
TCG-S: Orthogonal Coupling of P*-admissible
Representations for General Floorplans �

Jai-Ming Lin� and Yao-Wen Chang�
�Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan

�Department of Electrical Engineering & Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan

Abstract
We extend in this paper the concept of the P-admissible floorplan rep-

resentation to that of the P*-admissible one. A P*-admissible represen-
tation can model the most general floorplans. Each of the currently exist-
ing P*-admissible representations, SP, BSG, and TCG, has its strengths
as well as weaknesses. We show the equivalence of the two most promis-
ing P*-admissible representations, TCG and SP, and integrate TCG with
a packing sequence (part of SP) into a new representation, calledTCG-
S. TCG-S combines the advantages of SP and TCG and at the same time
eliminates their disadvantages. With the property of SP, faster packing
and perturbation schemes are possible. Inherited nice properties from
TCG, the geometric relations among modules are transparent to TCG-
S (implying faster convergence to a desired solution), placement with
position constraints becomes much easier, and incremental update for
cost evaluation can be realized. These nice properties make TCG-S a
superior representation which exhibits an elegant solution structure to
facilitate the search for a desired floorplan/placement. Extensive exper-
iments show that TCG-S results in the best area utilization, wirelength
optimization, convergence speed, and stability among existing works
and is very flexible in handling placement with special constraints.

1 Introduction
As technology advances, the circuit size in modern VLSI design in-

creases dramatically. To handle the increasing design complexity, hier-
archical designs and IP modules are widely used to optimize area and
timing for design convergence. Further, the need to integrate heteroge-
neous systems or special modules imposes some placement constraints,
e.g., the boundary-module constraint which requires some modules to
be placed along the chip boundaries for shorter connections to pads,
the preplaced-module constraint which pre-assigns modules to specific
positions, etc. These trends make floorplanning/placement much more
important than ever, and it is of particular significance to consider the
floorplanning/placement with various constraints. To cope with these
challenges, it is desired to develop an efficient and effective floorplan
representation that can model the geometric relations among regular as
well as constrained modules.

Many floorplan representations have been proposed in the literature,
e.g., slicing tree [13], normalized Polish expression (NPE) [18], Se-
quence Pair (SP) [10], Bounded-Sliceline Grid (BSG) [12], O-tree [3],
B*-tree [1], Corner Block List (CBL) [4], Transitive Closure Graph
(TCG) [8], and Q-sequence [15]. Unlike the traditional classification
of the slicing and non-slicing structures, we can alternatively classify
them into two categories,P*-admissibleandnon-P*-admissiblerepre-
sentations. A representation is said to be P-admissible if it satisfies the
following four conditions [10]: (1) the solution space is finite, (2) every
solution is feasible, (3) packing and cost evaluation can be performed
in polynomial time, and (4) the best evaluated packing in the space cor-
responds to an optimal placement. We extend in this paper the concept
of the P-admissible representation to that of the P*-admissible one by

�This work was partially supported by the National Science Coun-
cil of Taiwan ROC under Grant No. NSC-89-2215-E-009-117. E-mails:
gis87808@cis.nctu.edu.tw; ywchang@cc.ee.ntu.edu.tw.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006...$5.00

adding the fifth condition: (5) the geometric relation between each pair
of modules is defined in the representation. With this condition, gen-
eral floorplans/placements can be modeled. Therefore, a P*-admissible
representation contains a complete structure for searching for an opti-
mal floorplan/placement solution. Therefore, it is desirable to develop
an effective and flexible P*-admissible representation.

Among the existing popular representations, SP, BSG, and TCG are
P*-admissible while slicing tree, NPE, O-tree, B*-tree, CBL, and Q-
sequence are not. The slicing tree and NPE are intended for slicing floor-
plans only. Since an optimal placement could be a non-slicing structure,
the two representations are not P-admissible and thus not P*-admissible
(i.e., violation of P*-admissibility Condition (4)). An O-tree defines
only one-dimensional geometrical relation betweencompactedmodules
and thus can obtain the relation in the other dimension only after pack-
ing (i.e., violation of Condition (5)). (Note that O-tree is undefined for
some uncompacted placements which may correspond to the best solu-
tions for wirelength optimization. Therefore, as far as wirelength opti-
mization is concerned, O-tree is not even P-admissible since Condition
(4) is violated.) A B*-tree requires a placement to be left and/or bottom
compacted. However, the space intended for placing a module may be
occupied by previously placed modules during packing, resulting in a
mismatch between the original representation and itscompactedplace-
ment. Therefore, it may not be feasible to find acompactedplacement
corresponding to the original B*-tree, and thus it is not P-admissible
(i.e., violation of Condition (2)). CBL and Q-sequence can represent
only mosaicfloorplans, in which each region in the floorplan contains
exactly one module. CBL and Q-sequence are not P-admissible because
it cannot guarantee a feasible solution after a perturbation (i.e., violation
of Conditions (2) and (4)). Non-P*-admissible representations intrinsi-
cally have a smaller solution space and lower packing cost since their
corresponding floorplanning/placement structures are more restricted
(e.g., slicing structures [slicing tree, NPE], mosaic floorplans [CBL, Q-
sequence], compacted placements [O-tree, B*-tree], etc).� However,
lack of the definition on the geometric relation between each pair of
modules, the guarantee in the feasibility, and/or the optimality of their
representations would inevitably complicate floorplan sizing and place-
ment with constraints, lead to longer running times, and/or lower solu-
tion quality.

