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Abstract adding the fifth condition: (5) the geometric relation between each pair

We extend in this paper the concept of the P-admissible floorplan r@f+modules is defined in the representation. With this condition, gen-
resentation to that of the P*-admissible one. A P*-admissible represeétial floorplans/placements can be modeled. Therefore, a P*-admissible
tation can model the most general floorplans. Each of the currently exrepresentation contains a complete structure for searching for an opti-
ing P*-admissible representations, SP, BSG, and TCG, has its strengittéd floorplan/placement solution. Therefore, it is desirable to develop
as well as weaknesses. We show the equivalence of the two most promuiseffective and flexible P*-admissible representation.
ing P*-admissible representations, TCG and SP, and integrate TCG withAmong the existing popular representations, SP, BSG, and TCG are
a packing sequence (part of SP) into a new representation, ddlléd P*-admissible while slicing tree, NPE, O-tree, B*-tree, CBL, and Q-

S. TCG-S combines the advantages of SP and TCG and at the same se@ence are not. The slicing tree and NPE are intended for slicing floor-
eliminates their disadvantages. With the property of SP, faster packjpigns only. Since an optimal placement could be a non-slicing structure,
and perturbation schemes are possible. Inherited nice properties ftbmtwo representations are not P-admissible and thus not P*-admissible
TCG, the geometric relations among modules are transparent to TGiG., violation of P*-admissibility Condition (4)). An O-tree defines
S (implying faster convergence to a desired solution), placement withly one-dimensional geometrical relation betweempactednodules
position constraints becomes much easier, and incremental updateafat thus can obtain the relation in the other dimension only after pack-
cost evaluation can be realized. These nice properties make TCG48g(i.e., violation of Condition (5)). (Note that O-tree is undefined for
superior representation which exhibits an elegant solution structurestame uncompacted placements which may correspond to the best solu-
facilitate the search for a desired floorplan/placement. Extensive expg@rms for wirelength optimization. Therefore, as far as wirelength opti-
iments show that TCG-S results in the best area utilization, wirelengttization is concerned, O-tree is not even P-admissible since Condition
optimization, convergence speed, and stability among existing wofKs is violated.) A B*-tree requires a placement to be left and/or bottom
and is very flexible in handling placement with special constraints. compacted. However, the space intended for placing a module may be
. occupied by previously placed modules during packing, resulting in a
1 Introduction mismatch between the original representation anddtapactecblace-

As technology advances, the circuit size in modern VLSI design ifrent. Therefore, it may not be feasible to find@npactedplacement
creases dramatically. To handle the increasing design complexity, higitresponding to the original B*-tree, and thus it is not P-admissible
archical designs and IP modules are widely used to optimize area @ngl, violation of Condition (2)). CBL and Q-sequence can represent
timing for design convergence. Further, the need to integrate heterogely mosaicfloorplans, in which each region in the floorplan contains
neous systems or special modules imposes some placement constraixésitly one module. CBL and Q-sequence are not P-admissible because
e.g., the boundary-module constraint which requires some modulest ttannot guarantee a feasible solution after a perturbation (i.e., violation
be placed along the chip boundaries for shorter connections to pag<Conditions (2) and (4)). Non-P*-admissible representations intrinsi-
the preplaced-module constraint which pre-assigns modules to speeifity have a smaller solution space and lower packing cost since their
positions, etc. These trends make floorplanning/placement much meseresponding floorplanning/placement structures are more restricted
important than ever, and it is of particular significance to consider tie.g., slicing structures [slicing tree, NPE], mosaic floorplans [CBL, Q-
challenges, it is desired to develop an efficient and effective floorplajtk of the definition on the geometric relation between each pair of
representation that can model the geometric relations among regulamggules, the guarantee in the feasibility, and/or the optimality of their
well as constrained modules. _ _ representations would inevitably complicate floorplan sizing and place-

Many floorplan representations have been proposed in the literatyf@nt with constraints, lead to longer running times, and/or lower solu-
e.g., slicing tree [13], normalized Polish expression (NPE) [18], Sgon quality.
quence Pair (SP) [10], Bounded-Sliceline Grid (BSG) [12], O-tree [3], The existing P*-admissible representations, SP, BSG, and TCG, have
B*-tree [1], Corner Block List (CBL) [4], Transitive Closure Graphinejr own distinct properties as well as common ones. Nevertheless,
(TCG) [8], and Q-sequence [15]. Unlike the traditional classificatiosearchers tend favor SP over BSGecause BSG incurs many re-
of the slicing and non-slicing structures, we can alternatively class{y\ngancies and thus a much larger solution space, implying a longer
them into two categories?*-admissibleandnon-P*-admissibleepre- ,nning time to search for a good solution. Therefore, we shall focus on
sentations. A representation is said to be P-admissible if it satisfies SHﬂand TCG. Both SP and TCG are considered very flexible representa-
following four conditions [10]: (1) the solution space is finite, (2) éveryions and construct constraint graphs to evaluate their packing cost. SP
solution is feasible, (3) packing and cost evaluation can be perfor sists of two sequences of modul@s., T ), wherel';. (I'_) speci-
in polynomial time, and (4) the best evaluated packing in the space g the module ordering from top-left (bottom-left) to bottom-right (top-
responds to an optimal placement. We extend in this paper the Con‘?ﬁ{it). HenceI'_ corresponds to the ordering for packing modules to
of the P-admissible representation to that of the P*-admissible one i pottom-left direction and thus can be used to guide module packing.

