, which cannot be the closure edges in
	� . Therefore, the new 	� is still a transitive closure graph of
itself.

The time complexity is dominated by checking whether the
edges �

�
��’s (

 � ����
��
 �
�� and
� � �����
��

�
��) exist in the new graph and by inserting and deleting the
corresponding edges. Since there are at most ����

’s and
����
�’s, the operation takes ����� time in total.

B.4 Move

The Move operation moves a reduction edge �
 ��
�� in
a transitive closure graph to the other, which corresponds to
switching the geometric relation of the two modules � � and ��
between a horizontal relation and a vertical one. For two mod-
ules �� and �� , �� � �� (�� � ��) if there exists a reduction edge

LIN AND CHANG: TCG: A TRANSITIVE CLOSURE GRAPH-BASED REPRESENTATION FOR GENERAL FLOORPLANS 9

(
�,
�) in 	� (�); after moving the edge �
��
�� to 	� (�),
we have the new geometric relation �� � �� (�� � ��). There-
fore, the geometric relation among modules is also transparent
to the Move operation.

To move a reduction edge (
�,
�) from a transitive closure
graph � to the other �� in a TCG, we first delete the edge from
� and add it to ��. Similar to the Reverse operation, for each
node

 � ����
��
 �
�� and
� � �����
��
 �
��, we shall
check whether the edge �

�
�� exists in ��. If �� contains the
edge, we do nothing; otherwise, we need to add the edge to � �

and delete the corresponding edge �

�
�� (or �
��

�) in �, if
any, to maintain the properties of the TCG.

Fig 6(e) shows the resulting 	�, 	�, and placement after
moving the reduction edge �
��
	� in the 	� of Fig 6(d) to
	�. In the 	� shown in Fig 6(e), ����
��
 �
�� � �
�� and
�����
	�
 �
	� � �

�
	�. For each node

 � ����
��

�
�� and
� � �����
��
 �
��, we check whether the edge
�

�
�) exists in ��. Since the edge �
��
	� was just added to
	� and the edge (
�,

) already exists in 	� of Fig 6(d), we
need to do nothing (except moving the reduction edge �
 ��
	�
from 	� to 	�). Neither do we need to update 	� (except re-
moving the edge �
��
	�). Notice that by moving the reduction
edge (
�,
) from 	� to 	�, we transform the relation �� � �	
into �� � �	 in the resulting placement shown in Fig 6(e).

To maintain the properties of a TCG, we can only move a re-
duction edge. If we move a closure edge (
 �,

) associated
with the two reduction edges (
�,
�) and (
� ,

) in one transi-
tive closure graph to the other, then there exist a path from
 � to

 in the two graphs, implying that �� � �
 and �� � �
, which
gives a redundant solution. Further, for each edge introduced
in a transitive closure graph, we remove its corresponding edge
from the other graph. Therefore, there is always exactly one
relation between each pair of modules.

Theorem 8: TCG is closed under the move operation, and
such an operation takes ����� time, where � is the number
of modules in the placement.

Proof: We first show that the resulting graphs 	� and 	�

of a TCG satisfy the three properties of TCG after performing
the Move operation.

Without loss of generality, we focus on the case for moving a
reduction edge (
�,
�) from 	� to 	� . For Property 1, suppose
that the resulting 	� is not acyclic after we move a reduction
edge (
�,
�) from 	� to 	� . There must exist a path from
�

to
� in the original 	�. This implies that the edge �
� �
�� is
also in the original 	� since 	� is a transitive closure graph.
This is a contradiction since (
�,
�) and �
� �
�� cannot both
exist in the original TCG (Property 2). Therefore, the new 	 �

must be acyclic. The new 	� must also be acyclic since we
do not add any edge into the original 	�. For Property 2, each
pair of nodes must be connected by exactly one edge either in
the new 	� or in the new 	� after the operation because the
corresponding edge will be deleted from 	� after the edge (
�,