The existing P*-admissible representations, SP, BSG, and TCG, have
their own distinct properties as well as common ones. Nevertheless,
researchers tend tofavor SP over BSGbecause BSG incurs many re-
dundancies and thus a much larger solution space, implying a longer
running time to search for a good solution. Therefore, we shall focus on
SP and TCG. Both SP and TCG are considered very flexible representa-
tions and construct constraint graphs to evaluate their packing cost. SP
consists of two sequences of modules�������, where�� (��) speci-
fies the module ordering from top-left (bottom-left) to bottom-right (top-
right). Hence,�� corresponds to the ordering for packing modules to
the bottom-left direction and thus can be used to guide module packing.
However, like most existing representations (e.g., NPE, BSG, O-tree,
B*-tree, CBL, Q-sequence), the geometric relations between modules
arenot transparentto the operations of SP (i.e., the effect of an opera-
tion on the change of module relation is not clear before packing), and
thus we need to construct constraint graphs from scratch after each per-
turbation to evaluate the packing cost; this deficiency makes SP harder to
converge to a desired solution and to handle placement with constraints

�Generality from the most general to the least general: general floorplan�
compacted floorplan� mosaic floorplan� slicing floorplan.

(e.g., boundary modules, pre-placed modules, etc).
TCG consists of a horizontal transitive closure graph�� to define

the horizontal geometric relations between modules and a vertical one
�� for vertical geometric relations. Contrast to SP, the geometric rela-
tions between modules are transparent to TCG as well as its operations,
facilitating the convergence to a desired solution. Further, TCG sup-
ports incremental update during operations and keeps the information
of boundary modules as well as the shapes and the relative positions of
modules in the representation. Nevertheless, like SP, constraint graphs
are also needed for TCG to evaluate its packing cost, and unlike SP, we
need to perform extra operations to obtain the module packing sequence.

Therefore, an interesting question arises: Is it possible to develop a
representation that can combine the advantages of SP and TCG and at
the same time eliminate their disadvantages? We answer this question in
affirmation by showing the equivalence of TCG and SP, and integrating
them into TCG-S =���� ������. The orthogonal combination leads to
a representation with at least the following advantages:

� With the property of SP, faster��� ����-time packing
and ����-time perturbation schemes are possible for a P*-
admissible representation, where� is the number of modules.
(Note that a linear-time packing scheme is possible for the tree-
based representations, but they can represent only more restricted
compacted floorplans.)

� Inherited from TCG, the geometric relations among modules are
transparent to TCG-S, implying faster convergence to a desired
solution.

� Inherited from TCG, placement with position constraints be-
comes much easier.

� TCG-S can support incremental update for cost evaluation.
These nice properties make TCG-S an effective, efficient, and flexible
representation. Extensive experiments based on a set of commonly used
MCNC benchmarks show that TCG-S results in the best area utiliza-
tion, wirelength optimization, convergence speed, and solution stability
among existing works.

To show the flexibility of TCG-S, we also consider placement with
preplaced and boundary modules. For placement with pre-placed mod-
ules, Murata et al. [11] proposed anadaptation algorithmto transform
an infeasible SP with preplaced modules into a feasible one. How-
ever, the process incurs expensive computations. For placement with
the boundary-module constraint, Tang and Wong in [16] and Ma et al.
in [9] handled this problem using SP and CBL, respectively. However,
they cannot guarantee a feasible solution in each perturbation and their
final placements. Lai et al. in [6] gave the feasibility conditions for SP
with boundary modules and transformed an infeasible solution into a
feasible one. However, the method is very complex, and many rules are
needed to cope with the constraints .

We present in this paper the methods for handling placement with
preplaced and boundary modules. Different from the previous works
on boundary modules that cannot guarantee a feasible solution or need
to transform an infeasible solution into a feasible one, TCG-S can eas-
ily maintain the feasibility during each perturbation. We compared our
work with [6] on placement with boundary modules. (Note that there
are no common benchmark circuits for this constraint.) Experimental
results show that TCG-S results in smaller areas than [6].

The remainder of this paper is organized as follows. Section 2 for-
mulates the floorplan/placement design problem. Section 3 compares SP
and TCG. Section 4 presents the procedures to build the TCG-S from a
placement and construct the placement from a TCG-S. Section 5 gives
the operations to perturb a TCG-S. Section 6 presents our methods to
handle placement with boundary and preplaced modules. Experimental
results are reported in Section 7. Finally, we give concluding remarks in
Section 8.

2 Problem Definition
Let� � ���� ��� ���� ��� be a set of� rectangular modules whose

width, height, and area are denoted by��,	�, and
�, � � � � �. Let
����
�� (�����

�

��) denote coordinate of the bottom-left (top-right) corner
of module��, � � � � �, on a chip. A placement� is an assignment of
����
�� for each��, � � � � �, such that no two modules overlap. The
goal of floorplanning/placement is to optimize a predefined cost metric
such as a combination of the area (i.e., the minimum bounding rectangle

of �) and/or the wirelength (i.e., the summation of half bounding box
of interconnections) induced by the assignment of��’s on the chip.