*This work was partially supported by the National Science CouHowever, like most existing representati(_)ns (e.g., NPE, BSG, O-tree,
cil of Tawan ROC under Grant No. NSC-89-2215-E-009-117. E-mail§ -re€: CBL, Q-sequence), the geometric relations between modules
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(e.g., boundary modules, pre-placed modules, etc). of P) and/or the wirelength (i.e., the summation of half bounding box
TCG consists of a horizontal transitive closure graphto define of interconnections) induced by the assignmert;sfon the chip.

the horizontal geometric relations between modules and a vertical gne _ .

C, for vertical geometric relations. Contrast to SP, the geometric relg- P*_'adm|53|b|e Rep_r esentations o )

tions between modules are transparent to TCG as well as its operationgh this section, we first review the two P*-admissible representations,

facilitating the convergence to a desired solution. Further, TCG suf=G and SP, then show their equivalence, and compare their properties.

ports incremental update during operations and keeps the informathd Review of TCG and SP

of boundary modules as well as the shapes and the relative positions of CG describes the geometric relations between modules based on

modules in the representation. Nevertheless, like SP, constraint graglisgraphs, namely lorizontal transitive closure grapé, and averti-

are also needed for TCG to evaluate its packing cost, and unlike SP,gatransitive closure grapld’,, in which a noder; represents a module

need to perform extra operations to obtain the module packing sequebgand an edgén;, n;) in Cj, (C,) denotes that module is left to (be-
Therefore, an interesting question arises: Is it possible to develofw) moduleb;. TCG has the following threfeasibility propertieg8]:

representation that can combine the advantages of SP and TCG and & ¢, andC. are acyclic

the same time eliminate their disadvantages? We answer this question ir12' h v ’ .

affirmation by showing the equivalence of TCG and SP, and integrating 2- Each pair of nodes must be connected by exactly one edge either

them into TCG-S £C},, C,,, '~ ). The orthogonal combination leads to in Cp orin C,. _

a representation with at least the following advantages: 3. The transitive closure af}, (C.) is equal toC, (C.) itself.>

e With the property of SP, fasteO(mlgm)-time packing Figure 1(a) shows a placement with seven modulds ¢, d, ¢, f,
and O(m)-time perturbation schemes are possible for a Pand g whose widths and heights are (3.5, 1.5), (2, 2.5), (2, 3.5), (3,
admissible representation, whete is the number of modules. 2), (1.5, 1.5), (5, 1.5), and (1, 2), respectively. Figure 1(c) shows the
(Note that a linear-time packing scheme is possible for the treBCG = (C#, C,) corresponding to the placement of Figure 1(a). The
based representations, but they can represent only more restriv@lde associated with a node @, (C) gives the width (height) of the
compacted floorplans.) corresponding module, and the edge, n;) in C;, (Cy) denotes the

e Inherited from TCG, the geometric relations among modules g&glzontal (vertical) relation ob; andb;. Since there exists an edge

transparent to TCG-S, implying faster convergence to a desirdh» 7g) In Cx, moduleb, is left tob,. Similarly, b, is belowb, since
solution. there exists an edgeu., ny) in C..

. : ", : _ SP uses a pair of sequencéb;,['_) to represent a floor-
* ::%ﬁg;er%lj{;?\rgaz%?‘ placement with position constraints beplan/placement, wherEy andT'_ give two permutations of module
. . names. The geometric relation of modules can be derived from an SP
e TCG-S can support incremental update for cost evaluation. ;¢ foliows. Moduleb, is left (right) to moduleb, if a appears before
These nice properties make TCG-S an effective, efficient, and flexilgfter)d in both' andT'—. Moduleb, is below (above) modulé, if
representation. Extensive experiments based on a set of commonly #sagpears before (after)in I'y anda appears before (afteb)in I'_.
MCNC benchmarks show that TCG-S results in the best area utilizigure 1(b) shows the corresponding SP. Siméebeforeg in bothT';
tion, wirelength optimization, convergence speed, and solution stabiliydI"_, moduleb, is left to moduleb,. Similarly, b, is belowb, since
among existing works. a is afterb in 'y and beforé in T'_.