�) is added to 	� . For Property 3, suppose that the new 	�

is not a transitive closure of itself. Then, there exists a path
�
�� � � � �
��
� � � � � �
� � in the new 	� , but the 	� does
not contain the closure edge �
��
��. During the operation, for
each node

 � ����
��
 �
�� and
� � �����
��
 �
��
in 	� , we add the edges �

�
��’s to the new 	� and delete

Circuit #Modules #I/O pads #Nets #Pins
apte 9 73 97 214

xerox 10 107 203 696
hp 11 43 83 264

ami33 33 42 123 480
ami49 49 24 408 931

TABLE II

THE FIVE MCNC BENCHMARK CIRCUITS.

them from 	�. Therefore, at least one of the edges �
��
�� and
�
� �
�� does not exist in the original 	�; otherwise, we would
have added the closure edge �
��
�� into the new 	� during
the Move operation. This implies that the original 	� is not a
transitive closure graph, contradicting to our assumption. It is
clear that the deleted edges of 	� are the closure edges of the
new 	� , which cannot be the closure edges in 	�. Therefore,
the new 	� is still a transitive closure graph of itself.

Similar to the arguments in the proof of Theorem 7, the oper-
ation takes ����� time in total.

V. EXPERIMENTAL RESULTS

Based on a simulated annealing method [4], we imple-
mented the TCG representation in the C++ programming
language on a 433 MHz SUN Sparc Ultra-60 workstation
with 1 GB memory. The TCG package is available at
http://cc.ee.ntu.edu.tw/�ywchang/research.html. We compared
TCG with O-tree [2], B*-tree [1], enhanced O-tree [13], and
CBL [3] based on the five MCNC benchmark circuits listed in
TABLE II. Columns 2, 3, 4, and 5 of TABLE II list the respec-
tive numbers of modules, I/O pads, nets, and pins of the five
circuits.

The experiments consist of three parts: area optimization,
wirelength optimization, and simultaneous area and wirelength
optimization. The area of a placement is measured by that of the
minimum bounding box enclosing the placement. The area and
runtime comparisons among O-tree [2], B*-tree [1], enhanced
O-tree [13], CBL [3], and TCG are listed in TABLE III. As
shown in TABLE III, TCG achieves average improvements of
2.22%, 1.18%, 2.04%, and 3.54% in area utilization compared
to O-tree, B*-tree, enhanced O-tree, and CBL, respectively. The
runtimes are significantly smaller than O-tree and B*-tree, and
comparable to the enhanced O-tree [13]. Fig 7 (left) shows the
resulting placement for ami49 with area optimization.

For wirelength optimization, we estimated the wirelength of a
net by half the perimeter of the minimum bounding box enclos-
ing the net. The wirelength of a placement is given by the sum-
mation of the wirelengths of all nets. The comparisons with the
previous works are listed in TABLE IV. (Note that B*-tree and
CBL did not report the results on optimizing wirelength alone.)
As shown in TABLE IV, TCG achieves average reductions of
3.56% and 3.18% in wirelength, compared to the O-tree and the
enhanced O-tree, respectively. Fig 7 (right) shows the resulting
placement for ami49 with wirelength optimization. For simulta-
neous area and wirelength optimization, we assigned the same
weight for area and wirelength in the cost function. The results

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003

SP O-tree B*-tree enhanced O-tree CBL TCG
Circuit Area Time Area Time Area Time Area Time Area Time Area Time

(���) (sec) (���) (sec) (���) (sec) (���) (sec) (���) (sec) (���) (sec)

apte 48.12 13 47.1 38 46.92 7 46.92 11 NA NA 46.92 1
xerox 20.69 15 20.1 118 19.83 25 20.21 38 20.96 30 19.83 18

hp 9.93 5 9.21 57 8.947 55 9.16 19 - - 8.947 20
ami33 1.22 676 1.25 1430 1.27 3417 1.24 118 1.20 36 1.20 306
ami49 38.84 1580 37.6 7428 36.80 4752 37.73 406 38.58 65 36.77 434