3 P*-admissible Representations
In this section, we first review the two P*-admissible representations,

TCG and SP, then show their equivalence, and compare their properties.
3.1 Review of TCG and SP

TCG describes the geometric relations between modules based on
two graphs, namely ahorizontal transitive closure graph�� and averti-
cal transitive closure graph��, in which a node�� represents a module
�� and an edge���� ��� in �� (��) denotes that module�� is left to (be-
low) module�� . TCG has the following threefeasibility properties[8]:

1. �� and�� are acyclic.
2. Each pair of nodes must be connected by exactly one edge either

in �� or in��.
3. The transitive closure of�� (��) is equal to�� (��) itself.�

Figure 1(a) shows a placement with seven modules�, �, �, �, �, � ,
and � whose widths and heights are (3.5, 1.5), (2, 2.5), (2, 3.5), (3,
2), (1.5, 1.5), (5, 1.5), and (1, 2), respectively. Figure 1(c) shows the
TCG� ���� ��� corresponding to the placement of Figure 1(a). The
value associated with a node in�� (��) gives the width (height) of the
corresponding module, and the edge���� ��� in �� (��) denotes the
horizontal (vertical) relation of�� and �� . Since there exists an edge
���� ��� in ��, module�� is left to ��. Similarly, �� is below�� since
there exists an edge���� ��� in ��.

SP uses a pair of sequences������� to represent a floor-
plan/placement, where�� and�� give two permutations of module
names. The geometric relation of modules can be derived from an SP
as follows. Module�� is left (right) to module�� if � appears before
(after)� in both�� and��. Module�� is below (above) module�� if
� appears before (after)� in �� and� appears before (after)� in ��.
Figure 1(b) shows the corresponding SP. Since� is before� in both��
and��, module�� is left to module�� . Similarly, �� is below�� since
� is after� in �� and before� in ��.

(c)

na

nb

nc

nd

ne

nf

ng na

nb

nc

nd

ne

nf

ng
Ch Cv

3.5

2

2

3
1.5

5

1

1.5

2.5

3.5

2

1.5

1.5

2(a)

(b)

a b c d e g fb f e d a g ,)c(

a

b

c

d

f

g

e

Figure 1:(a) A placement. (b) The corresponding SP of (a). (c) The corresponding TCG
of (a).

3.2 Equivalence of SP and TCG
Like the relations between a skewed slicing tree [13] and an NPE [18]

for slicing floorplans as well as O-tree and B*-tree for non-slicing floor-
plans, TCG and SP are equivalent.

We can transform between TCG and SP as follows: Let thefan-in
(fan-out) of a node��, denoted by��	���� (�
������), be the nodes
�� ’s with edges��� � ��� (���� ���). Given a TCG, we can obtain a se-
quence�� by repeatedly extracting a node�� with ��	���� � � in
�� and�
������ � � in ��, and then deleting the edges���� ���’s
(��� � ���’s) from �� (��) until no node is left in�� (��). Similarly,
we can transform a TCG into another sequence�� by repeatedly ex-
tracting the node�� with ��	���� � � both in�� and��, and then
deleting the edges���� ���’s from both�� and�� until no node is left
in �� and��. Given an SP� �������, we can obtain a unique TCG
� ���� ��� from the two constraint graphs of the SP by removing the
source, sink, and associated edges. For example, the SP of Figures 1(b)
is equivalent to the TCG of Figures 1(c).

�The transitive closure of a directed acyclic graph� is defined as the graph
�� � ������, where�� ��(��, ��): there is a path from node�� to node��
in ��.

3.3 Comparison between TCG and SP
Although TCG and SP are equivalent, their properties and induced

operations are significantly different. (Similar situations are also with
skewed slicing trees/NPE’s and O-trees/B*-trees.) Both SP and TCG are
considered very flexible representations and construct constraint graphs
to evaluate their packing cost.�� of an SP corresponds to the order-
ing for packing modules to the bottom-left direction and thus can be
used for guiding module packing. However, like most existing repre-
sentations, the geometric relations among modules are not transparent
to the operations of SP (i.e., the effect of an operation on the change of
module relation is not clear before packing), and thus we need to con-
struct constraint graphs from scratch after each perturbation to evaluate
the packing cost; this deficiency makes SP harder to converge to a de-
sired solution and to handle placement with constraints (e.g., boundary
modules, pre-placed modules, etc).

Contrast to SP, the geometric relations among modules are transpar-
ent to TCG as well as its operations, facilitating the convergence to a
desired solution. Further, TCG supports incremental update during op-
erations and keeps the information of boundary modules as well as the
shapes and the relative positions of modules in the representation. Un-
like SP, nevertheless, we need to perform extra operations to obtain the
module packing sequence and an additional����� time to find a special
type of edges, calledreduction edges, in �� (��) for some operations.
(We will define the edges later.)

For both SP and TCG, the packing scheme by applying the longest
path algorithm is time-consuming since all edges in the constraint graphs
are processed, even though they are not on the longest path. As shown in
�� of Figure 1(c), if we add a source with zero weight and connect it to
those nodes with zero in-degree, the� coordinate of each module can be
obtained by applying the longest path algorithm on the resulting directed
acyclic graph. Therefore, we have�� � �	
����, ���, �

�

, �
�

�, ����.
However, if we place modules based on the sequence�� and maintain a
horizontal and a vertical contours, denoted by�� and�� respectively,
for the placed modules, the number of nodes need to be considered can
be reduced. Let�� (��) be a list of modules��’s for which there exists
no module�� with
� �
�� (�� � ���) and��� � ��� (
�� �
��). For the
placement of Figure 1(a), for example,�� �� �
� �� � and�� ��
��� ��� ��� �� � �
 �. Suppose we have packed the modules��, ��, �
,
��, and�� based on the sequence��. Then, the resulting horizontal
contour�� �� �
� ��� �� �. Keeping��, we only need to traverse the
contour from��, predecessors of��, to the last module��, which have
horizontal relations with�� (since there are edges���� ��� and���� ���
in ��). Thus, we have�� � ���. Packing modules in this way, we only
need to consider�� and��, and can get rid of the computation for a
maximum value, leading to a faster packing scheme. We will show later
how to apply a balanced binary tree to implement the contour operation
to get a loglinear-time packing scheme.