To show the flexibility of TCG-S, we also consider placement with
preplaced and boundary modules. For placement with pre-placed mod- (cbfedag. abcde gf)
ules, Murata et al. [11] proposed adaptation algorithnto transform ®)
an infeasible SP with preplaced modules into a feasible one. How- —
ever, the process incurs expensive computations. For placement with ¢ f
the boundary-module constraint, Tang and Wong in [16] and Ma et al.
in [9] handled this problem using SP and CBL, respectively. However,
they cannot guarantee a feasible solution in each perturbation and their
final placements. Lai et al. in [6] gave the feasibility conditions for SP a g
with boundary modules and transformed an infeasible solution into a @
feasible one. However, the method is very complex, and many rules are
needed to cope with the constraints .

We present in this paper the methods for handling placement wjth . , .
preplaced and boundary modules. Different from the previous wo gure 1:(a) A placement. (b) The corresponding SP of (a). (c) The corresponding TCG
on boundary modules that cannot guarantee a feasible solution or i
to transform an infeasible solution into a feasible one, TCG-S can eas- .
ily maintain the feasibility during each perturbation. We compared o®2 Equivalence of SP and TCG
work with [6] on placement with boundary modules. (Note that there Like the relations between a skewed slicing tree [13] and an NPE [18]
are no common benchmark circuits for this constraint.) Experimenfaf slicing floorplans as well as O-tree and B*-tree for non-slicing floor-
results show that TCG-S results in smaller areas than [6]. plans, TCG and SP are equivalent.

The remainder of this paper is organized as follows. Section 2 for- We can transform between TCG and SP as follows: Letdnein
mulates the floorplan/placement design problem. Section 3 comparegfaR-ou) of a noden;, denoted byF;, (n;) (Fou:(ni)), be the nodes
and TCG. Section 4 presents the procedures to build the TCG-S from;& with edges(n;, n;) ((n:, n;)). Given a TCG, we can obtain a se-
placement and construct the placement from a TCG-S. Section 5 gigegncel'+ by repeatedly extracting a node with Fj,,(n;) = 0 in
the operations to perturb a TCG-S. Section 6 presents our methodg'toand F,.:(n;) = 0 in C,, and then deleting the edgés;, n;)'s
handle placement with boundary and preplaced modules. Experime(ta}, n;)’s) from C}, (C,) until no node is left inC}, (C.). Similarly,
results are reported in Section 7. Finally, we give concluding remarksiie can transform a TCG into another sequehceby repeatedly ex-
Section 8. tracting the noder; with F;,(n;) = 0 both inC, andC}, and then

S deleting the edge&;, n;)’s from bothC}, andC,, until no node is left

2 Problem Definition in Cy, andC,. Givg; anj )SP: ('+,T-), we can obtain a unique TCG

_LetB = {b1,bs,...,bm } be a set ofn rectangular modules whose— (¢, '¢,) from the two constraint graphs of the SP by removing the
width, height, and area are denotediby, H;, andA;, 1 < i < m. Let soyrce, sink, and associated edges. For example, the SP of Figures 1(b)
(zi,y:) (=7, y;)) denote coordinate of the bottom-left (top-right) cornefg equivalent to the TCG of Figures 1(c).
of moduleb;, 1 < i < m, on a chip. A placemer® is an assignment of
(3, yi) for eachb;, 1 <4 < m, such that no two modules overlap. The  2The transitive closure of a directed acyclic grafis defined as the graph
goal of floorplanning/placement is to optimize a predefined cost mett¢ = (V, E’), whereE’ ={(n;, n;): there is a path from node; to noden;
such as a combination of the area (i.e., the minimum bounding rectarigle’}.
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3.3 Comparison between TCG and SP Given a placement;_ can be extracted based on the procedure de-

Although TCG and SP are equivalent, their properties and inducggfibed in [10]. For example, the_ for the placement of Figure 2(a)
operations are significantly different. (Similar situations are also with < abcdegf >. After extractingl' -, we can construcC’, andC,
skewed slicing trees/NPE’s and O-trees/B*-trees.) Both SP and TCG Aased o' —. For each modulé; in I'_, we introduce a node; with
considered very flexible representations and construct constraint graip§sweight being;’s width (height) inC}, (C.). Also, for each module
to evaluate their packing cosE_ of an SP corresponds to the order?: beforeb; inT'—, we introduce an edge, n;) in C (Cy) if bi | b;
ing for packing modules to the bottom-left direction and thus can & L b;)- As shown in Figures 2(b), for the first two modulgs by in
used for guiding module packing. However, like most existing repré--» We introduce the nodes, andn;, in C, (C',) and assign the weights
sentations, the geometric relations among modules are not transpa#értheir widths (heights). Also, we construct a directed gdgen; ) in
to the operations of SP (i.e., the effect of an operation on the chang&efSince modulé, is beforeb, andb, L b,. The process repeats for all
module relation is not clear before packing), and thus we need to cédules inl'_, resulting in the TCG-S shown in Figure 2(b). We have
struct constraint graphs from scratch after each perturbation to evaldfgfollowing theorem.
the packing cost; this deficiency makes SP harder to converge to a_de- . .
sireg soluti%n and to handle pla{ement with constraints (e.g.,gboundfﬂﬁorem 1 There exists a TCG-S corresponding to a placement.
modules, pre-placed modules, etc).