Comp. +5.04% - +2.22% - +1.18% - +2.04% - +3.54% - 0.00% -

TABLE III

AREA AND RUNTIME COMPARISONS AMONG SP (ON SUN ULTRA60), O-TREE (ON SUN ULTRA60), B*-TREE (ON SUN ULTRA-I), ENHANCED O-TREE

(ON SUN ULTRA60), CBL (ON SUN SPARC 20), AND TCG (ON SUN ULTRA60) FOR AREA OPTIMIZATION. (NA: NOT AVAILABLE.)

O-tree enhanced O-tree TCG
Circuit Wire Time Wire Time Wire Time

(��) (sec) (��) (sec) (��) (sec)

apte 317 47 317 15 363 2
xerox 368 160 372 39 366 15

hp 153 90 150 19 143 10
ami33 52 2251 52 177 44 52
ami49 636 14112 629 688 604 767

Comp. +3.56% - +3.18% - 0.00% -

TABLE IV

WIRELENGTH AND RUNTIME COMPARISONS AMONG O-TREE (ON SUN

ULTRA60), ENHANCED O-TREE (ON SUN ULTRA60), AND TCG (ON SUN

ULTRA60) FOR WIRELENGTH OPTIMIZATION.

are listed in TABLE V, which shows that ours are slightly better
than previous works.2

Fig. 7. Resulting placements of ami49 for (1) left: optimizing area alone (area
� ��������); (2) right: optimizing wirelngth alone (wire � �	
��).

Fig 8 show the stability and convergence-rate comparison be-
tween SP and TCG based on the circuit ami33. We randomly ran
the programs for SP and TCG on ami33 ten times, based on the
same initial solution each time. In Fig 8(a) and (b), the resulting
areas are plotted as functions of the running times for SP and
TCG using the same simulated annealing procedure. (Note that
the parts with areas above 1.7 ��� are not shown in the curves

�We excluded the CBL results for hp in TABLE III and for apte in TABLE V
in the comparisons since the CBL test cases may not be the same as others. For
example, CBL reports an area of 66.14 ��� for hp, which is about seven times
larger than others.

for clarity of the comparison.) As illustrated in Fig 8, TCG con-
verges much faster to a desired solution and the results are much
more stable than SP. For TCG, all of the ten runs converged in
about 15 sec and terminated in about 120 sec. We note that the
stability and convergence rate should be very important metrics
to evaluate the quality of a floorplan representation. However,
they were often ignored in previous works.

VI. CONCLUDING REMARKS

We have introduced the concept of the P*-admissible repre-
sentation, presented the P*-admissible TCG representation for
general floorplans, and shown its superior properties. Exper-
imental results have shown that TCG is very efficient, effec-
tive, and stable in floorplan optimization. As revealed in the
representation, TCG keeps the information of boundary mod-
ules as well as the shapes and the relative positions of modules.
These properties make TCG a promising choice for dealing with
the general floorplan/placement problems with various require-
ments. Research along this direction is ongoing.

REFERENCES

[1] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: A
New Representation for Non-Slicing Floorplans,” in Proc. DAC, 2000,
pp. 458–463.

[2] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree Representation
of Non-Slicing Floorplan and Its Applications,” in Proc. DAC, 1999, pp.
268–273.

[3] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner Block List: An Effective and Efficient Topological Representa-
tion of Non-slicing Floorplan,” in Proc. ICCAD, 2000, pp. 8–12.

[4] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Sim-
ulated Annealing,” Science, vol. 220, no. 4598, pp.671–680, May 13,
1983.

[5] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart, and Winston, 1976.

[6] J.-M. Lin and Y.-W. Chang, “TCG: A Transitive Closure Graph-Based
Representation for Non-Slicing Floorplans,” in Proc. DAC, 2001, pp.
764–769.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
Packing Based Module Placement,” in Proc. ICCAD, 1995, pp. 472–479.