4 The TCG-S Representation
Combining TCG� ���� ��� and SP� �������, we develop a

representation, called TCG-S� ���� ������, which uses a horizontal
and a vertical transitive closure graphs as well as a packing sequence
�� to represent a placement. In this section, we first introduce how
to construct��, ��, and�� from a placement. Then, we propose an
��� ����-time packing scheme for TCG-S, where� is the number of
modules.

4.1 From a placement to TCG-S
In this subsection, we first extract�� from a placement, and then

construct�� and�� according to��.
For two non-overlapped modules�� and�� , �� is said to behorizon-

tally (vertically) relatedto �� , denoted by�� � �� (�� 	 ��), if �� is left
to (below)�� and their projections on the
 (�) axis overlap. For two
non-overlapped modules�� and�� , �� is said to bediagonally relatedto
�� if �� is left to �� and their projections on the� and the
 axes do not
overlap. To simplify the operations on geometric relations, a diagonal
relation for modules�� and�� is treated as a horizontal one unless there
exists a chain of vertical relations from�� (��), followed by the mod-
ules overlapped with the rectangle defined by the two closest corners of
�� and�� , and finally to�� (��), for which it is considered as�� 	 ��
(�� 	 ��).

Given a placement,�� can be extracted based on the procedure de-
scribed in [10]. For example, the�� for the placement of Figure 2(a)
is � ������� �. After extracting��, we can construct�� and��

based on��. For each module�� in ��, we introduce a node�� with
the weight being�� ’s width (height) in�� (��). Also, for each module
�� before�� in ��, we introduce an edge���� ��� in �� (��) if �� � ��
(�� 	 ��). As shown in Figures 2(b), for the first two modules��� �� in
��, we introduce the nodes�� and�� in�� (��) and assign the weights
as their widths (heights). Also, we construct a directed edge���� ��� in
�� since module�� is before�� and�� 	 ��. The process repeats for all
modules in��, resulting in the TCG-S shown in Figure 2(b). We have
the following theorem.

Theorem 1 There exists a TCG-S corresponding to a placement.

na

nb

nc

nd

ne

nf

ng
Cv

na

nb

nc

nd

ne

nf

ng
Ch

3.5

2

2

3
1.5

5

1

1.5

2.5

3.5

2

1.5

1.5

2

: a b c d e g f
L

(a)

a

b

c

d

f

g

e

(b)

−

Figure 2:(a) A placement. (b) The corresponding TCG-S of (a).

4.2 From TCG-S to a placement
In this subsection, we propose an��� ����-time packing scheme

based on�� as well as a horizontal and a vertical contours�� and��,
where� is the number of modules. The basic idea is to process the
modules based on the sequence defined in��, and then pack the current
module to a corner formed by two previously placed modules in��
(��) according to the geometric relations defined in�� and��.

We detail the packing scheme as follows. Recall that�� (��) is a
list of modules�� ’s for which there exists no module�� with
� �
��
(�� � ���) and��� � ��� (
�� �
��). (�� (��) consists of modules along
the top (left) boundary of a placement.) We can keep the modules��’s
in �� (��) in a balanced binary search tree (e.g., the red-black tree [2])
�� (��) in the increasing order according to their right (top) boundaries.
For easier presentation, we add adummy module�� (��) to �� (��)
to denote the left (bottom) boundary module of a placement. We have
�� � �� and�� 	 ��,
��. Let �����

�

�� � ����� and�����

�

�� � ��� ��.
�� (��) consists of�� (��) initially, and so does the corresponding��
(��). To pack a module�� in ��, we traverse the modules�� ’s in ��
(��) from its root, and go to the right child if�� � �� (�� 	 ��) and the
left child if �� 	 �� (�� � ��). The process is repeated for the newly
encountered module until a leaf node is met. Then,�� is connected to
the leaf node, and�� � ��� (
� �
��), where�� is the last module with
�� � �� (�� 	 ��) in the path. After�� is inserted into�� (��), every
predecessor�� with ��� � ��� (
�� �
��) in �� (��) is deleted since�� is
no longer in the contour. (Note that the ordering of nodes in�� (��) can
be obtained by depth-first search.) This process repeats for all modules
in ��. We have� � ��� (�
��) if �� is the module in the resulting
�� (��) with the largest value, where� () denotes the width (height)
of the placement. We have the following theorems and lemmas.

Theorem 2 There exists a unique placement corresponding to a TCG-
S.

Lemma 1 For each module�� in ��, �� must be placed adjacent to the
right (top) boundary of some module�� in �� (��) during the packing.

Lemma 2 Given a module�� in �� to be placed, if�� � ������, �� 	
�� (�� � ��), and�� has the largest��� (
��), any module�� � ������
with ��� � ��� (
�� �
��)) cannot have the relation�� � �� (�� 	 ��).

Theorem 3 The proposed scheme correctly packs all modules in
��� ���� time, where� is the number of modules.

(a) (b)
=0=x x’

=
b
b

s
y ay’ =1.5 (c) =0=x x’

=
c
c

s
y by’ =4

ab

tbsb ab
bb

bc
bc

bb

h vT T h vT T h vT T

ab

tb bb

hT’ vT’

sb

ab

tb

ab

sb

ab

tb

ab

tb

ab
sb

ab

bb

bb

sb

hT’ vT’

ab

ab

tb
ab

bb

bc

bc

sb

bb

hT’ vT’

a

=
= 0

ax
y

=
=

x’ 0s

by’

Figure 3:The packing scheme for the TCG-S of Figure 2(b).