Contrast to SP, the geometric relations among modules are transpar-
ent to TCG as well as its operations, facilitating the convergence to a 2
desired solution. Further, TCG supports incremental update during op- ]
erations and keeps the information of boundary modules as well as the c f
shapes and the relative positions of modules in the representation. Un-
like SP, nevertheless, we need to perform extra operations to obtain the
module packing sequence and an additign@h?) time to find a special
type of edges, calleteduction edgesin C;, (C,) for some operations. a g
(We will define the edges later.)

For both SP and TCG, the packing scheme by applying the longest @
path algorithm is time-consuming since all edges in the constraint graphs
are processed, even though they are not on the longest path. As shownin  Figure 2:(a) A placement. (b) The corresponding TCG-S of (a).
C}, of Figure 1(c), if we add a source with zero weight and connect it to
those nodes with zero in-degree, theoordinate of each module can be _
obtained by applying the longest path algorithm on the resulting direct%'(g From TCG-Sto a placement
acyclic graph. Therefore, we havg = max{z;, =}, z,, T, .}
However, if we place modules based on the sequéncend maintain a
horizontal and a vertical contours, denotedRBy and R, respectively,
for the placed modules, the number of nodes need to be considered
be reduced. LeR;, (R.) be a list of module$;’s for which there exists
no moduleb; with y; > yi (z; > x;) andz} > =} (y; > y;). For the
placement of Figure 1(a), for examplB, =< b.,by > andR, =<
bg,bq,be,bs, b >. Suppose we have packed the moduilgsby, b, (@, > ) anda:;- > (y;- > yb). (Rn (R.) consists of modules along

ba, andb. based on the sequente.. Then, the resulting horizontal .
contourR;, =< be, be,bq >. KeepingRy,, we only need to traverse the.the top (left) boundary of a placement.) We can keep the modiites

contour fromb,, predecessors @, to the last modulé,, which have M £ () in a balanced binary search tree (e.g., the red-black tree [2])
horizontal reIatioF;]s with, (since %here are edgés. ng)dand(nd, ny) Ty, (T) in the increasing order according to their right (top) boundaries.

in C1,). Thus, we haver, = x;. Packing modules in this way, we only For easier presentation, we addlammy modulé, (b) t0 Ry, (£

need to consider. andz., and can get rid of the computation for %ﬁdenote the left (bottom) boundary module of a placement. We have

:abcde gf
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In this subsection, we propose &{m lg m)-time packing scheme
based ol as well as a horizontal and a vertical contoRjsandR,,
wherem is the number of modules. The basic idea is to process the
Egﬁules based on the sequence defindd inand then pack the current
ule to a corner formed by two previously placed modulegin

(Rv) according to the geometric relations definedinandC,,.

We detail the packing scheme as follows. Recall tRat(R,) is a
list of modulesb;’s for which there exists no modulg with y; > i

. . . !/ Iy — 7 AN
maximum value, leading to a faster packing scheme. We will show lafar™ 0 @ndb: L bi, Vb;. Let (s, ys) = (0, 00) and(a, y;) = (00, 0).

. . (R,) consists ob;, (b;) initially, and so does the correspondifify
Poogettoaalgglﬁlnz;r?tlﬁé:%cjigl(ri\rz]aéystcrﬁgr;%|mplement the contour operat »). 1o pack a modulé; in I'_, we traverse the modulég’s in T},

(T,) from its root, and go to the right child &, + b; (bx L b;) and the
: left child if b, L b; (bx F b;). The process is repeated for the newly

4 TheTCG-S Representatlon encountered modfjle until é leaf node is met. THeris connected to

Combining TCG= (Cy,Cy) and SP= (I';,I'~), we develop a the leaf node, and; = z), (y; = y,), whereb, is the last module with
representation, called TCG=S (Cy, C, T'— ), which uses a horizontal p, |- b; (b, L b;) in the path. Afte; is inserted intdI}, (T.,), every
and a vertical transitive closure graphs as well as a packing sequepeiecessai; with z; < z (y; < yj) in T, (T,) is deleted sincé; is
['_ to represent a placement. In this section, we first introduce hews longer in the contour. (Note that the ordering of node,ifT’,) can
to constructl’—, C, andC, from a placement. Then, we propose ame obtained by depth-first search.) This process repeats for all modules
O(m1gm)-time packing scheme for TCG-S, whereis the number of in T'_. We havelV = 2!, (H = y!) if b, is the module in the resulting
modules. T, (T) with the largest value, whedd (H) denotes the width (height)
4.1 From aplacement to TCG-S of the placement. We have the following theorems and lemmas.