[8] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module Place-
ment on BSG-Structure and IC Layout Applications,” in Proc. ICCAD,
1996, pp. 484–491.

[9] Ohtsuki, T., N. Suzigama and H. Hawanishi, “An Optimization Tech-
nique for Intergrated Circuit Layout Design,” in Proc. ICCST, 1970, pp.
67–68.

[10] H. Onodera, Y. Taniquchi, and K. Tamaru, “Branch-and-bound Place-
ment for Building Block Layout,” in Proc. DAC, 1991, pp. 433–439.

LIN AND CHANG: TCG: A TRANSITIVE CLOSURE GRAPH-BASED REPRESENTATION FOR GENERAL FLOORPLANS 11

O-tree enhanced O-tree CBL TCG
Circuit Area Wire Time Area Wire Time Area Wire Time Area Wire Time

(���) (��) (sec) (���) (��) (sec) (���) (��) (sec) (���) (��) (sec)

apte 51.92 320.7 47 51.95 320.7 14 - - NA 48.48 378.0 50
xerox 20.42 380.6 142 20.42 380.6 41 20.233 403.47 NA 20.42 385.0 114

hp 9.490 152.6 84 9.384 151.9 21 NA NA NA 9.490 151.8 59
ami33 1.283 51.31 2349 1.299 52.13 205 1.226 51.67 NA 1.237 50.29 939
ami49 39.55 688.7 15318 39.92 702.8 700 38.378 732.84 NA 38.20 663.1 3613

Comp. +2.87% -2.01% - +3.33% -1.34% - -0.45% +5.98% - 0.00% 0.00% -

TABLE V

AREA, WIRELENGTH, AND RUNTIME COMPARISONS AMONG O-TREE (ON SUN ULTRA60), ENHANCED O-TREE (ON SUN ULTRA60), CBL (ON SUN

SPARC 20), AND TCG (ON SUN ULTRA60) FOR SIMULTANEOUS AREA AND WIRELENGTH OPTIMIZATION.

[11] R. H. J. M. Otten, “Automatic Floorplan Design,” in Proc. DAC, 1982,
pp.261–267.

[12] P. Pan and C.-L. Liu, “Area minimization for floorplans,” IEEE Trans. on
Computer-Aided Design, Vol. 14 no. 1, pp. 123–132, Jan. 1995.

[13] Y.-Pang, C.-K. Cheng, and T. Yoshimura, “An Enhanced Perturbing Al-
gorithm for Floorplan Design using the O-tree Representation,” in Proc.
ISPD, 2000, pp. 168–173.

[14] S. M. Sait and H. Youssef, VLSI Physical Design Automation. McGraw-
Hill, 1995.

[15] T. Takahashi, “A New Encoding Scheme for Rectangle Packing Prob-
lem,” in Proc. ASP-DAC, 2000, pp. 175–178.

[16] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for Block Place-
ment Based on Sequence Pair,” in Proc. ASP-DAC, 2001, pp. 521–526.

[17] T.-C. Wang, and D. F. Wong, “An Optimal Algorithm for Floorplan and
Area Optimization,” in Proc DAC, 1990, pp.180–186.

[18] D. F. Wong, and C.-L. Liu, “A New Algorithm for Floorplan Design,” in
Proc DAC, 1986, pp. 101–107.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. XX, NO. Y, MONTH 2003

1

1

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

Area (mm^2)

1.25

1.20

1.30

1.35

1.40

1.45

1.50

1.55

Area (mm^2)

1.25

1.20

Runtime (sec)

1.60

1.65

1.70

0 20 40 60 80 100 120 0 20 40 60 80 100 120

SP TCG

(a) (b)
Runtime
 (sec)

Fig. 8. Stability and convergence comparison between SP and TCG for ami33. (a) SP. (b) TCG.