Figures 3 shows the packing scheme for the TCG-S of Figure 2(b).
�� (��) consists of�� (��) initially. To pack the first module�� in ��,
we traverse�� (��) from the root�� (��) and insert it to the right child
of �� (��) since�� � �� (�� 	 ��). Therefore, the first module�� in
�� is placed at the bottom-left corner (i.e.,����
�� � ��� ��) since��
(��) is the last module that is horizontally (vertically) related to�� and
��� � � (
�� � �). (Note that� �

� (� �

�) in Figures 3(a) denotes a balanced
binary search tree after�� is inserted into�� (��).) Similarly, to pack
the second module�� in ��, we traverse�� from the root�� and then
its right child since�� � ��. Then,�� is inserted to the left child of��
since�� 	 ��. Because�� is the last module with�� � �� in the path,
�� � ��� � �. Similarly, we traverse�� from the root�� and then its
right child �� since�� 	 ��. Then,�� is inserted to the right child of��
in �� since�� 	 ��. Therefore,
� �
�� � ��� because�� is the last
module with�� 	 �� in the path. The resulting balanced binary search
trees after performing tree rotations� �

�, � �

� are shown in Figure 3(b)
(see [2] for the rotation operations for keeping a tree balanced). As
shown in Figure 3(c), after�
 is inserted,�� in �� is deleted since�� is a
predecessor of�
 and��� � ��
 (i.e.,�� is no longer in the contour). The
resulting� �

� and� �

� are shown in Figure 3(c). The process is repeated
for all modules in��.

According to this packing scheme, if the coordinate of a module�� in
�� is changed, we only need to recompute the coordinates of modules
after�� in �� since the coordinates of modules before�� do not change.

5 Floorplanning Algorithm
We develop a simulated annealing based algorithm [5] by using

TCG-S for general floorplan design. Given an initial TCG-S, the algo-
rithm perturbs the TCG-S into a new TCG-S to find a desired solution.
To ensure the correctness of the new�� and��, they must satisfy the
three feasibility conditions given in Section 3.1. To identify feasible��

and�� for perturbation, we describe the concept ofreduction edgesin
the following subsection.
5.1 Reduction Edge

An edge���� ��� is said to be areduction edgeif there does not
exist another path from�� to �� , except the edge���� ��� itself; other-
wise, it is aclosure edge, for some operations. In Figure 2(b), for exam-
ple, edges���� ���, ���� ���, and���� ��� are reduction edges while
���� ��� and��
� ��� are closure ones. With��, we can find asetof
reduction edges in���� time (where� is the number of modules), a
significant improvement from����� time using TCG alone [8].

Given an arbitrary node�� in a transitive closure graph�� (��), we
can find all the nodes�� ’s that form reduction edges���� ���’s using a
Linear Scanmethod as follows. First, we extract from�� those nodes
�� ’s in �
������ of �� (��) and keep their original ordering in��. Let
the resulting sequence be�. The first node�� in � and�� must form
a reduction edge���� ���. Then, we continue to traverse� until a node
�� with ���� ��� not in �� (��) is encountered.���� ��� must also be a
reduction edge. Starting from��, we continue the same process until no
node is left in�.

As an example shown in�� of Figure 2(b), we are to extract all re-
duction edges emanating from�
. We first find� �� ��� ��� �� � �� �
by extracting nodes in�
����
� based on the sequence in��. �
 and
the first node�� in � form a reduction edge��
� ���. Traversing�, we
have another reduction edge��
� ��� since edge���� ��� is not in��.

Starting from��, we search the next node� with ���� �� not in��. We
find node�� , implying that��
� �� � is also a reduction edge. There-
fore, we have found all reduction edges emanating from�
: ��
� ���,
��
� ���, and��
� �� �. (Note that��
� ��� is not a reduction edge be-
cause we found���� ��� in �� during the processing.)

Theorem 4 Given a node�� in �� (��), the Linear Scan method finds
all reduction edges emanating from�� in ���� time, where� is the
number of modules.

5.2 Solution Perturbation
We extend the four operationsRotation, Swap, Reverse, andMove

presented in [8] to perturb�� and��. During each perturbation, we
must maintain the three feasibility properties for�� and��. Unlike the
Rotation operation, Swap, Reverse, and Move may change the configu-
rations of�� and�� and thus their properties. Further, we also need to
maintain�� to conform to the topological ordering of the new�� and
��.

5.2.1 Rotation
To Rotate a module��, we exchange the weights of the corresponding
node�� in �� and��. Since the configurations of�� and�� do not
change, so dose��. Figure 4(a) shows the resulting TCG-S after rotat-
ing the module� shown in Figure 2(b). Notice that the new�� is the
same as that in Figure 4(a).