In this subsection, we first extratt- from a placement, and then Theorem 2 There exists a unique placement corresponding to a TCG-
constructC}, andC,, according td"_. S.

For two non-overlapped modulésandb;, b; is said to behorizon-
tally (vertically) relatedto b;, denoted by; - b; (b; L b;), if b; isleft Lemmal For each modulé; in I'_, b; must be placed adjacent to the
to (below)d; and their projections on the (z) axis overlap. For two right (top) boundary of some modulgin R, (R,) during the packing.
non-overlapped modulés andb;, b; is said to bediagonally relatedo
b; if b; is left tob; and their projections on the and they axes do not
overlap. To simplify the operations on geometric relations, a diagoria#mma 2 Given a modulé; inI'_ to be placed, ib; € Ry (Ry),b; L
relation for modules; andb; is treated as a horizontal one unless there (b; - b;), andb; has the largest); (y;), any moduleby € Ry (R,)
exists a chain of vertical relations froh (b;), followed by the mod-  withz}, > z/; (y}, > y})) cannot have the relatioby, - b; (b L b;).
ules overlapped with the rectangle defined by the two closest corners of
b; andb;, and finally tob; (b;), for which it is considered al L b; Theorem 3 The proposed scheme correctly packs all modules in
(b; L b;). O(mlgm) time, wheren is the number of modules.



(ne,mne), and(ne, ny). (Note that(n., ng) is not a reduction edge be-

Th cause we foundn., ngy) in C}, during the processing.)

bs b bs bt bp ba Starting fromn., we search the next nodewith (n.,n) notinCj. We
\ \ ba b PN B by find noden, implying that(n., ny) is also a reduction edge. There-
by ba ba b fore, we have found all reduction edges emanating frem(n., nq),
bo boby  be ¢
Ty Th Ty Th Ty
4 by W 4

b

bs b ba be ba Theorem 4 Given a noden; in Cj, (C)), the Linear Scan method finds
\ /\ /\ /\ by all reduction edges emanating from in O(m) time, wherem is the
ba babs  ba Bt b Sy number of modules.
Th Ty Th ut Th Ty be ] ]
XaEXs=0 g XBEXs=O X c=Xs=0 5.2 Solution Perturbation
@  ya=yp=0 ®  yp=ya=15 © ye=y'h=4 We extend the four operatiorRotation Swap Reverseand Move
presented in [8] to perturb’, andC,. During each perturbation, we
Figure 3:The packing scheme for the TCG-S of Figure 2(b). must maintain the three feasibility properties & andC,,. Unlike the

Rotation operation, Swap, Reverse, and Move may change the configu-
rations ofC}, andC, and thus their properties. Further, we also need to

Figures 3 shows the packing scheme for the TCG-S of Figure Z(Ey;intainll to conform to the topological ordering of the néW and

Ty, (Ty) consists ob; (b) initially. To pack the first modulé,, in T'_,
we traversel}, (T,) from the rooths (b:) and insert it to the right child 5.2.1 Rotation
of bs (b¢) sincebs - by (be L bs). Therefore, the first module, in  To Rotate a modulé;, we exchange the weights of the corresponding
I'_ is placed at the bottom-left corner (i.€x5.,v.) = (0,0)) sincebs  noden; in C, andC,. Since the configurations &), andC, do not
(be) is the last module that is horizontally (vertically) relatecdbjoand change, so dosE_. Figure 4(a) shows the resulting TCG-S after rotat-
z, = 0 (y; = 0). (Note thatT}, (T},) in Figures 3(a) denotes a balancedng the moduleg shown in Figure 2(b). Notice that the ndiv is the
binary search tree aftéy, is inserted intdl, (7,).) Similarly, to pack same as that in Figure 4(a).
the second modulg, in T'_, we traversél}, from the rootb, and then
its right child sincebs F b,. Then,b, is inserted to the left child of, r .abcde of
sincebs L b,. Because; is the last module with, - b, in the path, . >
xp = x5 = 0. Similarly, we traversd’, from the rootb; and then its
right child b, sinceb, L b;. Then,b, is inserted to the right child df,
in T, sinceb, L b,. Thereforey, = y., = 1.5 becauseé, is the last
module withb, L b, in the path. The resulting balanced binary search
trees after performing tree rotatioff, T, are shown in Figure 3(b) , 3.
(see [2] for the rotation operations for keeping a tree balanced).
shown in Figure 3(c), aftdr. is insertedp, in T}, is deleted sincé, is a
predecessor df. andz;, < z., (i.e.,bs is no longer in the contour). The
resulting}, andT, are shown in Figure 3(c). The process is repeateg
for all modules inl"_. ¢
According to this packing scheme, if the coordinate of a modute
I'_ is changed, we only need to recompute the coordinates of module
afterd; in T'_ since the coordinates of modules befbrelo not change.