na

nb

nc

nd

ne

nf

ng na

nb

nc

nd

ne

nf

ng
Ch Cv

3.5

2

2

3
1.5

5

2.5

3.5
1.5

1.5

2

2 1
1.5

: abcd e gf
L

Rotation gb(a)

na

nb

nc

nd

ne

nfng

na

nb

nc

nd

ne

nfng

Ch C

3.5

2

2

5

1.5
3

1.5

2

1.5

1.5
1

3.5
2

2.5

: ab cd eg f
L

v
Swap gnnc,()(b)

na

nb

nc

nd

ne

nfng

na

nb

nc

nd

ne

nfng

Ch Cv

2

2

1.5

3

2

5

3.5

2.5
2

1.5

1.5
3.5 1.5

1

: ab cdeg f
L

nn ,()Move a e(d)

na

nb

nc

nd

ne

nf

na

nb

nc

nd

ne

nfng

Ch C

5 1.5

2.5

2

2

2
3

1.5

3.5

2

1

3.5
1.5

1.5

: ab cdeg f
L

v
nn ,()Reverse d e(c)

ng

− −

− −

Figure 4:Four types of perturbation. (a) The resulting TCG-S after rotating the module
�� shown in Figure 2(b). (b) The resulting TCG-S after swapping the nodes�� and��
shown in (a). (c) The resulting TCG-S after reversing the reduction edge���� ��� shown in
(b). (d) The resulting TCG-S after moving the reduction edge���� ��� from the�� of (c)
to��.

5.2.2 Swap
Swapping�� and�� does not change the topologies of�� and��, ex-
cept that nodes�� and�� in both�� and�� are exchanged. Therefore,
we only need to exchange�� and�� in ��. Figure 4(b) shows the result-
ing TCG-S after swapping the nodes�
 and�� shown in Figure 4(a).
Notice that the modules�
 and�� in �� in Figure 4(b) are exchanged.

5.2.3 Reverse
Reverse changes the geometric relation between�� and�� from �� � ��
(�� 	 ��) to �� � �� (�� 	 ��). To reverse a reduction edge (��, ��) in
one transitive closure graph, we first delete the edge (��, ��) from the
graph, and then add the edge (�� , ��) to the graph. To keep�� and��

feasible, for each node�� � ��	����
���� and�� � �
������
����
in the new graph, we have to keep the edge���� ��� in the new graph.
If the edge does not exist in the graph, we add the edge to the graph and
delete the corresponding edge���� ��� (or ���� ���) in the other graph.
To make�� conform to the topological ordering of the new�� and��,
we delete�� from�� and insert�� after�� . For each module�� between
�� and�� in ��, we shall check whether the edge���� ��� exists in the
same graph. We do nothing if the edge���� ��� does not exist in the
same graph; otherwise, we delete�� from�� and insert it after the most
recently inserted module.

Figure 4(c) shows the resulting TCG-S after reversing thereduction
edge���� ��� of the�� in Figure 4(b). Since there exists no module
between�� and�� in ��, we only need to delete�� from �� and insert
it after ��, and the resulting�� is shown in Figure 4(c).

5.2.4 Move
Move changes the geometric relation between�� and�� from �� � ��
(�� 	 ��) to �� 	 �� (�� � ��). To move a reduction edge (��, ��) from a
transitive closure graph� to the other��, we delete the edge from� and
then add it to��. Similar to Reverse, for each node�� � ��	����
����
and�� � �
������
���� in ��, we must move the edge���� ��� to��

if the the corresponding edge���� ��� (or ���� ���) is in �. Since the
operation changes only the edges in�� or �� but not the topological
ordering among nodes,�� remains unchanged.

Figure 4(d) shows the resulting TCG-S after moving thereduction
edge���� ��� from �� to �� in Figure 4(c). Notice that the resulting
�� is the same as that in Figure 4(c).

For the above operations, Rotation and Move do not change the topo-
logical ordering of�� while Swap and Reverse need respective����
and���� times to maintain the topological ordering of��, where�
is the number of modules. We have the following theorem.

Theorem 5 TCG-S is closed under the Rotation, Swap, Reverse, and
Move operations.

In particular, it suffices to apply the four perturbations to explore the
whole solution space. Extending the similar work by [17] for TCG, we
have the following theorem.

Theorem 6 Given two arbitrary TCG-S’s�� and��, we can obtain��
from �� by applying a finite number of Rotation, Swap, Reverse, and
Move operations, and vice versa.

6 Placement with Constraints
In this section, we demonstrate the flexibility of TCG-S by extending

it to handle placement with boundary and pre-placed modules.
6.1 TCG-S with Boundary Modules

The placement with boundary constraints is to place a set of prespec-
ified modules along the designated boundaries of a chip, which can be
formulated as follows:

Definition 1 Boundary Constraint:Given a boundary module�, it must
be placed in one of the four sides: on the left, on the right, at the bottom
or at the top in a chip in the final packing.

TCG-S keeps the following properties that make placement with
boundary constraints much easier than other representations.

Theorem 7 If a module�� is placed along the left (right) boundary, the
in-degree (out-degree) of the node�� in �� equals zero. If a module��
is placed along the bottom (top) boundary, the in-degree (out-degree) of
node�� in �� equals zero.

For each perturbation, we can guarantee a feasible placement by
checking whether the conditions of boundary modules are satisfied. We
discuss the modifications for the four perturbation operations as follows.

6.1.1 Rotation
Since Rotation does not change module location, the operation remains
the same as before.

6.1.2 Swap
We can swap two nodes�� and�� if

1. �� and�� are not boundary modules,
2. �� and�� are boundary modules of the same type, or
3. �� is a boundary module and�� is not, and�� satisfies the bound-

ary constraint of��.

6.1.3 Reverse
If �� is a left boundary module or�� is a right boundary module, then the
reduction edge���� ��� in �� cannot be reversed. Similarly, we cannot
reverse the reduction edge���� ��� in �� if �� is a bottom boundary
module or�� is a top boundary module

6.1.4 Move
If �� is a top boundary module or�� is a bottom boundary module, we
cannot move the reduction edge���� ��� from�� to��. Similarly, we
cannot move the reduction edge���� ��� from�� to�� if �� is a right
boundary module or�� is a left boundary module

We have the following theorem.

Theorem 8 TCG-S is closed under the Rotation, Swap, Reverse, and
Move operations with boundary constraints.

6.2 TCG-S with Pre-placed Modules
The placement with pre-placed modules is to place a set of prespeci-

fied modules at the designated locations of a chip, which can be formu-
lated as follows:

Definition 2 Pre-placed Constraint:Given a module�� with a fixed co-
ordinate����
�� and an orientation,�� must be placed at the designated
location with the same orientation in the final packing.

Whether a pre-placed module is packed at a correct location is not
known until packing. Also, changing the coordinate of a module�� may
affect the packing for other modules after�� in ��. Therefore, we may
need to modify a TCG-S to guarantee a feasible placement with the pre-
placed constraint after each perturbation.

Given a TCG-S, modules are packed one by one based on the se-
quence of��. A module�� interacts withanother module�� if (1) ��
overlaps�� , (2)�� � �� and their projections on the
 axis overlap, or (3)
�� 	 �� and their projections on the� axis overlap. If�� interacts with a
pre-placed module�� and�� was not placed,�� and�� are swapped in
the TCG-S to make�� placed at the designated location. If a pre-placed
module�� was placed and the resulting placement of�� does not interact
with itself at the designated location, we swap�� with the node�� right
after�� in ��; otherwise,�� is placed at the designated location if there
exists no module behind�� in ��.

7 Experimental Results
Based on a simulated annealing method [5], we implemented the

TCG-S representation in the C++ programming language on a 433 MHz
SUN Sparc Ultra-60 workstation with 1 GB memory. The source code is
available at http://cc.ee.ntu.edu.tw/�ywchang/research.html. Based on
the five commonly used MCNC benchmark circuits, we conducted four
experiments: (1) area optimization, (2) wirelength optimization, (3) so-
lution convergence speed and stability, and (4) placement with boundary
constraints. In Table 1, Columns 2 and 3 list the respective numbers of
modules and nets of the five circuits.

For Experiment (1), the area and runtime comparisons among SP,
O-tree, B*-tree, enhanced O-tree, CBL, and TCG are listed in Table 1.
As shown in Table 1, TCG-S achieves the best area utilization for the
benchmark circuits in very efficient running times. Figure 6 (left) shows
the resulting placement for ami49 with area optimization.

For Experiment (2), we estimated the wirelength of a net by half
the perimeter of the minimum bounding box enclosing the net. The
wirelength of a placement is given by the summation of the wirelengths
of all nets. As shown in Table 2, TCG-S achieves better average results
in wirelength than O-tree, enhanced O-tree, and TCG in smaller running
times. (Note that we did not compare with B*-tree and CBL here since
they did not report the results on optimizing wirelength alone.)

In addition to the area and timing optimization, in Experiment(3), we
also compared the solution convergence speed and stability among SP,
TCG, and TCG-S to eliminate the possible unfairness due to the non-
deterministic behavior of simulated annealing, which were neglected in
most previous works. (Note that other tools are not available to us for the
comparative study.) We randomly ran SP, TCG, and TCG-S on ami49
ten times based on the same initial placement whose area is��
���.
The resulting areas are plotted as functions of the running times (sec).
Figures 5(a), (b), and (c) show the resulting curves of SP, TCG, and
TCG-S, respectively. To see the detailed convergence rates, we show in
Figures 5 only the potions whose areas are smaller than 47���. As il-
lustrated in Figure 5(c), TCG-S converges very fast to desired solutions,
and the results are very stable (� ���� ��� for all runs). In contrast,
the convergence speed of SP is much slower than TCG-S and TCG,
and the resulting areas are often larger than 39���. Further, there

Enhanced
of of SP O-tree B*-tree O-tree CBL TCG TCG-S

Circuit modules nets Area Time Area Time Area Time Area Time Area Time Area Time Area Time
��� sec ��� sec ��� sec ��� sec ��� sec ��� sec ��� sec

apte 9 97 48.12 13 47.1 38 46.92 7 46.92 11 NA NA 46.92 1 46.92 1
xerox 10 203 20.69 15 20.1 118 19.83 25 20.21 38 20.96 30 19.83 18 19.796 5

hp 11 83 9.93 5 9.21 57 8.947 55 9.16 19 (66.14) (32) 8.947 20 8.947 7
ami33 33 123 1.22 676 1.25 1430 1.27 3417 1.24 118 1.20 36 1.20 306 1.185 84
ami49 49 408 38.84 1580 37.6 7428 36.80 4752 37.73 406 38.58 65 36.77 434 36.40 369

Table 1: Area and runtime comparisons among SP (on Sun Sparc Ultra60), O-tree (Sparc Ultra 60), B*-tree (Sparc Ultra-I), enhanced O-tree (Sparc Ultra60), CBL(Sparc 20), TCG
(Sparc Ultra60) and TCG-S (Sparc Ultra60) for area optimization. The best areas are in boldface.

is a large variance in its final solutions. Based on the experimental re-
sults, we rank the convergence speed from the fastest to the slowest and
the solution stability from the most stable to the least stable as follows:
TCG-S� TCG� SP. We note that the stability and convergence speed
should be very important metrics to evaluate the quality of a floorplan
representation because they reveal the corresponding solution structure
for optimization. However, they were often ignored in previous works.
(Most previous works focus on the comparison of solution space and
packing complexity. Nevertheless, we find that the solution structure in-
duced by a representation plays an even more important role in floorplan
optimization.)

enhanced
O-tree O-tree TCG TCG-S

Circuit Wire Time Wire Time Wire Time Wire Time
�� sec �� sec �� sec �� sec

apte 317 47 317 15 363 2 363 2
xerox 368 160 372 39 366 15 366 6

hp 153 90 150 19 143 10 143 4
ami33 52 2251 52 177 44 52 43 89
ami49 636 14112 629 688 604 767 579 570

Table 2:Wirelength and runtime comparisons among O-tree, enhanced O-tree, TCG, and
TCG-S for wirelength optimization. All ran on Sun Sparc Ultra60.