5 Floorplanning Algorithm o

We develop a simulated annealing based algorithm [5] by using “ (c) Reverse (ny ne)c"
TCG-S for general floorplan design. Given an initial TCG-S, the algo- '
rithm perturbs the TCG-S into a new TCG-S to find a desired solutioRigure 4:Four types of perturbation. (a) The resulting TCG-S after rotating the module
To ensure the correctness of the n€y andC,, they must satisfy the by shown in Figure 2(b). (b) The resulting TCG-S after swapping the nedeandn g
three feasibility conditions given in Section 3.1. To identify feas(Bie shown in (a). (c) The resulting TCG-S after reversing the reduction edgen.) shownin
andC, for perturbation we describe the conceprexluction edge:’n gb).c(d) The resulting TCG-S after moving the reduction etlgeg, n.) from theC', of (c)

v | T (0] .

the following subsection. "
5.1 Reduction Edge 500 Sy

An edge(n;, n;) is said to be aeduction edgef there does not =< ap .
exist another path from; to n;, except the edgén;, n;) itself; other- SWappingr; andn; does not change the topologies@f andC’, ex-
wise, it is aclosure edggfor some operations. In Figure 2(b), for exam€€Pt that nodes; andn; in bothC', andC, are exchanged. Therefore,
ple, edgegn,, ny), (n4,ny), and(n.,n,) are reduction edges while W& only need to exchangeandb; in I'_. Figure 4(b) shows the result-
(ny,ng) and(ne, ny) are closure ones. With_, we can find asetof N9 TCG-S after swapping the nodes andn, shown in Figure 4(a).
reduction edges i)(m) time (wherem is the number of modules), a Notice that the module. andb, in I'— in Figure 4(b) are exchanged.

significant improvement frord(m?) time using TCG alone [8]. 523 Reverse

Given an arbitrary node; in a transitive closure grapfi, (C), we Reverse changes the geometric relation betvbeandb; fromb; + b;
can find all the nodes;’s that form reduction edgesy;, nj)'susinga (b; L b;) tob; - b; (b; L b;). To reverse a reduction edge;(n;) in
Linear Scanmethod as follows. First, we extract frofh. those nodes one transitive closure graph, we first delete the edger(;) from the
n;'sin F,yu:(n;) of Cy (C,) and keep their original ordering in_. Let  graph, and then add the edgg (n;) to the graph. To keeg’, andC,
the resulting sequence k& The first noden,, in S andn; must form feasible, for each node, € Fi,(n;)U{n;} andn; € Foui(n:)U{n;}
areduction edgén;, ni.). Then, we continue to travergeuntil a node in the new graph, we have to keep the edgg, n;) in the new graph.
n; with (ng, n;) notin C, (C,) is encountered(n;, n;) must also be a If the edge does not exist in the graph, we add the edge to the graph and
reduction edge. Starting from, we continue the same process until naelete the corresponding ede,, n;) (or (n;, ny)) in the other graph.
node is leftinS. To makel'~ conform to the topological ordering of the né&W andC,,

As an example shown 6", of Figure 2(b), we are to extract all re- we deleteh; from I'_ and inserb; afterb;. For each modulg;,, between
duction edges emanating fram. We first findS =< ngq,ne,ng,ny >  b; andb; in I'_, we shall check whether the ed@e;, ny) exists in the
by extracting nodes i#,,:(n.) based on the sequencelin. n. and same graph. We do nothing if the ed@e, n.) does not exist in the
the first noden, in S form a reduction edgén., nq). TraversingS, we same graph; otherwise, we delétfromI'_ and insert it after the most
have another reduction edge., n.) since edgéng, n.) is not inCj. recently inserted module.

(b) Swap (e, ng)

I_:abgedcf

(d)Move (n, ng)



Figure 4(c) shows the resulting TCG-S after reversingréiaieiction 6.1.4 Move
edge(na,n.) of the C, in Figure 4(b). Since there exists no modulef b, is a top boundary module @ is a bottom boundary module, we
betweerb, andb. inT'—, we only need to delete; from ' and insert  cannot move the reduction edge,, n,) from C, to C,,. Similarly, we
it after b, and the resulting’ - is shown in Figure 4(c). cannot move the reduction ed@e., n,) from C, to C}, if b, is a right
524 Move boundary module ad¥, is a left boundary module

Move changes the geometric relation betwéeandb; from b; + b; We have the following theorem.
(b; L bj)tob; L b; (b; - b;). Tomove areduction edges n;) from a
transitive closure grapfi to the otheli’, we delete the edge frodi and
then add it ta?’. Similar to Reverse, for each nodg € F;, (n;)U{n;}

andn; € Fout(n;)U{n;}in G', we must move the edgew, ) 10G' 62 TCG-Swith Pre-placed M odules

if the the cohrrespondinlg ehdg(aé, "Qa(or (Tg’ %’f)) is i“hG' Si”‘fe t_hel The placement with pre-placed modules is to place a set of prespeci-
operation changes only the edgestip or C, but not the topological fieq modules at the designated locations of a chip, which can be formu-
ordering among node§, remains unchanged. lated as follows:

Figure 4(d) shows the resulting TCG-S after moving tbéuction

edge(na, ne) from C, to Cj, in Figure 4(c). Notice that the resulting pefinition 2 Pre-placed ConstrainGiven a modulé; with a fixed co-

I'_ is the same as that in Figure 4(c). ordinate(z;, y;) and an orientationh; must be placed at the designated
For the above operations, Rotation and Move do not change the topgation with the same orientation in the final packing.

logical ordering ofl'— while Swap and Reverse need respectivd)
andO(m) times to maintain the topological ordering Bf , wherem Whether a pre-placed module is packed at a correct location is not
is the number of modules. We have the following theorem. known until packing. Also, changing the coordinate of a moduhaay
) . affect the packing for other modules afterin I'_. Therefore, we may
Theorem5 TCG-S is closed under the Rotation, Swap, Reverse, afged to modify a TCG-S to guarantee a feasible placement with the pre-
Move operations. placed constraint after each perturbation.
Given a TCG-S, modules are packed one by one based on the se-
ence off'_. A moduleb; interacts withanother modulé; if (1) b;
verlaps;, (2)b; - b; and their projections on theaxis overlap, or (3)
b; L b; and their projections on theaxis overlap. If; interacts with a
pre-placed modulg; andb; was not placedn; andn; are swapped in
TCG-S to maké; placed at the designated location. If a pre-placed
duleb; was placed and the resulting placemeni;afoes not interact
with itself at the designated location, we swapwith the nodeb; right

. . afterb; in I'_; otherwisep; is placed at the designated location if there
6 Placement with Constraints exists no module behing in T,

In this section, we demonstrate the flexibility of TCG-S by extendin% .

it to handle placement with boundary and pre-placed modules. Experi mental Results

6.1 TCG-Swith Boundary Modules Based on a simulated annealing method [5], we implemented the
The placement with boundary constraints is to place a set of prespEeG-S representation in the C++ programming language on a 433 MHz

ified modules along the designated boundaries of a chip, which can38&N Sparc Ultra-60 workstation with 1 GB memory. The source code is
formulated as follows: available at http://cc.ee.ntu.edu.twywchang/research.html. Based on

the five commonly used MCNC benchmark circuits, we conducted four
Definition 1 Boundary ConstraintGiven a boundary modulg it must  experiments: (1) area optimization, (2) wirelength optimization, (3) so-
be placed in one of the four sides: on the left, on the right, at the bottdution convergence speed and stability, and (4) placement with boundary
or at the top in a chip in the final packing. constraints. In Table 1, Columns 2 and 3 list the respective numbers of
modules and nets of the five circuits.
TCG-S keeps the following properties that make placement with For Experiment (1), the area and runtime comparisons among SP,
boundary constraints much easier than other representations. O-tree, B*-tree, enhanced O-tree, CBL, and TCG are listed in Table 1.
As shown in Table 1, TCG-S achieves the best area utilization for the
Theorem 7 If a moduleb; is placed along the left (right) boundary, thebenchmark circuits in very efficient running times. Figure 6 (left) shows
in-degree (out-degree) of the nodein C}, equals zero. If a module  the resulting placement for ami49 with area optimization.
is placed along the bottom (top) boundary, the in-degree (out-degree) ofFor Experiment (2), we estimated the wirelength of a net by half
noden; in C, equals zero. the perimeter of the minimum bounding box enclosing the net. The
wirelength of a placement is given by the summation of the wirelengths
For each perturbation, we can guarantee a feasible placementobgll nets. As shown in Table 2, TCG-S achieves better average results
checking whether the conditions of boundary modules are satisfied. Wevirelength than O-tree, enhanced O-tree, and TCG in smaller running
discuss the modifications for the four perturbation operations as followigies. (Note that we did not compare with B*-tree and CBL here since
6.1.1 Rotation they did not report the results on optimizing wirelength alone.)