2Area (mm)

38.

39

40

41

42

43

44
45

46

47

37

(a) Runtime (sec)
300250200150100500

SP

Runtime (sec)
300250200150100500

(b)

38.

39

40

41

42

43

44
45

46

47

37

2Area (mm) TCG

Runtime (sec)
300250200150100500

(c)

38.

39

40

41

42

43

44
45

46

47

37

2Area (mm) TCG−S

Figure 5: Comparison for stability and convergence among SP, TCG, and TCG-S for
ami49.

For the experiments with boundary modules, we compared TCG-S
with the SP-based method in [6] using the same data generated by [6].
The second column of Table 3 shows the numbers of the top, bottom,
left, and right modules, denoted by�� �� ���� ���, and���, respectively.
As shown in Table 3, TCG-S obtains smaller silicon areas than [6]. Fig-
ure 6 (right) shows the resulting placement for ami49 with boundary
modules.

8 Concluding Remarks
We have presented the TCG-S representation for general floorplans

by combining the advantages of two most promising P*-admissible rep-
resentations TCG and SP, and at the same time eliminating their dis-
advantages. We also have proposed a loglinear-time packing scheme
and a linear-time perturbation scheme for TCG-S. We note that these
schemes can also be applied to most existing representations such as SP
and BSG. Based on our theoretical study and extensive experiments, we
also have shown the superior capability, efficiency, stability, and flexi-
bility of TCG-S for floorplan design.

Figure 6: Resulting placements of ami49 (1) left: area optimization (area�

���������); (2) right: placement with boundary modules being heavily shaded
(��� �� ���� �	�� �
�� � ��� �� �� ��, area� ���	�
���). Note that the lightly shaded
regions denote dead spaces.

Lai et al. [6] TCG-S
Circuit �� �� ���� �	�� �
� Area Time Area Time

��� sec ��� sec
apte 1, 1, 1, 1 46.92 15 46.92 3

xerox 1, 1, 1, 1 20.4 19 19.977 33
hp 1, 1, 1, 1 9.24 23 9.158 26

ami33 2, 2, 2, 2 1.21 290 1.190 238
ami49 3, 3, 2, 3 36.84 601 36.765 584

Table 3:Area and runtime comparisons between [6] (on Pentium-II 350) and TCG-S (on
Sun Sparc Ultra60) for placement with boundary modules.

References
[1] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: A new representa-

tion for non-slicing floorplans,”Proc. DAC, pp. 458–463, 2000.
[2] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms, McGraw-Hill

Book Company, 1990.
[3] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree representation of non-slicing

floorplan and its applications,”Proc. DAC, pp. 268–273, 1999.
[4] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, “Corner Block

List: An effective and efficient topological representation of non-slicing floorplan,”
Proc. ICCAD, pp. 8–12, 2000.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, May 13, 1983, pp.671–680.

[6] J.-B. Lai, M.-S Lin, T.-C Wang, and L.-C. Wang, “Module placement with boundary
constraints using the sequence-pair,”ASP-DAC, pp.515–520, 2001.

[7] E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and
Winston, 1976.

[8] J.-M Lin and Y.-W Chang, “TCG: A transitive closure graph-based representation for
non-slicing floorplans,”Proc. DAC, pp.764–769, 2001.

[9] Y. Ma, S. Dong, X. Hong, Y. Cai, C.-K. Cheng, and J. Gu “VLSI floorplanning with
boundary constraints based on corner block list,”Proc. ASP-DAC, pp. 509–514, 2001.

[10] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-packing based
module placement,”Proc. ICCAD, pp. 472–479, 1995.

[11] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB placement with obstacles based
on sequence pair,”Proc. ISPD, pp. 26–31, 1997.

[12] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module placement on BSG-
Structure and IC layout applications,”Proc. ICCAD, pp. 484–491, 1996.

[13] R. H. J. M. Otten, “Automatic floorplan design,”Proc. DAC, pp.261–267, 1982.
[14] Y. Pang, C.-K. Cheng, and T. Yoshimura, “An enhanced perturbing algorithm for

floorplan design using the O-tree representation,”Proc. ISPD, pp. 168-173, 2000.
[15] K. Sakanushi and Y. Kajitani, “The quarter-state sequence (Q-sequence) to represent

teh floorplan and applications to layout optimization,”Proc. Asia Pacific Conf. Cir-
cuits and Systems, pp. 829–832, 2000.

[16] X. Tang and D. F. Wong, “ FAST-SP: A fast algorithm for block placement based on
sequence pair,”Proc ASP-DAC, pp. 521–526, 2001.

[17] T.-C. Wang, Personal communication, 2001.
[18] D. F. Wong, and C. L. Liu, “A new algorithm for floorplan design,”Proc. DAC, pp.

101–107, 1986.