_ . . . ._In addition to the area and timing optimization, in Experiment(3), we
Since Rotation does not change module location, the operation remajjag compared the solution convergence speed and stability among SP,
the same as before. TCG, and TCG-S to eliminate the possible unfairness due to the non-
6.1.2 Swap deterministic behavior of simulated annealing, which were neglected in
We can swap two nodes, andn;, if most prev_ious works. (Note that other tools are not available to us for_the
1. b, andb, are not boundary modules, comparatlve study.) We rando_m_ly ran SP, TCG, and TCG-S_ onQam|49

5 b andbs are boundary modules of the same tvoe. or ten times based on the same initial placement whose aéRism".
a s b y : _YP d The resulting areas are plotted as functions of the running times (sec).
3. ba is a boundary module artd is not, andn;, satisfies the bound- Figures 5(a), (b), and (c) show the resulting curves of SP, TCG, and
ary constraint ob, . TCG-S, respectively. To see the detailed convergence rates, we show in
6.1.3 Reverse Figures 5 only the potions whose areas are smaller than#7. As il-

If b, is a left boundary module @ is a right boundary module, then thelustrated in Figure 5(c), TCG-S converges very fast to desired solutions,
reduction edgén,, ny) in Cj, cannot be reversed. Similarly, we cannogind the results are very stable $7.5 mm? for all runs). In contrast,
reverse the reduction edge.,n;) in C, if b, is a bottom boundary the convergence speed of SP is much slower than TCG-S and TCG,

module orb, is a top boundary module and the resulting areas are often larger tharw@@?. Further, there

Theorem 8 TCG-S is closed under the Rotation, Swap, Reverse, and
Move operations with boundary constraints.

In particular, it suffices to apply the four perturbations to explore t
whole solution space. Extending the similar work by [17] for TCG, w
have the following theorem.

Theorem 6 Given two arbitrary TCG-S'$; and S», we can obtainS,
from S, by applying a finite number of Rotation, Swap, Reverse, al
Move operations, and vice versa.



# # Enhanced
of of SP O-tree B*-tree O-tree CBL TCG TCG-S
Circuit | modules | nets Area Time Area Time Area Time Area Time Area Time Area Time Area Time
mm> sec || mm?2 sec || mm? sec || mm?2 sec mm? sec || mm? sec mm? sec
apte 9 97 4812 13 471 38 46.92 7 46.92 11 NA NA 46.92 1 46.92 T
XErox 10 203 20.69 15 20.1 118 19.83 25 20.21 38 20.96 30 19.83 18 19.796 5
hp 11 83 9.93 5 9.21 57 8.947 55 9.16 19 (66.14) | (32) 8.947 20 8.947 7
ami33 33 123 1.22 676 1.25 1430 1.27 3417 1.24 118 1.20 36 1.20 306 1.185 84
ami49 49 408 38.84 | 1580 37.6 7428 36.80 | 4752 37.73 | 406 38.58 65 36.77 434 36.40 369

Table 1: Area and runtime comparisons among SP (on Sun Sparc Ultra60), O-tree (Sparc Ultra 60), B*-tree (Sparc Ultra-I), enhanced O-tree (Sparc Ul{&pajc 28). TCG
(Sparc Ultra60) and TCG-S (Sparc Ultra60) for area optimization. The best areas are in boldface.

is a large variance in its final solutions. Based on the experimental re- [———+———=
sults, we rank the convergence speed from the fastest to the slowestanc| | h | ‘ |
the solution stability from the most stable to the least stable as follows: T
TCG-S»> TCG >~ SP. We note that the stability and convergence speed
should be very important metrics to evaluate the quality of a floorplan -
representation because they reveal the corresponding solution structure —l
for optimization. However, they were often ignored in previous works.
(MOS_'[ previous V\_/OI’kS focus on the comparlson of SOIL.Itlon space qﬂﬂ;ure 6. Resulting placements of ami49 (1) left: area optimization (atea

packing complexity. Ne.verthEIeSS’ we find that.the solution StT”Ct”re .308mm?2); (2) right: placement with boundary modules being heavily shaded
duced by a representation plays an even more important role in floorglah) | 5|/ ||, |r|) = (3,3, 2. 3), area= 36.765mm>). Note that the lightly shaded

optimization.) regions denote dead spaces.
Snhanced Lai et al o] TCGS
O-tree O-tree TCG TCG-S Circuit | |T|,|B|,|L|,|R| || Area T Time || Area [ Time
Circuit Wire Time Wire Time Wire Time Wire rime mm> sec mm? sec
mm sec mm sec mm sec mm sec apte TIL1 26.07 15 2607 3
apte 317 47 317 15 363 2 363 2 XErox 1,1,1,1 20.4 19 19.977 33
XErox 368 160 372 39 366 15 366 6 hp 1,1,1,1 9.24 23 9.158 26
hp 153 90 150 19 143 10 143 4 ami33 2,2,2,2 1.21 290 1.190 238
ami33 52 2251 52 177 44 52 43 89 ami49 3,323 36.84 601 36.765 584
ami49 636 | 14112 629 688 604 767 579 570

- . . ble 3:Area and runtime comparisons between [6] (on Pentium-Il 350) and TCG-S (on
Table 2.W|relength and runtime comparisons among O-tree, enhanced O-tree, TCG, %@] Sparc Ultra60) for placement with boundary modules.

TCG-S for wirelength optimization. All ran on Sun Sparc Ultra60.
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